establishing which of the infinite dilution coefficients should be the largest. An exact matching of this relationship was not expected since no data were obtained in the dilute C4-unsaturate region. The vinyl acetylene-cis-butene-2 and vinyl acetylene-1,3-butadiene binaries adhered to the above relationship, whereas the vinyl acetylene-trans-butene-2 did not. Attempts to incorporate Equation 13 as a constraint in the trans-butene-2 system proved unsuccessful, the resulting F ratio being 15 times larger than with the original Wilson parameters (although the average % relative error in calculating the vapor composition only increased from 1 to 2.6%).

Regular solution theory predicts that the temperature variation of infinite dilution activity coefficients can be obtained from

$$\gamma_1^{\infty} = \gamma_2^{\infty} \left(\frac{\frac{v_1 T_2}{v_2 T_1}}{(14)} \right)$$

For all three binaries, the Wilson equations were in agreement with regular solution theory in predicting the temperature dependence of the infinite dilution activity coefficients.

Prediction of binary azeotropes. The Wilson equations were used to generate relative volatilities for each binary. These are presented in Figure 3 for a temperature of 110.5°F. This plot shows that at 34 mol %, vinyl acetylene forms a low-boiling azeotrope with trans-butene-2. Similarly at 46 mol %, vinyl acetylene forms a low-boiling azeotrope with cis-butene-2. Note that these predicted azeotropes are outside the range of the experimental data. A degree of uncertainty exists as to the actual composition of the azeotropes, since, experimentally, little information was generated for the activity coefficients of the C4-unsaturates in vinvl acetviene

Acknowledgment

This work was performed at Phillips Petroleum Co., and the author is indebted to them for permission to publish these results.

Literature Cited

- (1) American Petroleum Institute Research Project 44, Table 23-2 (5.1200)-k-E, pp 1 and 2

- (3) 1200/R-E, pp / ano 2.
 (2) Draper, N. R., Smith, H., "Applied Regression Analysis," Wiley, New York, N.Y., 1966.
 (3) Gallant, R. W., *Hydrocarbon Process.*, 44 (8), 127 (Aug. 1965).
 (4) Gallant, R. W., *ibid.* (10), 151 (Oct. 1965).
 (5) Hachmuth, K. H., *AlChE Trans.*, 42, 974 (1946).
 (6) Hildebrand, J. H., Scott, R. L., "Regular Solutions," Prentice-Hall, Engle-Wildebrand Oliffe M. 1, 1962. wood Cliffs, N.J., 1962.

- (7) Holmes, N.S., 1952.
 (8) Maxwell, J. B., Bonnell, L. S., *ibid.*, 49, 1187 (1957).
 (9) Nieuwland, J. A., Calcott, W. S., Downing, F. B., Carter, A. S., *J. Am. Chem. Soc.*, 53, 4197 (1931).
- (10) Perry, R. H., Chilton, C. H., Eds., "Chemical Engineers' Handbook," 5th ed., McGraw-Hill, New York, N.Y., 1973.
 (11) Prausnitz, J. M., "Molecular Thermodynamics of Fluid-Phase Equilibria,"
- p 278, Prentice-Hall, Englewood Cliffs, N.J., 1969.
 Reid, R. C., Sherwood, T. K., "The Properties of Gases and Liquids," 2nd ed., McGraw-Hill, New York, N.Y., 1966.
- (13) Ritzert, G., Berthold, W., Chem. Ing. Tech., 45 (3), 131–36 (Feb. 1973).
 (14) Vidaurri, F. C., unpublished data.
- (15) Wilson, G. M., J. Am. Chem. Soc., 86, 127 (1964).

Received for review December 4, 1974, Accepted April 7, 1975,

Vapor-Liquid Equilibrium Relationships of Binary Systems *n*-Butane–*n*-Pentane and *n*-Butane–*n*-Hexane

Webster B. Kay,¹ Richard L. Hoffman,² and Oliver Davies³

Department of Chemical Engineering, The Ohio State University, Columbus, Ohio 43210

The $P-\rho$ -T-x relationships of the *n*-butane-*n*-pentane and n-butane-n-hexane systems are determined. The experimental results cover a range from about 100 lb/in.² abs and room temperature to the highest pressure and temperature at which liquid and vapor can coexist. The data are presented in tabular form. *P-T-x*, ρ -*T-x*, and isobaric *T-x* diagrams are given.

