Densities and Thermal Expansion of Some Aqueous Rare Earth Chloride Solutions Between 5° and $80^{\circ} \mathrm{C}$. I . $\mathrm{LaCl}_{3}, \mathrm{PrCl}_{3}$, and NdCl_{3}

Wayne M. Gildseth, ${ }^{1}$ Anton Habenschuss, and Frank H. Spedding ${ }^{2}$
Ames Laboratory-ERDA and Department of Chemistry, lowa State University, Ames, lowa 50010

Abstract

A dilatometric method is used to measure densities of aqueous $\mathrm{LaCl}_{3}, \mathrm{PrCl}_{3}$, and NdCl_{3} solutions from approximately 0.1 to 3.5 molal, and from 20° to $80^{\circ} \mathrm{C}$ for LaCl_{3} and 5° to $80^{\circ} \mathrm{C}$ for PrCl_{3} and NdCl_{3}, at 5° intervals. Equations representing the apparent molal volumes as a function of temperature and concentration are given. Partial molal volumes, coefficients of thermal expansion, and apparent and partial molal expansibilities calculated from these fits are discussed in terms of ion-ion and ion-solvent interactions, as well as in terms of solvent structure. Water appears to undergo greater electrostriction with decreasing rare earth ionic radii, resulting in decreasing apparent and partial molal volumes at all temperatures. However, the apparent and partial molal expansibilities increase with decreasing rare earth ionic radii. The existence of an inversion temperature below which the solution is more expansible than pure water and above which the reverse is true is verified.

Investigations in this laboratory, including the determination of partial molal volumes ($43,46,49,50$), heats of dilution (42), partial molal heat capacities (44), viscosities (45, 5153), and electrical conductances ($40,47,48$) of aqueous rare earth solutions, have indicated that the thermodynamic and transport properties of these solutions are not simple functions of the ionic radii. It has been suggested (46) that changes in primary hydration coordination of the rare earth ions are partially responsible for the observed irregularities. Although little thermal expansion data exist for aqueous solutions containing trivalent cations (28), other recent studies (7 , $8,10,11,14,27,33-38$) indicate that thermal expansion data may help elucidate the extent to which ion-ion and ionsolvent interactions, as well as solvent structure, are important in solutions.

In this investigation, densities of aqueous lanthanum, praseodymium, and neodymium chloride solutions have been measured at a number of concentrations and temperatures. Various thermodynamic properties derivable from these data have been calculated and examined in terms of types of interactions and structures which might be present in the solutions.

Experimental

Apparatus and procedure. The apparatus and procedure used for the determination of the densities of water (22) were also used in this work. Two sets of dilatometers were employed: one set of nine dilatometers, Series I, was used to measure densities of LaCl_{3} and NdCl_{3} solutions between 20° and $80^{\circ} \mathrm{C}$; and some years later, a second set of 10 dilatometers, Series II, was used to measure densities of NdCl_{3} and PrCl_{3} solutions between 5° and $80^{\circ} \mathrm{C}$. The total volume of each dilatometer was approximately 130 ml and was known as a function of temperature. About 25 ml of mercury were

[^0]weighed into each dilatometer. After weighing, each dilatometer was filled with degassed solution and weighed again. The filled dilatometers were placed in a thermostat where the temperature was controlled and measured to a precision of $\pm 0.001^{\circ} \mathrm{C}$. At approximately $5^{\circ} \mathrm{C}$ intervals, mercury was withdrawn from the dilatometer sidearms and weighed. Densities of mercury used were those reported by Beattie et al. (4). In this manner, changes of less than $\pm 1 \times 10^{-4} \mathrm{ml}$ out of a total of about 100 ml of solution could be detected. This corresponds to a precision of better than $\pm 1 \mathrm{ppm}$ in the density of the solution as a function of temperature. As the initial weight of mercury and the weight of solution were determined in the procedure, absolute densities of the solutions were known to about $\pm 5-10 \mathrm{ppm}$.

Materials. The solutions were prepared from the rare earth oxides and reagent grade HCl according to the method of Spedding et al. (46). This method results in solutions of the stoichiometric salt and also insures the removal of all colloidal material which tends to form in these solutions when prepared from the oxides. The resulting stock solutions were analyzed (46) by both cation and anion analyses to insure that equivalent amounts of rare earth and chloride ions were actually present. Secondary solutions were prepared by dilution with distilled water having a specific conductivity of about $7 \times$ $10^{-7} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$.

Highly purified mercury was obtained from the Special Materials Group of the Ames Laboratory of the Atomic Energy Commission. As a precaution against surface contaminants, the mercury was passed through a pinhole in filter paper before using, and the top layer of mercury in the funnel was discarded. Further details on the purity of the rare earth oxides and mercury and the methods of solution preparation and analysis are given elsewhere (21,25).

Calculations and Results

Calibration of dilatometers. As it was necessary to know the volume of each dilatometer as a function of temperature, the dilatometers were calibrated by use of mercury as the calibrating liquid. The calibrated dilatometers have been used to determine the densities of water from 5° to $80^{\circ} \mathrm{C}$ (22). To further insure consistency in the volume calibrations of the dilatometers between Series I and Series II, and from one dilatometer to another, the volume parameters of the dilatometers were refined by use of the average density of water data $(22,25)$, as obtained from all the dilatometers.

Solutions. The experimental densities and temperatures are given in Tables I-IV. A small loss of water from the solutions during the degassing procedure precluded precise knowledge of the solution concentrations. However, accurate pycnometric densities at $25^{\circ} \mathrm{C}$ are available for these solutions as a function of concentration (49). These pycnometric density data (49) were represented by polynomial expressions in the molality (25), and the concentrations of our solutions were obtained by substituting the densities of our solutions at exactly $25.000^{\circ} \mathrm{C}$ into these expressions and solving for the molality. For this purpose, the densities determined in this research were fitted as a function of temperature to Equation 1

$$
\begin{equation*}
a=\sum_{i=0}^{5} c_{i} t^{l} \tag{1}
\end{equation*}
$$

for each solution, and densities computed at $25.000^{\circ} \mathrm{C}$. The concentrations obtained in this way are listed in Tables I-IV. The coefficients of Equation 1 are given in Table V, and the deviations from the experimental densities are given in Tables I-IV. Equation 1 fits the densities within the experimental precision in the density changes as a function of temperature and serves to represent accurately the densities as a function of temperature at the experimental concentrations.

Apparent molal volumes at the various temperatures were calculated from the experimental densities and concentrations according to

$$
\begin{equation*}
\phi_{V}=\frac{1000\left(d^{\circ}-d\right)}{m d^{\circ} d}+\frac{M_{2}}{d} \tag{2}
\end{equation*}
$$

where M_{2} is the molecular weight of the solute (1969 IUPAC atomic weights), and m is the molal concentration. The densities of water, d°, were calculated from (22)

$$
\begin{array}{r}
d^{\circ}=1-\frac{(t-3.9863)^{2}(t+288.9414)}{508929.2(t+68.12963)}+ \\
0.0119893 \exp (-377.145 / t) \tag{3}
\end{array}
$$

The numerical values of the latter two coefficients in Equation 3 differ slightly from those given in ref. 22 owing to a minor refinement of the density of water data (25). This refinement involves an additional mercury calibration run with some of the dilatometers and a minor adjustment in the Mueller Bridge calibration, completed after the water density data had been published (25). These additional results were used in arriving at Equation 3. The differences in the densities as calculated from Equation 3 and those reported in ref. 22 are not significant. The apparent molal volumes calculated from Equation 2 are given in Tables I-IV. Some of the experimental ϕ_{V} data are shown in Figures 1-3.

All the thermodynamic quantities derivable from ϕ_{V} require derivatives of ϕ_{V} with respect to concentration and/or temperature. The apparent molal volumes in Tables I-IV were therefore first fitted to

$$
\begin{equation*}
\phi_{V}=\sum_{i=0}^{5} A_{i} t^{i} \tag{4}
\end{equation*}
$$

Table I. Density and ϕ_{r} for LaCl_{3}

$t,{ }^{\circ} \mathrm{C}$	$d, \mathrm{~g} / \mathrm{ml}$	$\Delta d \times 10^{6}$	$\phi 1, \mathrm{ml} / \mathrm{mol}$	$\Delta \phi V \times 10^{3}$
	0.063471 m			
20.128	1.012527	-0.5	19.008	6.2
25.052	1.011338	1.3	19.455	-16.3
30.034	1.009908	-0.6	19.741	7.7
34.999	1.008279	0.0	19.803	-3.2
39.980	1.006451	-2.1	19.747	32.1
45.070	1.004404	1.9	19.446	-28.0
49.931	1.002282	0.9	19.111	-12.4
54.998	0.999908	-0.3	18.653	6.0
60.316	0.997251	-0.8	18.048	10.9
65.456	0.994528	-0.5	17.351	5.3
70.331	0.991813	0.4	16.588	-6.4
74.816	0.989203	0.5	15.807	-5.7
79.571	0.986324	-0.3	14.878	3.8
		$0.11651 m$		
20.091	1.024351	-0.1	20.045	-0.0
25.042	1.023115	0.3	20.535	-0.6
30.043	1.021647	-0.5	20.840	3.4
34.954	1.020010	0.5	20.958	-5.5

for each concentration studied. These equations represent the temperature variation of ϕ_{V} within $0.01 \mathrm{ml} / \mathrm{mol}$ at low concentrations to $0.001 \mathrm{ml} / \mathrm{mol}$ at high concentrations. The deviations of the experimental ϕ_{V} values from Equation 4 are listed in Tables I-IV in column 5, and the coefficients of Equation 4 are given in Table VI.

