

Figure 3. K values of tetralin at 663 K .

Results and Discussion

Table I presents the compositions of both saturated vapor and liquid phases determined at two temperatures, 543 and 663 K, and at total pressures from 50 to 250 atm . Three binary gas feed mixtures of ca. 75, 80, and $90 \mathrm{~mol} \%$ of hydrogen were used successively at each condition of temperature and pressure. The binary feed gas mixtures were kept lean in carbon dioxide in order to avoid condensation when compressed.

At least two samples were taken for each cell effluent stream during one experiment at a fixed temperature, pressure, and feed gas composition. The volumetric measurements of the multiple samples agreed to within 1%, while the gas-chromatographic analyses for the gas composition from multiple samples were reproducible to within 1.5%. The reported
values in Table I are the averages of the multiple samples. Figures 1-3 show the variation of K values of hydrogen, carbon dioxide, and tetralin, respectlvely, with the tetrallin-free mole fraction of carbon dioxide in equilibrium gas mixture at 663 K. The end points at $y_{C D}=0$ in Figures 1 and 3, which correspond to binary mixtures of hydrogen + tetralin, were taken from Simnick et al. (2). There is substantial variation of the K values of tetralin to changing compositions at the higher pressures. The K values of carbon dioxide show the least senstivity to the variation of the gas compositions. Similiar results were observed at 543 K .

Glossary

K equilibrium vaporization ratio, $K \equiv y / x$
p pressure, atm
T temperature, K
x mole fraction in liquid phase
$y \quad$ mole fraction in vapor phase
Subscripts
CD carbon dioxide
H hydrogen
T tetralin

Literature Clted

(1) Sebastian, H. M.; Nageshwar, G. D.; LIn, H. M.; Chao, K. C. Fkuid Phase Equillb. 1980, 4, 257.
(2) Simnick, J. J.; Lawson, C. C.; Lln, H. M.; Chao, K. C. AIChE J. 1977, 23, 469.
(3) Simnick, J. J.; Sebastan, H. M.; Lin, H. M.; Chao, K. C. J. Chem. Eng. Data 1980, 25, 147.

Received for review October 2, 1980. Accepted February 2, 1981. Funds for this research were provided by the Electric Power Research Insttute through research project RP-367.

Isothermal Compressibility and Derived Properties of the Benzene + Toluene System at Various Temperatures

E. Aicart,* G. Tardajos, and M. Diaz Peña
Departmento de Quimica Fisica, Faculatad de Ciencias Quimicas, Universidad Complutense, Madrid-3, Spain

The isothermal compressibility κ_{T} has been determined for benzene + toluene mixtures at 298.15, 308.15, 318.15, and 333.15 K . A direct measurement plezometric technique has been used. From our own results and supplementary literature data, we have calculated the isentropic compressibility κ_{z} and the heat capacity at constant volume C_{v}. The corresponding excess functions $-V^{-1}\left(\partial V^{E} / \partial p\right)_{T},-V^{-1}\left(\partial V^{E} / \partial p\right)_{0}$, and $C_{V}{ }^{E}$ have been also calculated in every case. From this detailed effort we expected to achieve a better understanding of the behavior of these excess functions as a function of the varlables mole fraction and temperature.

Introduction

The isothermal compressibility κ_{T} and the isentropic compressibility κ_{s} defined respectively as $\kappa_{T}=-V^{-1}(\partial V / \partial p)_{T}$ and $\kappa_{\mathrm{s}}=-V^{-1}(\partial V / \partial p)_{\mathrm{s}}$ are related by

$$
\begin{equation*}
\kappa_{T}=\kappa_{\mathrm{s}}+\alpha^{2} T V / C_{\rho} \tag{1}
\end{equation*}
$$

A correlation between the heat capacities and the compressibilities is

$$
\begin{equation*}
C_{v} / C_{p}=\kappa_{\mathrm{B}} / \kappa_{T} \tag{2}
\end{equation*}
$$

The heat capacity ratio γ is defined as

$$
\begin{equation*}
\gamma=C_{p} / C_{v} \tag{3}
\end{equation*}
$$

In this work from our own κ_{T} measurements and the literature reported values of α and C_{D} for the corresponding mixtures, we have calculated κ_{s}, C_{v}, and γ at four temperatures for the benzene (1) + toluene (2) system.