This experimental study reports the P- ρ -T-x relationships along the liquid-vapor phase boundaries of the binary systems of *n*-pentane and *n*-hexane with *n*-butane as the common component. It is the fourth of a series of studies (4-6) whose primary object has been to explore the effect of the relative size of the components of a binary system on its phase diagram in the liquid-vapor region.

Experimental

The P-p-T-x relationships of the two n-butane-n-alkane systems were obtained by the determination of the P-T and V-T border curves of a series of mixtures of known composition. The relationships between any set of the variables were then obtained by appropriate cross plots of these curves.

The apparatus and experimental procedures employed were the same as those employed in the studies previously reported (4-6). Very briefly, the operation consisted in confining a measured amount of an air-free sample over mercury in a glass capillary tube, hereafter referred to as the experimental tube, which was fastened in one leg of a mercury-in-steel, U-tube. The other leg was connected through a manifold to a compressed gas cylinder which served as a source of pressure and to a sensitive spring gauge for the measurement of the applied pressure. The tube was surrounded by a constant-temperature jacket whose temperature was measured by means of a copper-constantan thermocouple in conjunction with a potentiometer. By a precalibration of the experi-

¹ To whom correspondence should be addressed. ² Present address, 14 Meadowview Rd., Wilbraham, Me. 01095.

³ Present address, 7513 W. 170 St., Tinley Park, III. 60477

Figure 1. Pressure-temperature diagram of *n*-butane-*n*-pentane system

Figure 2. Pressure-temperature diagram of *n*-butane--*n*-hexane system

Figure 3. Density-temperature diagram of *n*-butane-*n*-pentane system

Figure 4. Density-temperature diagram of *n*-butane-*n*-hexane system

mental tube, its total volume was known in terms of the distance from the sealed end, so that the volume of the sample at any temperature and pressure was obtained by measuring the length of the tube occupied by the sample with a cathetometer. Equilibrium between the liquid and vapor phases was attained by moving a small steel ball enclosed in the tube by a magnet around the outside of the constant-temperature jacket. Pressure and volume were measured at a series of constant temperatures covering the range desired.

The pressure gauge and the thermocouple were calibrated; the former by comparison with a precision dead-weight gauge and the latter by comparison with a Pt-resistance thermometer which had been calibrated at the National Bureau of Standards. The emf of the thermocouple was measured with a potentiometer capable of measuring the millivolt equivalent of 0.005° C. The total volume of the experimental tube was expressed analytically as a function of the distance from the sealed end. The coefficients of the equation were determined by a least-squares procedure with experimental values of the mass of mercury required to fill the tube to various levels. The length of the tube occupied by the sample was measured with a cathetometer to within 0.02 mm. For details of the apparatus and experimental procedures, see refs. 7 and 8.

Materials and Preparation of Mixtures

n-Butane, *n*-pentane, and *n*-hexane were supplied by Phillips Petroleum Co. with a purity of 99.9 mol % or better. They were used without further purification except that they were deaerated by a cyclic operation which involved freezing, pumping off the released gas, melting, and distilling the sample at low pressure. Measured amounts of the pure *n*-butane were transferred to glass ampuls attached to the loading line. The ampuls were sealed off and stored for use in the preparation of mixtures with degassed *n*-pentane and *n*-hexane. The procedure for preparing and loading the experimental tube with a mixture of known composition has been described elsewhere (7, 8). The purity of the individual components was tested by determining the pressure difference between the bubble and dew points at constant temperature. This difference was always less than 2.0 lb/in.².

Equilibrium Data

The pressure, temperature, and volume at the bubble and dew points for a series of five mixtures of *n*-butane and *n*pentane and six mixtures of *n*-butane and *n*-hexane were measured over a temperature range from room temperature to the highest temperature at which the liquid and vapor can coexist. For each mixture, 25-35 points were determined. In the compilation of the data, the measured specific volumes were expressed as densities. The experimental points were plotted, and the *P*-*T* border curves and the density-temperature curves are shown in Figures 1–4. The vapor pressure and saturated density curves of the pure components were constructed from data taken from the literature (3, 9, 10). Large-scale plots of these diagrams were constructed from

which values of the temperature and density at the bubble and dew points were read at regular intervals of the pressure. These values are listed in Tables I and II. *T-x* data at different pressures were obtained from cross plots of Figures 1 and 2 and are listed in Tables III and IV, where the temperatures at the bubble and dew points at regular intervals of the composi-