Since graphs of the temperature coefficients in Equation 4 varied smoothly with concentration, the coefficients of each power in t were then fitted as functions of $m^{1 / 2}$

$$
\begin{equation*}
A_{i}=\sum_{j=0}^{4} B_{i j} m^{j / 2} \tag{5}
\end{equation*}
$$

which upon substitution into Equation 4 yields

$$
\begin{equation*}
\phi_{V}=\sum_{i} \sum_{i} B_{i j} m^{j / 2} t^{i} \tag{6}
\end{equation*}
$$

The coefficients in Equation 6 are given in Table VII. Equation 6 fits the experimental ϕ_{V} data to within $0.05 \mathrm{ml} / \mathrm{mol}$ at low concentrations and to within $0.01 \mathrm{ml} / \mathrm{mol}$ at high concentrations. Apparent molal volumes calculated from Equation 6 are shown in Figures 4 and 5.

From Equation 6 and the appropriate temperature and concentration derivatives, together with the parameters in Table VII, the following thermodynamic quantities were calculated according to the standard relationships (26):

$$
\begin{gather*}
\bar{V}_{2}=\phi_{V}+m\left(\frac{\dot{\partial} \phi_{V}}{\partial m}\right)_{T, P, n_{1}} \tag{7}\\
\bar{V}_{1}=\bar{V}_{1} 0-\frac{M_{1} m^{2}}{1000}\left(\frac{\partial \phi_{V}}{\partial m}\right)_{T, P, n_{1}} \tag{8}\\
\phi_{E}=\left(\frac{\dot{\partial} \phi_{V}}{\dot{\partial} T}\right)_{P, n_{1}, n_{2}} \tag{9}\\
\bar{E}_{2}=\phi_{E}+m\left(\frac{\dot{\partial} \phi_{E}}{\partial m}\right)_{T, P, n_{1}} \tag{10}\\
\bar{E}_{1}=\bar{E}_{1} 0-\frac{M_{1} m^{2}}{1000}\left(\frac{\dot{\partial} \phi_{E}}{\dot{\partial m}}\right)_{T, P, n_{1}} \tag{11}
\end{gather*}
$$

where $M_{1}=18.0154 \mathrm{~g} / \mathrm{mol}$ is the molecular weight of water; $\bar{V}_{1}{ }^{\circ}=M_{1} / \alpha^{\circ} ; \bar{E}_{1}{ }^{\circ}=\alpha^{0} \bar{V}_{1}{ }^{\circ}$; and $\alpha^{\circ}=-1 / \delta^{\circ}\left(\partial \alpha^{\circ} / \partial t\right)$ is ob-

$t,{ }^{\circ} \mathrm{C}$	$d, g / \mathrm{ml}$	$\Delta d \times 10^{6}$	$\phi_{5}, \mathrm{ml} / \mathrm{mol}$	$\Delta \phi_{\mathrm{V}} \times 10^{3}$
		$0.11651 m$		
39.976	1.018147	-0.2	20.941	0.9
44.909	1.016145	-0.9	20.791	8.4
50.118	1.013860	1.6	20.474	-12.4
55.017	1.011553	-0.7	20.102	6.4
60.044	1.009042	-0.3	19.591	1.9
64.961	1.006448	0.2	18.991	-3.3
69.720	1.003813	-0.0	18.328	0.2
74.790	1.000878	0.1	17.517	1.1
79.387	0.998106	-0.0	16.687	-0.4
		0.31192 m		
20.091	1.067173	-0.2	22.297	0.3
25.042	1.065795	0.7	22.773	-1.5
30.043	1.064208	-0.8	23.084	2.3
34.954	1.062478	0.1	23.230	-0.8
39.976	1.060539	0.1	23.244	-0.4
44.909	1.058481	0.3	23.135	-0.7
50.118	1.056150	0.1	22.901	0.1
(Continued on page 294)				

Table I. Continued

Table II. Density and ϕ_{V} for PrCl_{3}

Table II. Continued

Table III. Density and ϕ_{V} for NdCl_{3}, Series I

$t,{ }^{\circ} \mathrm{C}$	d. g / ml	$\Delta d \times 10^{8}$	$\phi_{V}, \mathrm{ml} / \mathrm{mol}$	$\Delta \phi_{V} \times 10^{3}$
0.10499 m				
20.107	1.022859	0.2	15.083	-3.1
25.089	1.021616	-0.6	15.617	7.8
30.074	1.020153	0.2	15.943	-2.4
35.051	1.018488	-0.1	16.112	-0.7
40.003	1.016648	0.9	16.116	-9.4
44.961	1.014630	-0.1	15.998	1.5
49.848	1.012483	-0.4	15.746	5.3
54.999	1.010059	-2.3	15.365	22.6
60.157	1.007482	2.9	14.790	-28.5
65.201	1.004809	0.3	14.193	-3.8
70.185	1.002034	-1.5	13.498	14.7
74.861	0.999316	0.5	12.734	-2.9
79.741	0.996357	0.0	11.887	-1.1
0.29892 m				
20.128	1.067446	-0.3	17.383	0.6
25.052	1.066058	0.7	17.919	-1.3
30.034	1.064462	-0.1	18.280	-0.1
34.999	1.062694	0.1	18.478	-0.9
39.980	1.060751	-2.0	18.544	6.3
45.070	1.058608	1.4	18.465	-4.2
49.931	1.056412	1.3	18.290	-3.7
54.998	1.053978	-0.5	18.009	1.8
60.316	1.051274	-0.9	17.601	2.6
65.456	1.048521	-0.4	17.107	1.0
70.331	1.045790	1.2	16.548	-4.0
74.816	1.043173	-0.4	15.970	1.9
79.571	1.040299	-0.0	15.274	-0.1
0.61510 m				
20.128	1.138025	-0.4	20.108	0.4
25.052	1.136397	1.0	20.599	-1.1
30.034	1.134592	-0.3	20.943	0.3
34.999	1.132649	-0.1	21.145	-0.1
39.980	1.130559	-1.8	21.228	2.5
45.070	1.128290	1.5	21.191	-2.1
49.931	1.125996	0.6	21.064	-0.7
54.998	1.123480	0.1	20.838	-0.0
60.316	1.120708	-0.4	20.505	0.4
65.456	1.117905	-1.4	20.099	1.9
70.331	1.115142	1.2	19.635	-1.7
74.816	1.112505	0.2	19.150	-0.0
79.571	1.109618	-0.2	18.571	0.3
0.90093 m				
20.107	1.199730	0.1	22.105	-0.2
25.089	1.197880	-0.4	22.563	0.7
30.074	1.195902	0.3	22.881	-0.4
35.051	1.193802	0.4	23.077	-0.6
40.003	1.191594	-0.5	23.164	0.4
44.961	1.189272	-0.5	23.152	0.6
49.848	1.186875	0.4	23.052	-0.3
54.999	1.184238	0.5	22.860	-0.4
60.157	1.181483	-0.5	22.586	0.3
65.201	1.178686	-0.2	22.242	0.1
70.185	1.175822	0.4	21.833	-0.4
74.861	1.173045	-0.2	21.391	0.4
79.741	1.170056	0.0	20.869	-0.1
1.3173m 1.30 .86				
20.107	1.286196	0.1	24.567	-0.1
25.089	1.284085	-0.3	24.973	0.4
30.074	1.281877	0.2	25.261	-0.2
35.051	1.279573	0.2	25.444	-0.2
40.003	1.277188	0.3	25.533	-0.2
44.961	1.274705	-0.8	25.540	0.6
49.848	1.272171	0.0	25.470	0.1
54.999	1.269406	0.7	25.321	-0.4
60.157	1.266539	-0.2	25.102	0.0
65.201	1.263647	0.0	24.823	-0.1

(Continued on page 298)

Table III. Continued

$\boldsymbol{t},{ }^{\circ} \mathrm{C}$	$d, \mathrm{~g} / \mathrm{ml}$	$\Delta d \times 10^{6}$	$\phi_{V}, \mathrm{ml} / \mathrm{mol}$.	$\Delta \phi_{\mathrm{V}} \times 10^{3}$
2.7550 m				
49.848	1.536538	2.2	31.989	-0.5
54.999	1.533187	2.5	31.964	-0.6.
60.157	1.529756	0.2	31.896	-0.1
65.201	1.526329	-0.1	31.790	-0.0
70.185	1.522869	-2.2	31.650	0.6
74.861	1.519563	1.4	31.487	-0.3
79.741	1.516040	-0.2	31.285	0.0
		3.4149 m		
20.107	1.662936	0.2	33.433	-0.1
25.089	1.659802	-0.3	33.709	0.1
30.074	1.656593	-0.7	33.932	0.1
35.051	1.653318	1.3	34.105	-0.3