Experimental Section

Isothermal compressibility has been measured by a piezometric technique allowing direct reading of volume changes occurring as pressure varies at constant temperature. This technique, which has been described in great detall previously (1-3), allows κ_{T} to be measured with a precision better than 0.5%. Liquid volume values required to obtain κ_{T} were calculated from the liquid weight and density values. These densities

Table I. Experimental Densities (ρ) at Various Temperatures and Comparison Data at 298.15 K

compd	source	$\rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$				
		expt				lit., ${ }^{\text {a }} 298.15 \mathrm{~K}$
		298.15 K	308.15 K	318.15 K	333.15 K	
benzene	Carlo Erba R.S.	0.87367	0.86296	0.85220	0.83594	0.87370
toluene	Merck z.a.	0.86189	0.85258	0.84318	0.82895	0.86230

${ }^{a}$ Reference 4.

Table II. Comparison of Toluene Values with Literature Data

	$\kappa_{T} / \mathrm{TPa}^{-1}$	
T / K	this work	lit.
298.15	911.5	$916{ }^{a} 920^{b}$
308.15	977.9	$979{ }^{b}$
318.15	1053.9	1051^{b}
333.15	1183.6	$1172,{ }^{c} 1200,{ }^{d} 1172^{e}$

${ }^{a}$ From ultrasonic velocity measurements (6). ${ }^{b}$ Interpolated from ultrasonic velocity measurements (7). ${ }^{c}$ From P-V measurements (8). ${ }^{d}$ From P-V measurements (9). ${ }^{e}$ From P-V measurements (10).

Flgure 1. Isothermal compressibilities κ_{T} against the mole fraction x_{1} of benzene.
were measured by a picnometric technique for benzene and toluene at four temperatures. Table I reports the chemical source and the densities as determined by us. For the sake of comparison, we included in the last column the corresponding literature data at 298.15 K .

The procedure to purify the mercury used in the sealing piezometer is described elsewhere (3).

The mixture volume V is given by eq 4 , where V_{1} and V_{2}

$$
\begin{equation*}
V=x_{1} V_{1}+x_{2} V_{2}+V^{E} \tag{4}
\end{equation*}
$$

are the molar volumes for the pure substances. The excess volume V^{E} has been taken from data at various temperatures by Nigam and Singh (5).

Results and Discussion

The isothermal compressibility for the benzene (1) + toluene (2) system was determined at $298.15,308.15,318.15$, and 333.15 K at negligible pressures.

Measurements on the pure substances were run twice. The values of κ_{T} for toluene are given in Table II, where corresponding ilterature data are included for the sake of comparison. A similar comparison for benzene has been reported previously (3).

Experimental κ_{T} values for various mole fractions are given in Table III. For each temperature these values were fitted against the benzene mole fraction x_{1} by polynomials of the type

$$
\begin{equation*}
Y\left(x_{1}\right)=\sum_{0}^{2} A_{1} x_{1}{ }^{\prime} \tag{5}
\end{equation*}
$$

assigning double weight to results for the pure substances. The

Table III. Experimental Values of Isothermal Compressibility $\kappa_{T}, \kappa_{T}{ }^{\mathrm{E}}$, and $\left(\partial V^{\mathrm{E}} / \partial p\right)_{T}$ at Negligible Pressures

x_{1}	${ }_{\kappa}{ }_{T} / \mathrm{TPa}^{-1}$	$\kappa_{T}{ }^{\text {E/ } / \mathrm{TPa}^{-1}}$	$\begin{gathered} 10^{-3}\left(\partial V^{\mathrm{E}} / \partial p\right)_{T} / \\ \left(\mathrm{cm}^{-3} \mathrm{~mol}^{-1} \mathrm{TPa}^{-1}\right) \end{gathered}$
$T=298.15 \mathrm{~K}$			
0	911.5	0	0
0.1749	926.5	7.1	-0.74
0.2551	927.1	3.9	-0.40
0.3549	936.0	7.9	-0.80
0.4176	940.3	9.0	-0.90
0.4877	943.3	8.2	-0.82
0.5612	946.2	7.2	-0.71
0.6414	951.0	7.4	-0.72
0.7234	955.9	7.7	-0.73
0.7935	958.8	6.3	-0.59
0.8687	962.3	5.0	-0.47
1	966.0	0	0
$T=308.15 \mathrm{~K}$			
0	977.9	0	0
0.1749	993.1	5.4	-0.56
0.2551	999.0	6.8	-0.70
0.3549	1005.9	7.8	-0.79
0.4176	1008.9	6.9	-0.69
0.4877	1017.4	10.7	-1.07
0.5612	1021.0	9.5	-0.94
0.6414	1025.5	8.6	-0.83
0.7234	1030.1	7.3	-0.69
0.7935	1034.1	6.2	-0.57
0.8687	1037.7	4.2	-0.38
1	1044.0	0	0
$T=318.15 \mathrm{~K}$			
0	1053.9	0	0
0.1749	1071.4	6.8	-0.71
0.2551	1078.0	8.0	-0.83
0.3549	1086.2	9.5	-0.98
0.4176	1091.0	9.9	-1.01
0.4877	1098.0	11.8	-1.19
0.5612	1101.9	10.4	-1.04
0.6414	1110.6	12.9	- 1.27
0.7234	1113.1	8.8	-0.84
0.7935	1115.9	6.1	-0.57
0.8687	1121.3	5.1	-0.47
1	1128.0	0	0
$T=333.15 \mathrm{~K}$			
0	1183.6	0	0
0.1749	1206.8	9.4	-1.00
0.2551	1213.8	9.9	-1.04
0.3549	1224.9	12.3	-1.29
0.4176	1230.9	12.8	-1.33
0.4877	1238.4	14.0	-1.43
0.5612	1245.9	14.6	-1.48
0.6414	1250.8	12.0	-1.18
0.7234	1256.9	9.8	-0.95
0.7935	1261.8	7.6	-0.72
0.8687	1266.3	4.0	-0.36
1	1277.0	0	0