Table I. Summary of Temperature, Pressure, and Density Relationships at Phase Boundaries for *n*-Butane*n*-Pentane System: Data by Hoffman (2)

Press	Liq	uid	Va	por	P
lb/in.² abs	Temp, °C	Density, g/cc	Temp, °C	Density, g/cc	lb i
	Compositio	on: 13.99 mol 9	% n-butane		
150	118.0	0.506			
200	133.2	0.482			
250	146.2	0.460			
300	157.3	0.433			
350	166.9	0.408	169.3	0.080	
400	175 5	0 376	177 7	0.098	
450	183 2	0 351	184 8	0 125	
500	190.7	0.278	191.3	0.195	
	Compositie	on: 34.93 mol	% n-butane		
150	106 4	0 513	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
200	121 3	0.313	•••	• • •	
250	134 2	0.450	•••	***	
300	1/5 3	0.407	• • •	•••	
350	145.5	0.444	160.2	0.078	
400	163.6	0.420	167.8	0.078	
400	171 6	0.354	175.9	0.054	
400	171.0	0.300	191 0	0.110	
510	190.2	0.323	192.1	0.137	
520	100.3	0.306	182.1	0.173	
520	Compositi	0.20J	105.0 07 - butana	0.150	
150	Compositi	011. 04.44 11101	% n-Dulane		
150	98.3	0.512	•••	•••	
200	113.0	0.488	120 4		
250	125.5	0.467	132.4	0.048	
300	130.0	0.444	142.5	0.060	
300	140.0	0.420	151.5	0.074	
400	154.2	0.397	158.8	0.091	
400	161.0	0.409	105.7	0.113	
520	109.1	0.330	171.0	0.144	
520	171.5	0.307	174 7	0.100	
550	Compositi	on: 75 18 mol	07 - hutane	0.150	
150		0 512	% n-butane		
200	90.2	0.512	•••	•••	
200	104.4	0.489	•••		
200	126.6	0.409	• • •	•••	
350	135.8	0.447	• • •	• • •	
/00	1/1/1	0.423	1/17 Q	0.087	
400	144.1	0.401	147.0	0.007	
500	151.5	0.370	160.8	0.100	
520	150.5	0.343	162 1	0.157	
540	164 0	0.320	165 1	0.137	
546	Compositi	on: 87 /15 mol	07 - butana	0.202	
150	Compositi	011. 07.45 11101	% n-butane		
700	85.3	0.508	•••	• • •	
200	99.4	0.484	•••	•••	
200	111.2	0.463	•••	•••	
300	121.3	0.443	•••	•••	
500 400	130.2	0.422	•••	•••	
400	138.3 1 <i>15</i> 7	0.398	•••		
400 500	140./	0.3/1	•••	•••	
520	154.2	0.330	 156 O	 0 1/18	
540	157.4	0.288	158.2	0.190	
		0.200	1-0-1	0.100	

Table	П.	Summary of Temperature, Pressure, and Density
		Relationships at Phase Boundaries for n-Butane-
		n-Hexane System: Data by Davies (1)