$-\quad+,{ }^{\circ} \mathrm{C}$	$d, \mathrm{~g} / \mathrm{ml}$	$\Delta d \times 10^{6}$	$\phi_{i}, \mathrm{ml} / \mathrm{mol}$	$\Delta \phi_{V} \times 10^{3}$
3.4149 m				
40.003	1.649987	0.9	34.235	-0.2
44.961	1.646579	-2.4	34.325	0.5
49.848	1.643157	0.5	34.377	-0.1
54.999	1.639476	1.1	34.395	-0.2
60.157	1.635714	-0.9	34.378	0.1
65.201	1.631971	0.4	34.329	-0.1
70.185	1.628206	0.2	34.249	-0.0
74.861	1.624617	-0.4	34.147	0.1
79.741	1.620817	0.2	34.012	-0.1

Table IV. Density and ϕ_{V} for NdCl_{3}, Series II

t, ${ }^{\circ} \mathrm{C}$	d, g/ml	$\Delta d \times 10^{6}$	$\phi_{V}, \mathrm{ml} / \mathrm{mol}$	$\Delta \phi_{V} \times 10^{3}$
0.91022 m				
75.023	1.174872	0.6	21.454	1.0
79.520	1.172118	-0.8	20.976	-0.3
1.3059 m				
5.056 ${ }^{\text {a }}$	1.289203	-397.3	22.602	233.6
10.015	1.287825	0.0	23.243	-0.4
15.027	1.285921	0.2	23.950	0.8
20.067	1.283897	-0.5	24.501	0.4
24.882	1.281866	0.2	24.898	-0.7
30.029	1.279591	0.2	25.200	-0.6
34.908	1.277338	0.3	25.383	-0.2
40.044	1.274869	0.7	25.477	0.0
44.964	1.272407	-2.0	25.485	1.7
49.941	1.269829	0.7	25.411	-0.2
54.879	1.267181	0.4	25.269	-0.5
60.380	1.264126	-0.5	25.034	-0.2
63.745	1.262206	0.7	24.851	-0.8
70.085	1.258476	-0.4	24.436	0.6
75.023	1.255476	-0.1	24.047	0.6
79.520	1.252670	0.1	23.646	-0.4
1.7019 m				
$5.056{ }^{\text {a }}$	1.369076	37.3	24.638	-23.4
10.015	1.366967	-0.1	25.428	-0.2
15.027	1.364792	0.1	26.051	0.6
20.067	1.362522	0.4	26.541	-0.2
24.882	1.360275	-0.3	26.899	-0.3
30.029	1.357791	0.1	27.177	-0.4
34.908	1.355356	-0.7	27.351	0.4
40.044	1.352712	0.3	27.449	0.2
44.964	1.350100	0.0	27.470	0.3
49.941	1.347378	1.0	27.424	-0.4
54.879	1.344598	0.2	27.318	-0.3
60.380	1.341410	-0.6	27.132	-0.1
63.745	1.339411	-1.2	26.986	0.4
70.085	1.335549	1.2	26.645	-0.1
$75.023^{\text {a }}$	1.332350	-98.3	26.373	47.2
79.520	1.329555	-0.2	25.996	-0.0
2.0909 m				
5.056	1.443491	-0.2	26.663	-0.5
10.015	1.441180	0.6	27.347	0.8
15.027	1.438775	-0.2	27.904	0.3
20.067	1.436288	-0.4	28.347	-0.4
24.882	1.433848	-0.1	28.675	-0.6
30.029	1.431168	-0.1	28.935	-0.2
34.908	1.428559	0.4	29.104	0.1
40.044	1.425741	1.0	29.209	0.2
44.964	1.422968	-0.9	29.247	0.8
49.941	1.420094	-0.1	29.225	0.1
54.879	1.417169	-0.4	29.151	-0.2

Table IV. Continued

$\mathrm{H}_{1}{ }^{\circ} \mathrm{C}$	$\mathrm{d}, \mathrm{g} / \mathrm{ml}$	$\Delta d \times 10^{6}$	$\phi_{V}, \mathrm{ml} / \mathrm{mol}$	$\Delta \phi_{V} \times 10^{3}$
	2.0909 m			
60.380	1.413827	0.2	29.009	-0.6
63.745	1.411737	0.4	28.894	-0.5
70.085	1.407706	0.5	28.622	0.2
75.023	1.404480	-0.9	28.364	1.0
79.520	1.401478	0.3	28.092	-0.6
		$2.4915 m$		
5.056	1.516549	0.1	28.529	-0.5
10.015	1.514026	-0.2	29.139	0.9
15.027	1.511417	0.2	29.640	0.1
20.667	1.508731	0.2	30.044	-0.5
24.882	1.506105	-0.5	30.348	-0.4
30.029	1.503233	0.5	30.595	-0.3
34.908	1.500445	-0.4	30.763	0.4
40.044	1.497442	0.6	30.875	0.3
44.964	1.494496	-0.9	30.929	0.7
49.941	1.491450	0.7	30.932	-0.2
54.879	1.488357	0.1	30.889	-0.3
60.380	1.484829	-0.5	30.791	-0.3
63.745	1.482628	0.0	30.706	-0.3
70.085	1.478392	0.8	30.497	0.1
75.023	1.475009	-0.7	30.293	0.8
79.520	1.471868	0.2	30.076	-0.5
		$2.9045 m$		
5.056	1.588230	-0.1	30.267	-0.4
10.015	1.585224	-0.1	30.816	0.8
15.027	1.582729	0.6	31.270	0.0
20.067	1.579855	0.5	31.642	-0.5
24.882	1.577048	-1.4	31.927	-0.1
30.029	1.573982	-0.5	32.164	-0.0
34.908	1.571011	0.8	32.331	0.0
40.044	1.567812	1.0	32.453	0.2
44.964	1.564678	-0.8	32.523	0.5
49.941	1.561441	0.6	32.549	-0.1
54.879	1.558159	-0.3	32.535	-0.2
60.380	1.554422	-1.2	32.476	-0.1
63.745	1.552096	0.4	32.418	-0.4
70.085	1.547623	1.2	32.265	0.0

t, ${ }^{\circ} \mathrm{C}$	$d, \mathrm{~g} / \mathrm{ml}$	$\Delta d \times 10^{6}$	$\phi_{V}, \mathrm{ml} / \mathrm{mol}$	$\Delta \phi_{V} \times 10^{3}$
2.9045 m				
75.023	1.544061	-0.8	32.110	0.7
79.520	1.540759	0.1	31.940	-0.4
3.1855 m				
5.056	1.634967	-0.1	31.353	-0.2
10.015	1.632149	0.1	31.866	0.5
15.027	1.629236	0.0	32.295	-0.2
$20.067^{\text {a }}$	1.626255	14.8	32.645	-3.9
$24.882^{\text {a }}$	1.623327	13.1	32.920	-3.6
30.029	1.620113	-0.3	33.156	-0.4
34.908	1.617011	-0.2	33.325	0.1
40.044	1.613674	0.7	33.454	0.2
44.964	1.610405	-0.3	33.535	0.4
49.941	1.607030	0.5	33.576	-0.0
54.879	1.603612	-0.9	33.581	0.0
60.380	1.599727	0.8	33.545	-0.5
63.745	1.597307	-1.1	33.503	0.0
70.085	1.592669	1.0	33.384	-0.0
75.023	1.588980	-0.5	33.256	0.5
79.520	1.585565	0.1	33.113	-0.3
3.3601 m				
5.056	1.663230	-0.0	31.991	-0.3
10.015	1.660342	-0.2	32.486	0.7
15.027	1.657355	0.5	32.901	0.0
20.067	1.654280	-0.1	33.246	-0.3
24.882	1.651275	-0.5	33.516	-0.3
30.029	1.647990	0.2	33.748	-0.2
34.908	1.644805	0.1	33.918	0.2
40.044	1.641379	0.5	34.052	0.3
44.964	1.638025	-0.8	34.139	0.5
49.941	1.634564	0.4	34.189	-0.0
54.879	1.631061	0.4	34.204	-0.3
60.380	1.627080	-0.3	34.181	-0.3
63.745	1.624604	-0.6	34.148	-0.1
70.085	1.619862	0.9	34.047	0.1
75.023	1.616096	-0.4	33,935	0.5
79.520	1.612614	0.0	33.807	-0.3

a Entry not used in the least-squares fits.
tained from Equation 3. In addition, the coefficients of thermal expansion were calculated from (26)

$$
\begin{equation*}
\alpha=\frac{m \phi_{E}+1000 \alpha^{\circ} / d^{\circ}}{\left(m M_{2}+1000\right) / d} \tag{12}
\end{equation*}
$$

Some of the results of these calculations are illustrated in Figures 6-8 for \bar{V}_{2}, Figures 9 and 10 for \bar{V}_{1}, Figures 11-14 for α, Figures $15-17$ for ϕ_{E}, Figure 18 for \bar{E}_{2}, and Figure 19 for \bar{E}_{1}. A complete set of graphs appears in the dissertation of one of the authors (A.H.) (25), together with calculated values of all the properties at even temperature and concentration intervals.