Press.	Li	quid	V	apor
lb/in.² abs	Temp, °C	Density, g/cc	Temp, °C	Density, g/cc
	Compositi	on: 10.35 mol	% n-butane	
90	125.5	0.539		
125	143.1	0.518		
150	153.1	0.502		
175	161.9	0.489		
200	169.9	0.476	177.7	· · · ·
225	177.3	0.463	184.9	
250	184.2	0.450	191.1	
275	190.5	0.437	196.9	0.063
300	196.3	0.423	202.3	0.071
325	201.9	0.409	207.4	0.081
350	207.3	0.394	212.1	0.091
375	212.4	0.378	216.6	0.104
400	217.1	0.360	220.7	0.120
425	221.7	0.338	224.4	0.139
440	224.3	0.321	226.4	0.154
450	225.9	0.307	227.7	0.169
460	227.6	0.280	228.8	0.198
	Compositi	on: 28.41 mol	% n∙butane	
115	118.1	0.534	•••	•••
125	122.9	0.528	• • •	•••
150	133.1	0.514	•••	• • •
175	141.9	0.501		•••
200	150.0	0.489	• • •	• • • •
225	15/.3	0.4//	•••	•••
250	164.1	0.465	181.0	
2/5	1/0.3	0.453	185.9	0.059
300	1/0.2	0.440	190.0	0.005
320	181.8	0.427	195.0	0.073
300	107.1	0.414	203.3	0.001
400	192.1	0.401	203.3	0.031
400	201 7	0.369	210.6	0.105
420	204 6	0.359	212.6	0.125
450	204.0	0.350	213.9	0.131
475	211 1	0.324	216.7	0 115
500	215.9	0.276	217.7	0.217
	Composit	ion: 49.28 mol	% n-butane	
150	112.5	0.516		
175	121.8	0.504		
200	129.6	0.492		
225	136.6	0.481	•••	• • •
250	143.0	0.471	165.8	•••
275	149.1	0.460	170.8	•••
300	154.8	0.449	175.3	
325	160.2	0.439	179.4	•••
350	165.4	0.427	183.3	0.074
375	170.4	0.415	186.9	0.082
400	175.2	0.403	190.3	0.091
425	179.8	0.390	193.6	0.101
440	182.5	0.382	195.4	0.10/
450	184.3	0.3/6	196.6	0.113

(Continued on page 336)

Table	н.	С	ont	in	uec	ł
		-				

Table III.	Isobaric Temperature-Composition Relations of
	n-Butane-n-Pentane System

Press	Lie	quid	Va	por
lb/in. ²	Temp,	Density,	Temp,	Density,
205		g/cc	-0	g/cc
	Compositi	on: 49.28 mol	% n -butane	
475	188.7	0.359	199.3	0.127
500	193.0	0.339	201.5	0.145
525	197.5	0.307	203.1	0.176
535	199.7	0.282	202.7	0.163
	Compositi	on: 70.17 mol	% n∙butane	
165	102.1	0.503	•••	
175	105.5	0.498	•••	•••
200	113.0	0.48/	•••	
225	119.7	0.477	•••	•••
200	125.7	0.408	•••	•••
270	131.4	0.438	•••	•••
300	141 9	0.440	160 9	•••
350	146.9	0.430	164 5	•••
375	151.7	0.415	167.9	•••
400	156.3	0.403	171.1	
425	160.7	0.390	174.2	
440	163.1	0.383	176.0	•••
450	164.7	0.378	177.1	0.101
475	168.5	0.365	179.7	0.114
500	172.4	0.349	182.1	0.126
525	176.4	0.328	184.2	0.144
550	180.5	0.297	185.6	0.179
560	182.6	0.272	185.2	0.207
	Compositi	on: 81.27 mol	% n∙butane	
215	110.0	0.484		
225	112.5	0.479	• • •	
250	118.4	0.468	• • •	
275	123.9	0.458	•••	•••
300	129.1	0.448		
325	134.0	0.438	148.3	
300 275	138.0	0.427	152.1	•••
375 400	145.1	0.410	158 9	0.083
400	147.3	0.405	162 0	0.083
440	153.8	0.385	163.8	0.097
450	155.3	0.381	164.9	0.100
475	159.1	0.366	167.7	0.111
500	162.7	0.350	170.2	0.125
525	166.3	0.329	172.4	0.142
550	170.1	0.299	174.0	0.164
560	171.6	0.276	174.3	0.187
	Composit	ion: 89.8 mol 9	% n-butane	
240	110.4	0.468		
250	112.7	0.464	• • •	
275	118.1	0.454		•••
300	123.1	0.444		
325 250	122.1	U.434	13/.3	
30U 375	132.2 136 5	0.423	141.0 145.2	
400	140 5	0.412	149.2	•••
425	144 4	0.390	151.7	•••
440	146.7	0.380	153.5	
450	148.1	0.377	154.6	0.101
475	151.7	0.362	157.4	0.111
500	155.2	0.345	160.1	0.125
525	158.6	0.325	162.6	0.143
550	162.1	0.294	164.6	0.173
560	163.6	0.270	165.1	0.192

	n-butane	-n-renta	ne syste	m 		
			Tem	р, °С		
			Press, Ib	/in.² abs		
Compn, mol %	3	50	4(00	450	
n-C₄	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
0	174.7	174.7	183.1	183.1	190.8	190.8
10	169.3	170.9	177.6	179.2	185.3	186.5
13.99	166.9	169.3	175.5	177.6	183.2	184.8
20	163.9	166.9	172.2	174.8	179.7	182.0
30	158.5	162.4	166.7	170.2	174.3	177.3
34.93	155.0	160.2	163.9	167.9	171.6	174.8
40	153.2	158.0	161.3	165.6	169.0	172.5
50	148.1	153.4	156.3	161.0	164.0	167.7
54.44	146.0	151.2	154.2	158.8	161.8	165.6
60	143.0	148.3	151.5	156.0	159.0	162.7
70	138.1	142.8	146.6	150.7	154.0	157.4
75.18	135.8	139.8^{a}	144.1	147.8	151.5	154.6
80	133.4	137.0	141.8	145.0	149.2	151.8
87.45	130.2	132.5^{a}	138.3	140.5^{a}	145.7	147.5^{a}
90	129.1	131.0	137.2	139.0	144.5	146.0
100	125.0	125.0	132.7	132.7	139.8	139.8
	50	00				
	Liquid	Vapor				
13.99	190.6	191.3				
20	187.4	188.4				
30	182.1	183.4				
34.93	178.8	181.1				
40	176.8	178.6				
50	171.5	173.8				
54.44	169.1	171.6				
60	166.3	168.8				
70	161.1	163.5				
75.18	158.6	160.8				
80	156.0	158.0				

100 146.1 ^a Extrapolated.

152.3

151.0

153.8

152.2

146.1

87.45

90

Table IV. Isobaric Temperature-Composition Relations of n-Butane-n-Hexane System

		Temp, °C									
			Press, Ib	/in.º abs							
Compn, mol %	32	25	3:	350		375					
n-C4	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor					
0	214.0	214.0	218.9	218.9	223.4	223.4					
10	202.5	207.7	207.6	212.5	212.6	216.9					
20	191.1	200.9	196.3	205.4	201.9	209.7					
30	179.2	193.8	185.5	193.2	191.1	202.2					
40	169.6	186.4	179.8	190.5	180.3	194.4					
50	159.5	178.9	164.7	182.7	169.6	186.4					
60	150.2	170.5	155.2	174.1	160.0	177.8					
70	142.0	161.0	146.9	164.6	151.7	168.2					
80	134.9	150.0	139.6	153.7	144.2	157.3					
90	127.8	137. 1	132.3	141.2	136.5	145.1					
100	120.7	120.7	125.0	125.0	128.9	128.9					

Table IV. Continued

			Ten	1р, ℃			
			Press, II	b/in. ² abs	5		
Compn,	40	00	42	25	450		
n-C4	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
0	227.9	227.9	232.2	232.2			
10	217.5	221.0	222.1	224.7	226.3	227.9	
20	206.4	213.6	211.1	217.1	215.5	220.4	
30	195.2	205.9	199.9	209.3	204.7	212.5	
40	184.7	197.9	189.2	201.3	193.8	204.5	
50	174.5	189.7	179.1	193.2	186.4	195.9	
60	165.1	180.9	169.7	184.2	173.7	187.1	
70	156.5	171.2	160.8	174.4	164.8	177.6	
80	148.5	160.4	152.4	163.6	156.4	166.6	
90	140.6	148.4	144.2	151.6	148.0	154.3	
100	132.7	132.7	136.2	136.2	139.7	139.7	
	50	0	550				
	Liquid	Vapor	Liquid	Vapor			
30	214.2	216.6					
40	203.2	209.3					
50	192.5	200.9					
60	182.2	192.1	192.0	193.8			
70	172.6	182.4	180.7	185.8			
80	163.8	171.7	171.5	175.5			
90	155.0	160.0	161.9	164.5			
100	146.1	146.1	152.2	152.2			

tion are given. Isobaric temperature-composition curves are shown in Figures 5 and 6. From the *T*-*x* diagrams, the vapor-liquid equilibrium ratios, K = y/x, for each of the components were derived and are given in Tables V and VI.