Similar experimental work is in progress on other rare earth solutions which cover the $5-80^{\circ} \mathrm{C}$ temperature range. To compare the results for LaCl_{3} below $20^{\circ} \mathrm{C}$ to those of $\mathrm{PrCl}_{3}, \mathrm{NdCl}_{3}$, and those now under investigation, Equation 6 has been extrapolated to $5^{\circ} \mathrm{C}$ for LaCl_{3}. Comparison of the extrapolation of Equation 6 for NdCl_{3}, Series I, to the actual measurements below $20^{\circ} \mathrm{C}$ from NdCl_{3}, Series II, indicates that such an extrapolation for LaCl_{3} is adequate for qualitative comparisons.

From Figures 4 and 5 , at $25^{\circ} \mathrm{C}$ there is a relatively large change in slope in the ϕ_{V} vs. $\mathrm{m}^{1 / 2}$ curves below 0.1 m . In view of the absence of data below 0.1 m at temperatures other than $25^{\circ} \mathrm{C}$, an extrapolation of the data reported here
to infinite dilution was not warranted. It should be pointed out that Equation 6 does not describe the concentration dependence of ϕ_{V} below 0.1 m at $25^{\circ} \mathrm{C}$ nor, presumably, at other temperatures and should not be extrapolated below 0.1 m at any, temperature. However, above this concentration the ϕ_{V} data are approximately linear in $m^{1 / 2}$ (less so on the $c^{1 / 2}$ scale), in qualitative agreement with Masson's (31) rule on the molal scale,

$$
\begin{equation*}
\phi_{V}=\phi_{V}{ }^{*}+S_{V} m^{1 / 2} \tag{13}
\end{equation*}
$$

It has been shown (35) that in the absence of dilute data, the constants $\phi_{V^{*}}$ and $S_{V^{*}}$ are useful in estimating unknown $\phi_{V^{*}}$ values of electrolytes, and $S_{V^{*}}$ is related to ion-ion interactions in concentrated solutions. We have therefore calculated ϕ_{v} values at even temperatures from Equation 4 at each concentration and fitted these to the Masson equation (the $m^{1 / 2}$ version). The constants are listed in Table VIII. The fit of Equation 13 is only qualitative, and for accurate ϕ_{v} values, Equation 6 should be used. The ϕv^{*} at $25^{\circ} \mathrm{C}$ are 2.0 , 1.3 , and $1.0 \mathrm{ml} / \mathrm{mol}$ higher than the $\phi_{v}{ }^{0}$ obtained from extrapolation of the dilute magnetic float data (46) for LaCl_{3}, PrCl_{3}, and NdCl_{3}, respectively.

There is some interest in obtaining the dependence of $\bar{E}_{2}{ }^{0}$ of ions on their surface charge density (37). A perusal of Figures 15 and 16 shows that in view of the theoretical limiting
slope, an extrapolation of ϕ_{E} from the concentrated region to infinite dilution would be uncertain. However, the curvature in ϕ_{E} at low concentrations suggests that ϕ_{E} for the rare earths may approach the limiting slope at very low concentrations. To obtain a crude estimate of $\bar{E}_{2}{ }^{\circ}$ at $25^{\circ} \mathrm{C}$, we therefore included the theoretical limiting slope for ϕ_{v}, as a function of temperature (35), in Equation 6 and refitted the data. The $\phi_{v}{ }^{\circ}$ obtained in this way at $25^{\circ} \mathrm{C}$ agreed with the ϕv° obtained from the dilute work (46) within $0.5 \mathrm{ml} / \mathrm{mol}$. ϕ_{E} calculated below 0.1 m at $25^{\circ} \mathrm{C}$ is shown in Figures 15 and 16, and the $\bar{E}_{2}{ }^{\circ}$ obtained were $0.036,0.046$, and $0.046 \mathrm{ml} / \mathrm{mol}-\mathrm{deg}$ for $\mathrm{LaCl}_{3}, \mathrm{PrCl}_{3}$, and NdCl_{3}, respectively.

Errors. The absolute errors in the density measurements are approximately $5-10 \mathrm{ppm}$, owing mainly to errors in the total weights of solution, initial weights of mercury, the abso-
lute volumes of the dilatometers, and absolute accuracy of the temperature measurement. However, the error in the density as a function of temperature is about a factor of 10 less than this. The errors in ϕ_{v} as a function of temperature owing to the errors in the densities range from $\pm 0.01 \mathrm{ml} / \mathrm{mol}$ at low concentrations to $\pm 0.0005 \mathrm{ml} / \mathrm{mol}$ at high concentrations. The above estimates of the errors in d and ϕ_{v} as a function of temperature are consistent with the deviations of the experimental density and $\phi \vee$ data from Equations 1 and 4, which were derived at the fixed experimental concentrations of each solution.

The absolute errors in ϕ_{V} owing to the concentration uncertainty can be no less than the errors in the pycnometric measurements at $25^{\circ} \mathrm{C}$ of Spedding et al. (49), upon which the concentrations are based. Spedding et al. (49) estimated

Table V. Density Parameters Corresponding to Equation 1

Molality	C_{0}	$\mathrm{C}_{1} \times 10^{4}$	$\mathrm{C}_{2} \times 10^{6}$	$\mathrm{C}_{3} \times 10^{8}$	$C_{4} \times 10^{10}$	$C_{5} \times 10^{13}$
LaCl_{3}						
0.063471	1.0146315	0.25467	-7.38133	5.17893	-3.12782	8.9315
0.11651	1.0267109	0.06915	-7.03876	4.74659	-2.74241	7.4557
0.31192	1.0704868	-0.60098	-5.84148	3.45366	-1.80510	4.3833
0.65314	1.1441661	-1.57519	-4.32722	2.18289	-1.12358	2.7132
0.91541	1.1986384	-2.26453	-3.15104	1.02924	-0.41136	0.7135
1.2370	1.2628492	-2.84871	-2.48191	0.77902	-0.49260	1.5639
1.5619	1.3251697	-3.39446	-1.67665	-0.00750	0.08087	-0.5543
1.7910	1.3674743	-3.54476	-1.97740	1.05488	-1.06585	3.9410
1.9840	1.4023559	-3.88734	-1.10501	-0.57991	0.61838	-2.9520
2.3367	1.4638079	-4.14866	-1.09070	-0.10640	-0.07194	0.1586
3.0675	1.5831367	-4.52198	-1.10914	0.27440	-0.70470	3.1209
3.3901	1.6328220	-4.77924	-0.48743	-1.20989	0.78924	-2.5900
PrCl_{3}						
0.10059	1.0236397	0.20925	-7.59392	5.84145	-3.82602	11.6218
0.24985	1.0582103	-0.35615	-6.52827	4.53018	-2.75858	7.7682
0.42534	1.0980001	-0.96707	-5.45813	3.35514	-1.93719	5.2760
0.63052	1.1434040	-1.59362	-4.44178	2.30162	-1.20587	2.9391
0.85426	1.1916356	-2.19133	-3.54073	1.43025	-0.63719	1.2174
1.0718	1.2372934	-2.68642	-2.89888	0.95701	-0.41016	0.6159
1.3192	1.2877833	-3.17606	-2.29113	0.43995	-0.06733	-0.6294
1.5793	1.3392586	-3.62312	-1.76918	-0.02415	0.25214	-1.8203
1.8419	1.3895850	-3.99498	-1.49530	0.03968	-0.09274	0.1850
2.1350	1.4438180	-4.35879	-1.16826	-0.35327	0.25238	-1.2165
2.4606	1.5018097	-4.67833	-1.04971	-0.33080	0.09381	-0.3256
2.6963	1.5423564	-4.84225	-1.20617	0.12423	$\rightarrow 0.49845$	2.5001
2.9991	1.5928615	-5.08355	-1.04212	-0.43726	0.14336	-0.0026
3.2959	1.6406806	-5.26375	-1.16035	-0.47145	0.27476	-0.4403
3.6233	1.6915001	-5.47493	-1.30952	-0.54287	0.56541	-1.7982
NaCl_{3}, Series 1						
0.10499	1.0251648	0.11775	-7.14408	4.72777	-2.50814	5.7341
0.29892	1.0708595	-0.66611	-5.69377	3.17802	-1.62358	4.0364
0.61510	1.1428782	-1.59685	-4.47691	2.41184	-1.41204	4.0823
0.90093	1.2057543	-2.37459	-3.30257	1.12698	-0.39352	0.3540
1.3173	1.2937029	-3.33704	-1.92255	-0.39195	0.78401	-3.8655
1.6812	1.3669585	-3.85981	-1.90039	0.67790	-0.74227	2.9873
2.0853	1.4447145	-4.46366	-1.22651	-0.36323	0.30847	-1.3317
2.2675	1.4784994	-4.61413	-1.53848	0.75208	-1.13525	5.2141
2.7082	1.5572045	-5.10318	-1.12975	-0.26237	0.07659	0.0353
2.7550	1.5648294	-4.57849	-3.56033	4.48112	-4.29469	15.5162
3.4149	1.6748087	-5.58324	-1.66718	0.41642	-0.43454	2,4083
NaCl , Series II						
0.10108	1.0241915	0.20730	-7.60437	5.85654	-3.83733	11.6490
0.50654	1.1184120	-1.24349	-5.05662	2.93360	-1.62881	4.2119
0.91022	1.2077447	-2.36380	-3.46218	1.56573	-0.91716	2.6970
1.3059	1.2912929	-3.22963	-2.38801	0.64863	-0.34253	0.8392
1.7019	1.3710679	-3.93021	-1.64312	0.00974	0.06602	-0.5745
2.0909	1.4457810	-4.46087	-1.33659	-0.01613	-0.11270	0.4815
2.4915	1.5190625	-4.91404	-1.12046	-0.24360	0.03225	0.1967
2.9045	1.5909308	-5.28552	-1.10046	-0.35656	0.15357	-0.0135
3.1855	1.6377791	-5.50319	-1.13362	-0.58568	0.55842	-1.8015
3.3601	1.6661064	-5.62445	-1.28023	-0.36877	0.35865	-0.7901