The critical point was determined visually by the disappearance-of-the-meniscus method, whereas the coordinates of the pressure, temperature, and density at the maximum pressure and maximum temperature points were obtained graphically from large-scale plots of the *P*-*T* and ρ -*T* border curves in the critical region of the mixture. The critical constants of the pure components and mixtures and the coordinates of the maximum pressure (circondenbar) and maximum temperature (cricondentherm) points of each system are listed in Tables VII and VIII. The coordinates at the maximum pressure point on the *P*-*T* locus curve for the *n*-butane-*n*-hexane system are as follows: $P = 565.2 \pm 1.0$ lb/in.² abs; $T = 173.9 \pm$ 1.0° C; x = 0.807 C₄. The *P*-*T* critical locus curve of the *n*butane-*n*-pentane system has no maximum pressure point.

The accuracy of the tabulated data is estimated to be as follows: temperature $\pm 0.5^{\circ}$ C; pressure ± 2.0 lb/in.²; density, ± 0.001 g/cc for the liquid; and ± 0.0001 g/cc for the vapor. In the critical region, the uncertainties in the values reported may be somewhat greater because of the difficulty in assessing the accuracy of the measurements in this region.

The unsmoothed experimental data have been deposited with the ACS Microfilm Depository Service.

Acknowledgment

Acknowledgment is made to the Phillips Petroleum Co. for samples of the pure hydrocarbons.

Figure 5. Isobaric temperature-composition diagram of *n*-butane-*n*-pentane system

Figure 6. Isobaric temperature-composition diagram of *n*-butane-*n*-hexane system

Table V. Vapor-Liquid Equilibrium Ratios of n-Butanen-Pentane System

Press, lb/in. ²		Temp, °C								
abs	140	150	160	170	180	190				
		$K_i = y_i$	$/x_i$ for n-t	outane						
350	1.131	1.229	1,300	1.414						
400	1.055	1.130	1.223	1.271	1.428					
450	1.001	1.063	1.124	1.183	1.256	1.357				
500	•••	1.017	1.057	1.089	1.094	1.113				
		$K_j = \mathbf{y}_j / \mathbf{z}_j$	'x _j for n-p	entane						
350	0.743	0.803	0.893	0.961	•••					
400	0.718	0.778	0.835	0.914	0.975					
450	0.750	0.774	0.829	0.887	0.938	0.995				
500	•••	0.800	0.852	0.900	0.952	0.980				

Table VI. Vapor-Liquid Equiliprium Ratios of n-Butane-n-Rexane System	Table VI	VI. Vapor-Liquid	Equilibrium	Ratios of	n-Butane-n	-Hexane	System
---	----------	------------------	-------------	-----------	------------	---------	--------

Press,						Temp, °C					
abs	130	140	150	160	170	180	190	200	210	220	230
					$\mathbf{K}_i = \mathbf{y}_i / \mathbf{x}_i$ for	or <i>n</i> -butane)				
325	1.091	1.207	1.326	1.433	1.530	1.605	1.683	1.756	1.846		
350	1.044	1.145	1.258	1.359	1.442	1.516	1.581	1.647	1.721		
375	1.009	1.095	1.191	1.294	1.374	1.428	1.465	1.507	1.581	1.672	
400		1.057	1.137	1.221	1.302	1.367	1.423	1.455	1.474	1.496	
425		1.028	1.100	1.170	1.243	1.313	1.364	1.391	1.383	1.354	1.289
450	•••	1.002	1.063	1.129	1.203	1.263	1.301	1.323	1.322	1.293	1.106
500		•••	1.018	1.068	1.116	1.160	1.189	1.191	1.157		•••
550	•••	•••	•••	1.020	1.043	1.072	1.057		•••	•••	• • •
				ĸ	$x_j = y_j / x_j$ for	or n-hexane	•				
325	0.395	0.447	0.505	0.575	0.652	0.738	0.819	0.896	0.969		
350	0.402	0.442	0.496	0.565	0.643	0.721	0.799	0.870	0.938		
375	0.433	0.441	0.499	0.560	0.631	0.711	0.790	0.859	0.918	0.978	
400	•••	0.446	0.513	0.574	0.636	0.705	0.774	0.843	0.905	0.959	
425		0.433	0.517	0.584	0.640	0.698	0.765	0.833	0.898	0.952	0.993
450		0.51	0.551	0.597	0.638	0.698	0.767	0.832	0.892	0.945	0.993
500			0.593	0.637	0.685	0.733	0.792	0.856	0.920		•••
550		•••		0.770	0.810	0.826	0.909	•••	•••		•••