Figure 1. Apparent molal volume of LaCl_{3} as function of temperature. Circles, experimental; lines, Equation 4

Figure 2. Apparent molal volume of PrCl_{3} as function of temperature. Circles, experimental; lines, Equation 4
their errors in ϕ_{V} as ranging from $\pm 0.2 \mathrm{ml} / \mathrm{mol}$ at low concentration to $\pm 0.1 \mathrm{ml} / \mathrm{mol}$ at saturation. These estimates were based on an absolute analysis error of $0.05-0.1 \%$ in terms of the molality. However, since they made their dilutions by weight, the internal consistency of their concentrations was somewhat better than this. This internal consistency was preserved in the data treatment reported here. ϕ_{V} values calculated from Equation 6 agree with the ϕ_{v} data of the pycnometric work to within $0.05 \mathrm{ml} / \mathrm{mol}$ or better, as should be the case. Graphic illustration of this is given in Figures 4 and 5. And, as pointed out earlier, Equation 6, which necessarily includes the concentration errors, fits the ϕ_{v} data presented here to within this error.

In obtaining the empirical equations, we endeavored to represent the data to within the precision of the particular independent variable at each step, to retain the internal consistency of the temperature and concentration variation. This approach is necessary since quantities such as \bar{E}_{2} and \dot{E}_{1} depend on the second derivative of ϕ_{v}. However, because of the absolute analysis error, it should be kept in mind that the overall accuracy of ϕ_{v} ranges from about $0.2 \mathrm{ml} / \mathrm{mol}$ at low concentrations to $0.1 \mathrm{ml} / \mathrm{mol}$ at 3.5 m at all temperatures. This error only becomes important when comparing ϕ_{V} data of different rare earth solutions.

In this study it would be difficult to compute errors in properties which depend upon one or two derivatives of empirical equations. However, rough estimates are: $\pm 0.2 \%$ in α; $\pm 0.5 \%$ in ϕ_{E} over most of the concentration range, but increasing in the familiar trumpet shape for apparent molal quantities (14) to as high as several \% at the lowest concentrations; errors in \bar{V}_{2} and \bar{E}_{2} would be similar to those in ϕ_{V} and ϕ_{E} at low concentrations, becoming larger than those in ϕ_{V} and ϕ_{E} with increasing concentrations; errors in \bar{V}_{1} range from $\pm 0.002 \%$ for pure water to about $\pm 0.1 \%$ at high con-

Figure 3. Apparent molal volume of NdCl_{3} as function of temperature. Circles and squares, experimental; lines, Equation 4
centrations; and errors in \bar{E}_{1} are estimated at approximately $\pm 0.2 \%$ for pure water, increasing to $\pm 0.5 \%$ at high concentrations.

Alternatively, the results of this study can be compared with the results of independent measurements. The agreement between the results of this work and dilute magnetic float data (46) at $25^{\circ} \mathrm{C}$ is excellent as shown in Figures 4 and 5. ϕ_{E} and α obtained by Jones et al. (28) for LaCl_{3} are compared to our values in Figures 11 and 15. The agreement is very good. The two independent data sets for NdCl_{3} in this work were also worked up separately in addition to deriving the empirical equations for the combined sets of data. The results for the two separate NdCl_{3} series agree within the errors quoted above.

Vogel observed that when a dilute, air-free solution of lanthanum chloride was added to his dilatometer, a small amount of white precipitate formed at the mercury-solution interface, identified as $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ (56). This observation was confirmed for the 0.06348 m LaCl 3 solution and after two to three weeks with the $0.1-0.3 \mathrm{~m} \mathrm{LaCl} 3$ and NdCl_{3} solutions. Qualitative and semiquantitative tests indicated that with the possible exception of the 0.06348 m LaCl 3 solution, formation of $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ or HgCl_{2} caused little or no error in the measurements.

Discussion

Previous work in this laboratory has indicated that the number of inner sphere water molecules about the rare earth ions in dilute solutions and at $25^{\circ} \mathrm{C}$ remains constant from La to

Table VI. Apparent Molal Volume Parameters Corresponding to Equation 4

Molality	A_{0}	$A_{1} \times 10^{1}$	$\mathrm{A}_{2} \times 10^{3}$	$A_{3} \times 10^{5}$	$A_{4} \times 10^{7}$	$\mathrm{A}_{5} \times 10^{9}$
LaCl_{3}						
0.063471	14.4055	3.50600	-6.59624	2.12748	2.83801	-2.43281
0.11651	15.5044	3.50452	-7.21463	5.54787	-2.35995	0.14159
0.31192	17.9917	3.33046	-7.06776	6.54328	-4.14817	1.10688
0.65314	21.4338	2.85900	-5.85064	5.08807	-3.07358	0.79580
0.91541	23.5748	2.62588	-5.41838	4.77883	-2.91095	0.76587
1.2370	25.9485	2.26045	-4.50698	3.67711	-2.08031	0.50129
1.5619	27.9741	2.01198	-4.01625	3.31873	-1.95470	0.51117
1.7910	29.3153	1.78463	-3.38471	2.43045	-1.20982	0.25162
1.9840	30.2760	1.71825	-3.40393	2.83210	-1.75380	0.49795
2.3367	31.9550	1.50477	-2.90201	2.24551	-1.26460	0.32175
3.0675	34.8419	1.18353	-2.21452	1.61304	-0.81096	0.17430
3.3901	35.8839	1.10723	-2.13538	1.76497	-1.04171	0.27540
PrCl_{3}						
0.10059	10.8501	4.06371	-9.55816	11.12494	-8.74073	2.88557
0.24985	13.0488	3.80277	-8.75475	10.20672	-8.18403	2.82019
0.42534	15.0951	3.52280	-7.90011	8.87645	-6.85143	2.27465
0.63052	17.1666	3.20442	-7.01017	7.63241	-5.77977	1.90108
0.85426	19.1191	2.90360	-6.21583	6.57397	-4.88874	1.58927
1.0718	20.8021	2.64163	-5.52478	5.63330	-4.10018	1.32273
1.3192	22.5197	2.38891	-4.90532	4.90101	-3.55216	1.15405
1.5793	24.1553	2.16583	-4.38115	4.32065	-3.12635	1.02275
1.8419	25.6722	1.96666	-3.88153	3.66580	-2.52713	0.78852
2.1350	27.2268	1.78278	-3.47180	3.29530	-2.30055	0.72925
2.4606	28.8065	1.60431	-3.05259	2.84595	-1.94527	0.60486
2.6963	29.8588	1.48482	-2.74752	2.47366	-1.61571	0.47566
2.9991	31.0932	1.36728	-2.51277	2.35471	-1.60237	0.48573
3.2959	32.1977	1.26226	-2.26545	2.14982	-1.48448	0.45010
3.6233	33.3232	1.17025	-2.03849	1.97654	-1.41309	0.43808
NdCl_{3}, Series I						
0.10499	10.5443	3.45809	-7.10229	6.61265	-5.14345	1.92186
0.29892	12.6268	3.66840	-7.83809	7.62727	-4.79711	1.21922
0.61510	16.0173	3.05593	-5.99355	5.03931	-2.79248	0.62434
0.90093	18.4203	2.74379	-5.37582	4.75675	-2.96111	0.80832
1.3173	21.3665	2.37126	-4.61582	4.20691	-2.76943	0.81699
1.6812	23.6438	2.02416	-3.64140	2.76130	-1.42721	0.30762
2.0853	25.8586	1.76489	-3.10865	2.43076	-1.37359	0.34637
2.2675	26.7678	1.66517	-2.83764	2.01981	-0.93506	0.15775
2.7082	28.8001	1.47738	-2.49598	1.96880	-1.11619	0.27402
2.7550	29.1268	1.31374	-1.83452	0.72783	0.01369	-0.12349
3.4149	31.6403	1.21836	-1.88066	1.42642	-0.78074	0.16714
NaCl_{3}, Series II						
0.10108	9.8982	4.06208	-9.44421	10.93269	-8.58395	2.84507
0.50654	14.8283	3.41904	-7.50233	8.30596	-6.38010	2.12312
0.91022	18.3950	2.85750	-5.93946	6.04844	-4.32431	1.35012
1.3059	21.2686	2.40274	-4.71296	4.35976	-2.88640	0.84679
1.7019	23.7038	2.08827	-4.00544	3.67988	-2.46369	0.74281
2.0909	25.8146	1.84759	-3.48427	3.24271	-2.21409	0.68130
2.4915	27.7765	1.63355	-2.99393	2.78176	-1.89707	0.57843
2.9045	29.5962	1.45258	-2.57834	2.41071	-1.65397	0.49960
3.1855	30.7273	1.35102	-2.35012	2.24655	-1.58533	0.48638
3.3601	31.3916	1.29257	-2.19791	2.08741	-1.47046	0.44613

Nd , decreases from Nd to Tb , and again remains constant from Tb to $\mathrm{Lu}(43,46)$. Primary coordination numbers of nine and eight have been suggested (46). The volume properties of the rare earth chloride solutions from infinite dilution to saturation at $25^{\circ} \mathrm{C}$ have been reported (43, 46, 49) and discussed in terms of this hydration change and our present understanding of aqueous solutions containing small, highly charged ions. In what follows, we shall concentrate on how these properties change with temperature. It has been re-
ported that the hydration change probably occurs between Nd and Tb from infinite dilution to saturation (49), and all of the properties reported here change monotonically from La to Nd. Except for possibly a small fraction of 8-coordinated Nd ions, these three salts have predominantly the higher inner sphere coordination, and our concern with the hydration change will be minimal. Furthermore, we will attribute certain solution differences for La, Pr, and Nd solutions to differences in cation size, as a first approximation, since the chloride ion

Table VII. Matrix Coefficients, $B_{i j}$, Corresponding to Equation 6

i	$\mathrm{B}_{0 j}$	$\mathrm{B}_{1 ;} \times 10$	$B_{2 j} \times 10^{3}$	$B_{3 j} \times 10^{5}$	$B_{4 j} \times 10^{7}$	$8_{5 j} \times 10^{9}$
LaCl_{3}						
0	13.16045	3.281874	-6.366580	2.365504	1.899787	-1.967494
1	3.00208	2.204681	-7.569032	20.830004	-25.848852	12.190078
2	13.05398	-5.179800	16.111709	-34.762909	39.303245	-17.461539
3	-5.66861	2.588094	-8.691832	19.366320	-22.046183	9.764624
4	0.72472	-0.420563	1.551038	-3.658856	4.271842	-1.913151
PrCl_{3}						
0	7.33653	4.211035	-10.416601	12.621156	-10.918243	3.969154
1	9.26902	0.632370	0.030499	-0.586084	3.977471	-2.590980
2	4.96866	-3.731125	9.007725	-12.711765	6.158433	-0.397690
3	-1.24015	1.915427	-5.327945	8.159326	-4.384721	0.510897
4	-0.08435	-0.299908	0.946806	-1.503887	0.750997	-0.051895
NdCl_{3}, Series I and II						
0	7.01944	4.049902	-9.946627	11.914813	-10.041062	3.485562
1	6.47009	1.582629	-2.931885	4.765540	-1.908215	0.078915
2	8.58704	-5.389763	15.245779	-25.819582	20.774818	-6.738754
3	-3.41336	3.051321	-9.973919	18.594805	-16.146067	5.557504
4	0.41501	-0.561968	2.067342	-4.107507	3.699134	-1.310753

Figure 4. Apparent molal volume of PrCl_{3} as function of square root of molality. Solid circles, Equation 4; lines, Equation 6. Ordinate applies only to $25^{\circ} \mathrm{C}$ curve. For ordinates at other temperatures, add $0.1(25-t) \mathrm{ml}$

Figure 5. Apparent molal volume of NdCl_{3} as function of square root of molality. Solid circles, Equation 4; lines, Equation 6

Figure 6. Partial molal volumes of LaCl_{3} and NdCl_{3} as functions of square root of molality. From Equation 7

Figure 7. Partial molal volume of PrCl_{3} as function of square root of molality. From Equation 7 . Ordinate applies only to $25^{\circ} \mathrm{C}$ curve. For ordinates at other temperatures, add $0.2(25-t) \mathrm{ml}$
is common to the three solutions, and the amount of complex formation between these cations and the chloride ion seems to be similar for these solutions (3,5,6,23, 29, 39).

Volume propertles. Because of the high surface charge density, the trivalent rare earth ions are highly electrostricting ions. The $\bar{\sigma}$ (ion) of the rare earth ions at $25^{\circ} \mathrm{C}$ and infinite dilution are $-54.5,-58.2$, and $-58.9 \mathrm{ml} / \mathrm{mol}$ for La, Pr, and Nd , respectively (43). This increasing electrostriction from La to Nd is due to the decrease in ionic size (54) from La to Nd and is reflected in the decreasing ϕ_{V}, \bar{V}_{2}, and \bar{V}_{1} from La to Nd , which persists from 0.1 to 3.5 m at all temperatures in the results of this research (Figures 6, 8, and 9).

As can be seen in Figures $4-7, \phi_{v}$ and \bar{V}_{2} conform to the Debye-Hückel limiting law at $25^{\circ} \mathrm{C}$ if the very dilute data (46) are included. As mentioned earlier, above 0.1 m the increase in ϕ_{v} and \bar{V}_{2} for the three salt solutions is approximately linear with the square root of the concentration at all temperatures, in qualitative agreement with Masson's (31) rule. However, from Figures 4-7, the slight S-shape with concentration is present for all three salts at all temperatures, particularly in \bar{V}_{2}. This slight S-shape is a rather common feature of ϕ_{v} and \bar{V}_{2} curves in the concentrated ($>0.1 \mathrm{~m}$) region of most simple salts (16, 30, 55). The Masson slopes for the rare earths are approximately 12 , compared to about 8 for CaCl_{2} and 2 for NaCl , all on the molal scale (35).

As the concentration increases at a given temperature, a larger fraction of the available water undergoes electrostriction resulting in a decrease in \bar{V}_{1} with increasing concentration, as shown in Figure 9. This figure also shows that the degree of electrostriction of the water increases from La to Pr to Nd, at any given temperature and concentration.

Thus, the partial molal volumes of these solutions seem to

Flgure 8. Partial molal volumes of $\mathrm{LaCl}_{3}, \mathrm{PrCl}_{3}$, and NdCl_{3} as functions of temperature at several concentrations. From Equation 7

Figure 9. Partial molal volume of water in $\mathrm{LaCl}_{3}, \mathrm{PrCl}_{3}$, and NdCl_{3} solutions as function of molality at several temperatures. From Equation 8

Figure 10. Partial molal volume of water in PrCl_{3} solutions as function of temperature at several concentrations. From Equation 8

Figure 12. Coefficients of thermal expansion of NdCl_{3} solutions as function of molality at several temperatures. From Equation 12

Figure 13. Coefficients of thermal expansion of LaCl_{3} solutions as function of temperature at several concentrations. From Equation 12

Figure 14. Coefficients of thermal expansion of NdCl_{3} solutions as function of temperature at several concentrations. From Equation 12
be in agreement with the trends expected from the surface charge density of the rare earth ions. The above considerations also apply to the volume properties of YCl_{3} at 0° and $25^{\circ} \mathrm{C}$ which have been reported previously (49).

From Figures 1-3 and 8, $\phi \vee$ goes through a maximum with temperature at all concentrations, as does \bar{V}_{2} up to approximately 2.5 m . The curvature becomes less pronounced with increasing concentration, disappearing altogether in \bar{V}_{2} above approximately 2.5 m where \bar{V}_{2} increases with temperature for the three cations. At $0.1 m$ the maxima in ϕ_{V} occur at $36.6^{\circ}, 38.3^{\circ}$, and $38.8^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$ for La, Pr, and Nd , respectively. At 0.1 m the maxima in \bar{V}_{2} occur $1.2^{\circ} \mathrm{C}$ higher than in ϕ_{v}. In Figures 4 and 7 the ϕ_{v} and \bar{V}_{2} curves at different temperatures have been separated (see figure captions) to show changes in the slopes of ϕ_{v} and $\bar{V}_{2} \vee s . m^{1 / 2}$ with increasing temperatures. These slopes decrease from 5° to somewhere between 25° and $50^{\circ} \mathrm{C}$ and then increase to $80^{\circ} \mathrm{C}$. This can also be seen as the minimum (near $35^{\circ} \mathrm{C}$) in the Masson slopes as a function of temperature, Table VIII. Such changes in slope have been noted before (1, 7, 10-12, $14,15,55$) and are equivalent to the flattening out of the ϕ_{V} and \bar{V}_{2} vs. t curves.