Table VII. Critical Constants of n-Butane-n-Pentane System

Mol %, n-C₄	Critical point			Point of max press			Point of max temp		
	т _с , °С	P _c , Ib/in.² abs	Density, g/cc	r _{Pmax} , °C	P _{Pmax} , Ib/in.² abs	Density, g/cc	r _{Tmax} , °C	P _{Tmax} , Ib/in.² abs	Density, g/cc
0,00	196.57ª	488.8ª	0.2315ª						
13.99	191.44	503.6	0.2309	191.4	503.7	0.252	191.5	503.5	0.214
34.93	183.06	525.0	0.2362	182.8	525.3	0.257	183.2	523.8	0.210
54.44	174.74	536.7	0.2250	174.5	537.0	0.253	174.9	535.0	0.209
75.18	165.08	545.7	0.2341	165.0	546.0	0.252	165.2	544.1	0.202
87.45	158.8	548.6	0.2279	158.6	549.0		158.9	548.0	0.204
100.00	152.20	550.1 ^b	0.2278						

^a Ref. 3. ^b Ref. 9.

Table VIII. Critical Constants of n-Butane-n-Hexane System

Mol % n-C₄	Critical point			Point of max press			Point of max temp		
	т _с , °С	P _c , Ib/in.² abs	Density, g/cc	۲ _{Pmax} , °C	₽ _{Pmax} , lb/in.² abs	Density, g/cc	$\overline{\boldsymbol{\tau}_{T_{\max}}},$ °C	P _{Tmax} , Ib/in.² abs	Density, g/cc
0.00	234.7ª	440.1ª	0.232ª						
10.35	228.61	462.3	0.2307	228.4	462.9	0.255	228.8	460.8	0.205
28.41	217.34	501.5	0.2307	216.9	502.1	0.251	218.0	495.4	0.192
49.28	202.01	537.6	0.2317	201.3	539.1	0.251	203.1	529.4	0.185
70.17	184.39	562.0	0.2297	183.9	562.5	0.241	185.6	553.0	0.184
81.27	173.37	565.1	0.2319	173.2	565.2	0.239	174.3	559.6	0.185
89.8	164.50	562.4	0.2306	164.5	562.4	0.240	165.1	559.6	0.191
100.00	152.20	550.1 ^b	0.22816						

^a Ref. 10. ^b Ref. 9.

Literature Cited

- Davies, Oliver, MS thesis, Ohio State University, Columbus, Ohio, 1965.
 Hoffman, R. L., MS thesis, Ohio State University, Columbus, Ohio, 1962.
- (3) International Critical Tables, Vol 3, p 244, McGraw-Hill, New York, N.Y.,
- 1928.

- 1928.
 (4) Kay, W. B., J. Chem. Eng. Data, 15, 46 (1970).
 (5) Kay, W. B., *ibid.*, 16, 137 (1971).
 (6) Kay, W. B., Genco, J., Fichtner, D. A., *ibid.*, 19, 275 (1974).
 (7) Kay, W. B., Rambosek, G. M., *Ind. Eng. Chem.*, 45, 221 (1953).
 (8) Kay, W. B., Donham, W. E., Chem. Eng. Sci., 4, 1 (1955).
 (9) Kay, W. B., *Ind. Eng. Chem.*, 32, 358 (1940).
 (10) Kay, W. B., J. Am. Chem. Soc., 68, 1336 (1946).

Received for review December 17, 1974. Accepted March 15, 1975. R. L. H. received financial aid from the Union Carbide Chemicals Co.

Supplementary Material Available. An Appendix containing two tables of Supplementary Material Available. An Appendix containing two tables of unsmoothed experimental data will appear following these pages in the mi-crofilm edition of this volume of the journal. Photocopies of the supplementa-ry material from this paper only or microfiche (105 × 148 mm, 24× reduc-tion, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemi-cal Society, 1155 16th St., N.W., Washington, D.C. 20036. Remit check or money order for \$4.50 for photocopy or \$2.50 for microfiche, referring to and purchas UCED 75 629. code number JCED-75-333.