Since such maxima occur at infinite dilution (7,35), they must be due to ion-solvent interactions. At finite concentrations, ion-ion interactions complicate the situation. The origin of the maxima, even at infinite dilution, is by no means settled [see, for example, Millero (35) and Dunn (8)]. However, if the hydrogen-bonded solvent "structure' and its weakening with temperature are in part responsible for the maxima in the ϕ_{V} and \bar{V}_{2} vs. t curves, as suggested by Dunn (7,8), then the flattening out of the maxima and their eventual disappearance in \vec{V}_{2} at about $2.5 m(\sim 22$ waters/rare earth chloride unit), in-

Figure 15. Apparent molal expansibility of LaCl_{3} as function of square root of molality at several temperatures. Squares, Equation 4; lines, Equation 9

Figure 16. Apparent molal expansibility of NdCl_{3} as function of square root of molality at several temperatures. Squares and circles, Equation 4; lines, Equation 9

Figure 17. Apparent molal expansibility of PrCl_{3} as function of temperature at several concentrations. From Equation 9

Figure 18. Partial molal expansibility of PrCl_{3} as function of square root of molality at several temperatures. From Equation 10
dicate that little of the solvent structure remains in these solutions above this concentration. The variation of \bar{V}_{1} with temperature shown in Figure 10 seems to support this view. The curvature in the temperature dependence of the volume of water at infinite dilution (pure water) "straightens out" with increasing concentration, indicative of the reduction of the hy-drogen-bonded solvent structure by the solute.

The maxima also seem to be a function of the surface charge density of the cations. For NaCl and CaCl_{2} which have cationic radii similar to the rare earth ions $(\sim 1 \AA)$, the maxima occur at 60° and $44^{\circ} \mathrm{C}$, respectively (35), at infinite dilution, compared to $35-40^{\circ} \mathrm{C}$ for the rare earth ions at 0.1 m . The ϕ_{E} curves, Figures 15 and 16, indicate that at infinite dilution the maxima in the $\phi_{v}{ }^{0}$ vs. t curves (the temperature where $\phi_{E}{ }^{0}=0$) occur at even lower temperatures than at 0.1 m for the rare earth chloride solutions.

Thermal expansion. From elementary considerations and the simple Born model for ion-solvent interactions (37), one would expect the expansibility, $E=d V / d T$, to decrease upon the addition of an electrostricting solute, resulting in negative values for $\phi_{E}{ }^{0}\left(=\bar{E}_{2}{ }^{0}\right)$. This effect should be greater with increasing surface charge density. Furthermore, with increasing concentration, ϕ_{E} and \bar{E}_{2} should become less negative owing to the overlap of hydration spheres. This behavior is observed in solutions of electrolytes in nonaqueous solvents (19, 32) and in aqueous solutions at high temperatures, as shown in Figures 15, 16, and 18. However, in aqueous solutions at low temperatures, the expansibility increases with the addition of solute resulting in increasing α and \bar{E}_{1}, and positive ϕ_{E} and \bar{E}_{2} which decrease with concentration (14, 24, $28,33,36,37$). A study of the figures shows this to be true of these properties for the rare earths. The maxima in ϕ_{V} with
temperature $\left(d \phi_{V} / d T=\phi_{E}\right)$ are of course related to this behavior.

The obvious and still viable rationalization for this effect was first put forward by Gibson and Loeffler (20). In terms of our modern understanding of pure water (9), the temperature dependence of the volume of pure water can be thought of as being due to two competing effects: the open, four-coordinate, hydrogen-bonded "structure" of water weakens with in-

Figure 19. Partial molal expansibility of water in $\mathrm{LaCl}_{3}, \mathrm{PrCl}_{3}$, and NdCl_{3} solutions as function of molality at several temperatures. From Equation 11

Table VIII. Parameters in Masson's Equation, $\phi_{V}=\phi_{V}{ }^{*}+$ $\mathbf{S}_{V} *^{1 / 2}$

	$\boldsymbol{S V}_{V}, \mathrm{ml} / \mathrm{mol}$				$\mathbf{S}_{V}{ }^{*}$			
$\boldsymbol{f},{ }^{\circ} \mathrm{C}$	LaCl_{3}	PrCl_{3}	NdCl_{3}	LaCl_{3}	PrCl_{3}	NdCl_{3}		
5		7.89	6.77		13.72	13.75		
10		9.50	8.38		13.09	13.14		
15		10.73	9.61		12.62	12.68		
20	15.90	11.64	10.54	11.73	12.29	12.35		
25	16.49	12.28	11.18	11.51	12.08	12.15		
30	16.85	12.68	11.59	11.38	11.96	12.04		
35	17.01	12.89	11.80	11.34	11.93	12.02		
40	16.99	12.91	11.82	11.37	11.97	12.08		
45	16.80	12.78	11.68	11.47	12.08	12.20		
50	16.48	12.49	11.40	11.62	12.25	12.38		
55	16.02	12.07	10.98	11.82	12.47	12.62		
60	15.44	11.52	10.43	12.08	12.74	12.91		
65	14.74	10.85	9.76	12.37	13.07	13.25		
70	13.93	10.07	8.98	12.72	13.44	13.64		
75	13.01	9.18	8.10	13.11	13.86	14.06		
80	11.97	8.19	7.11	13.56	14.32	14.53		

creasing temperature, and the amplitude of the intermolecular vibrations increases with temperature. The second effect, the "vibrational' contribution, is dominant above $4^{\circ} \mathrm{C}$ and results in an increase in volume with heating, a positive $d V / d T$ contribution. The first effect, the "configurational" contribution, is dominant below $4^{\circ} \mathrm{C}$ and results in a decrease in volume with heating, a negative $d V / d T$ contribution. The balance of these two effects results in the minimum in the volume at $4^{\circ} \mathrm{C}$ and the great variation in α° with temperature.

The addition of an electrostricting solute at low temperatures greatly diminishes the (negative) configurational contribution to α for those waters which end up in the hydration sphere. Although the expansibility of these waters in the hydration sphere would be low, it should be positive, the net result being an increase in α and \bar{E}_{1}, and positive ϕ_{E} and \bar{E}_{2}. As the temperature increases, the configurational contribution in water is reduced owing to thermal action, and the effect of the solute upon the solvent is diminished. Assuming that the expansibility of the hydrated ion is less than the sum of the vibrational and configurational contributions of the solvent at high temperatures, the expansibility of the solvent decreases upon the addition of the electrostricting solute, resulting in decreasing α and \bar{E}_{1} and negative ϕ_{E} and \bar{E}_{2} at high temperatures. Although this analysis is admittedly oversimplified, it does account for the major features in these properties. The expectation that these effects would be more pronounced for solutes of higher surface charge density is borne out by the results of this study.

Since pressure would also tend to weaken the hydrogenbonded structure of water, it is not surprising that the pressure dependence of α° for pure water (9) bears a striking resemblance to the concentration dependence of α for the rare earth solutions over the same temperature range. In this comparison, a 3.5 m solution produces approximately the same effect as 3000-4000 atm external pressure on pure water. This analogy between the effect of an electrostricting solute and external pressure has been profitably explored by Gibson (17, 18).

Since ϕ_{E} is approximately linear in $m^{1 / 2}$ above the dilute region (similar to Masson's rule), there is a particular temperature where ϕ_{E} is almost independent of concentration, as shown in Figures 15 and 16. The ϕ_{E} vs. t curves from about 0.5 to $3 m$ cross at this temperature as shown in Figure 17. The inversion temperatures in ϕ_{E} are $37.5^{\circ}, 36.3^{\circ}$, and $35.3^{\circ} \mathrm{C}$ for La, Pr , and Nd , respectively. At this temperature,

$$
\frac{\partial \phi_{E}}{\partial m^{1 / 2}}=\frac{\dot{\partial}\left(\frac{\dot{\partial} \phi_{V}}{\partial m^{1 / 2}}\right)}{\dot{\partial} T}=\frac{\partial S_{V^{*}}}{\partial T}=0
$$

i.e., the Masson slopes are at a minimum. This behavior appears also in α, Figures 13 and 14 , and in \bar{E}_{2} and \bar{E}_{1}, although the inversion temperature is less constant with concentration in these properties. Jones et al. (28) found the inversion temperature in α at $37^{\circ} \mathrm{C}$ for LaCl_{3} (up to 1 m) and at $52^{\circ} \mathrm{C}$ for KCl and BaCl_{2}. We obtain $36.5^{\circ} \mathrm{C}$ for LaCl_{3} in α over the same concentration range. Therefore, the inversion temperature is also roughly a function of charge.

At high concentrations, \bar{E}_{2} converges on a value relatively insensitive to temperature and concentration, as shown in Figure 18. The results for LaCl_{3} and NdCl_{3} are similar. The low temperature and concentration dependence, as well as the small absolute value of \bar{E}_{2}, suggest that at these concentrations the solutions approach a quasicrystalline state (2, 13, 41,57). It would be interesting to compare α at these concentrations to the thermal expansion of the hydrated crystals, when these data become available.

Approach to the limiting law for ϕ_{E} has been verified for NaCl from 0° to $50^{\circ} \mathrm{C}(14,27,36)$ and for KCl at $15^{\circ} \mathrm{C}(14)$. At all temperatures, the positive curvature in ϕ_{E} vs. $m^{1 / 2}$ for
the rare earth chloride solutions at low concentrations suggests, but does not verify, approach to the Debye-Hückel limiting law. Measurements at much lower concentrations are needed, especially at low temperatures, where the deviations would be largest.

From the provisional $\bar{E}_{2}{ }^{0}$ at $25^{\circ} \mathrm{C}$ obtained earlier, and using the value of $0.046 \mathrm{ml} / \mathrm{mol}-\mathrm{deg}$ for $\bar{E}^{0}\left(\mathrm{Cl}^{-}\right)(37)$, we obtain E° (ion) $=-0.102,-0.092$, and $-0.092 \mathrm{ml} / \mathrm{mol}-\mathrm{deg}$ for $\mathrm{La}^{3+}, \mathrm{Pr}^{3+}$, and Nd^{3+}, respectively. Using the same value for Cl^{-}, Millero (37) obtained $0.032 \mathrm{ml} / \mathrm{mol}-\mathrm{deg}$ for Na^{+}and $-0.042 \mathrm{ml} / \mathrm{mol}-\mathrm{deg}$ for Ca^{2+}. Thus, \bar{E}^{0} (ion) decreases with increasing charge as expected. However, the \bar{E}^{0} (ion) for the rare earths seems to decrease with increasing ionic radii, similar to the monovalent cations, but opposite the divalent cations (37). This implies that the smaller Pr and Nd ions decrease the expansibility of the solution less than the larger La ion. Considering the uncertainty in the extrapolation and the small range in radii ($0.07 \AA$) , this result must be treated with caution. Nevertheless, α, ϕ_{E}, and \bar{E}_{2} all consistently increase from LaCl_{3} to NdCl_{3} over the whole temperature and concentration range. The extension of these measurements to lower concentrations and over a greater range of radii should clarify this point.

Acknowledgment

The authors thank the Ames Laboratory Rare Earth Separation Group for furnishing the oxides. They are also indebted to J. A. Rard for many helpful discussions.

Literature Cited

(1) Akerlof, G., Teare, J., J. Am. Chem. Soc., 60, 1226 (1938)
(2) Bahe, L. W., J. Phys. Chem., 76, 1062 (1972).
(3) Bansal, B. M. L., Patil, S. K., Sharma, H. D., J. Inorg. Nucl. Chem., 26, 993 (1963).
(4) Beattie, J. A., Blaisdell, B. E., Kaye, J., Gerry, H. T., Johnson, C. H., Proc. Am. Acad. Arts Sci., 74, 371 (1941)
(5) Choppin, G. R., Unrein, P. I., J. Inorg. Nucl. Chem., 25, 387 (1963).
(6) Connick, R, E., Mayer, S. W., J. Am. Chem. Soc., 73, 1176 (1951)
(7) Dunn. L. A., Trans. Faraday Soc., 64, 2951 (1968).
(8) Dunn, L. A., J. Solution Chem., 3, 1 (1974).
(9) Eisenberg, D., Kauzmann, W., "The Structure and Properties of Water," Oxford Univ. Press, New York, N.Y., 1969.
(10) Ellis, A. J., J. Chem. Soc. (A), 1966, p 1579.
(11) Ellis, A. J., ibid., 1967, p 660.
(12) Fabuss, B. M., Korosi, A., Shamsul Hug, A. K. M., J. Chem. Eng. Data, 11, 325 (1966).
(13) Frank, H. S., Thompson, P. T., in "The Structure of Electrolytic Solutions," W. J. Hamer, Ed., Wiley, New York, N. Y., 1959.
(14) Franks, F., Smith, H. T., Trans. Faraday Soc., 63, 2586 (1967).
(15) Geffcken, W., Z. Phys. Chem., A155, 1 (1931).
(16) Geffcken, W., Kruis, A., Solana, L., Z. Phys. Chem., B35, 317 (1937).
(17) Gibson, R. E., J. Am. Chem. Soc., 56, 4 (1934).
(18) Gibson, R. E., ibid., 57, 284 (1935)
(19) Gibson, R. E., Kincaid, J. F., ibid., 59, 579 (1937).
(20) Gibson, R. E., Loeffler, O. H., ibid., 63, 443 (1941)
(21) Gildseth, W. M., PhD dissertation, Iowa State University, Ames, lowa, 1964.
(22) Gildseth, W. M., Habenschuss, A., Spedding, F. H., J. Chem. Eng. Data, 17, 402 (1972).
(23) Goto, T., Smutz, M., J. Inorg. Nucl. Chem., 27, 663 (1965)
(24) Gucker, F. T., J. Am. Chem. Soc., 56, 1017 (1934).
(25) Habenschuss, A., PhD dissertation, lowa State University, Ames, lowa, 1973
(26) Harned, H. S., Owen, B. B., "The Physical Chemistry of Electrolytic Solutions,"' 3rd ed., Reinhold, New York, N.Y., 1958.
(27) Jain, D. V. S., Lark, B. S., Ind. J. Chem., 8, 1133 (1970).
(28) Jones, G., Taylor, E. F., Vogel, R. C., J. Am. Chem. Soc., 70, 966 (1948)
(29) Kozachenko. N. N., Batyaev, l. M., Russ. J. Inorg. Chem., 16 (1), 66 (1971).
(30) Kruis, A., Z. Phys. Chem., B34, 1 (1936)
(31) Masson, D. O., Phil. Mag., Ser. 7, 8, 218 (1929)
(32) Millero, F. J., J. Phys. Chem., 72, 3209 (1968).
(33) Millero, F. J., J. Chem. Eng. Data, 15, 562 (1970).
(34) Millero, F. J., ibid., 16, 229 (1971).
(35) Millero, F. J., in "Water and Aqueous Solutions,"' R. A. Horne, Ed., Chap. 13, 14, Wiley-interscience, New York, N.Y., 1972
(36) Millero, F. J., J. Phys. Chem., 74, 356 (1970).
(37) Millero, F. J., ibid., 72, 4589 (1968).
(38) Millero, F. J., J. Solution Chem., 2, 1 (1973).
(39) Peppard, D. F., Mason, G. W., Hucher, I., J. Inorg. Nucl. Chem., 24, 881 (1962).
(40) Rard, J. A., Spedding, F. H., J. Phys. Chem., 79, 257 (1975).
(41) Rosen, J. S., NASA Technical Note, TN D-4297, 1968
(42) Spedding, F. H., Csejka, D. A., Dekock, C. W., J. Phys. Chem., 70, 2423 (1966)
(43) Spedding, F. H., Cullen, P. F., Habenschuss, A., ibid., 78, 1106 (1974).
(44) Spedding, F. H., Jones, K. C., ibid., 70, 2450 (1966).
(45) Spedding, F. H., Pikal, M. J., Ibid., p 2430.
(46) Spedding, F. H., Pikal, M. J., Ayers, B. O., ibid., p 2440
(47) Spedding, F. H., Rard, J. A., ibid., 78, 1435 (1974)
(48) Spedding, F. H., Rard, J. A., Saeger, V. W., J. Chem. Eng. Data, 19, 373 (1974).
(49) Spedding, F. H., Saeger, V. W., Gray, K. A., Boneau, P. K., Brown, M A., DeKock, C. W., Baker, J. L., Shiers, L. E., Weber, H. O., Habenschuss, A., ibid., 20, 72 (1975).
(50) Spedding, F. H., Shiers, L. E., Brown, M. A., Derer, J. L., Swanson, D. L., Habenschuss, A., ibid., p 81
(51) Spedding, F. H., Shiers, L. E., Rard, J. A., ibid., p 66.
(52) Spedding, F. H., Shiers, L. E., Rard, J. A., ibid., p 88.
(53) Spedding, F. H., Witte, D., Shiers, L. E., Rard, J. A., ibid., 19, 369 (1974).
(54) Templeton, D. H., Dauben, C. H., J. Am. Chem. Soc., 76, 5237 (1954).
(55) Vasiow, F., J. Phys. Chem., 70, 2286 (1966).
(56) Vogel, R. C., PhD thesis, Harvard University, Cambridge, Mass., 1946.
(57) Wright, R., J. Chem. Soc. London, 1940, p 870.

Received for review October 23, 1974. Accepted April 18, 1975. Report prepared for the U.S. Energy Research and Development Administration under Contract No. W-7405-eng-82, and based in part on the PhD dissertations of W.M.G. (1964) and A.H. (1973) submitted to the Graduate Faculty of lowa State University, Ames, lowa. By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper.

[^0]: ${ }^{1}$ Present address, Department of Chemistry, Augustana College, Sioux Falls, S.D. 57102.
 ${ }^{2}$ To whom correspondence should be addressed.