fitting A_{1} coefficients and the standard deviations σ are reported in Table IV.

Values of κ_{T} vs. x_{1} are piotted in Figure 1. The curved line corresponds to eq 5 . Obviously κ_{T} increases with temperature at fixed mole fraction.

To get κ_{δ} from κ_{T} through eq 1 , one requires knowledge of α and C_{p}. The values of α were obtained from volume change measurements as a function of mole fraction and temperature

Table IV. Coefficients A_{i} for the Adjustment of ${ }^{\kappa_{T}}, \kappa_{s}$, and C_{v} in Eq 5

function	A_{0}	A_{1}	A_{2}	σ
$T=298.15 \mathrm{~K}$				
$\kappa_{T} / \mathrm{TPa}^{-1}$	911.7	75.0	-20.3	1.2
	± 0.7	± 3.3	± 3.2	
$\kappa_{S} / \mathrm{TPa}^{-1}$	679.2	16.1	-23.9	
$C_{v} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$	117.14	-24.18	0.98	
$T=308.15 \mathrm{~K}$				
$\kappa_{T} / \mathrm{TPa}^{-1}$	977.9	88.4	-22.2	0.8
	± 0.5	± 2.4	± 2.3	
$\kappa_{S} / \mathrm{TPa}^{-1}$	734.2	21.8	-26.9	
$C_{v} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$	120.22	-25.45	1.01	
$T=318.15 \mathrm{~K}$				
$\kappa_{T} / \mathrm{TPa}^{-1}$	1053.8	103.2	-29.2	1.0
	± 0.6	± 2.9	± 2.7	
$\kappa_{S} / \mathrm{TPa}^{-1}$	798.5	28.0	-35.4	
$C_{v} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$	123.59	-26.80	0.88	
$T=333.15 \mathrm{~K}$				
$\kappa_{T} / \mathrm{TPa}^{-1}$	1184.1	127.3	-35.4	1.1
	± 0.7	± 3.0	± 2.9	
$\kappa_{S} / \mathrm{TPa}^{-i}$	910.6	33.9	-43.9	
$C_{\nu} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$	128.97	-28.96	0.92	

$(5,11)$, and those of C_{p} were calculated from corresponding pure-component molar values, $C_{p, l}$, and the excess function, $C_{p}{ }^{\mathrm{E}}$, by using eq 6.

$$
\begin{equation*}
C_{p}=x_{1} C_{p, 1}+x_{2} C_{p, 2}+C_{p}^{E} \tag{6}
\end{equation*}
$$

Values of C_{p} for benzene were obtained by interpolating measurements by Staveley et al. (12), whereas those for toluene were calculated by interpolation measurements by Scott et al. (13). Recently Fortier and Benson (14) measured $C_{p}{ }^{\mathrm{E}}$ for the benzene + toluene system at 298.15 K . In the region around the maximum, they obtained the value of $-0.31 \mathrm{~J} \mathrm{~K}^{-1}$ mol^{-1}, whereas the C_{p} value was $-146.08 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. We have used their measurements. Because the rather small $C_{p}{ }^{E}$ values ($\sim 0.2 \%$ of C_{p} at the most), we may accept as negligible the error involved assuming $C_{P}{ }^{E}$ independent of temperature.

Values of all of the quantities calculated for the pure substances are reported in Table V. In all cases eq 1-3 were used to calculate κ_{s}, C_{v}, and γ, respectively, and the κ_{s} and C_{v} values thus obtained were fitted to polynomial equations like eq 5. The corresponding A_{i} coefficients are in Table IV.

Differentlating eq 4 with respect to pressure at constant temperature and rearranging terms, we get eq 7 , where $\left(\partial V^{E} / \partial p\right)_{T}=(\partial V / \partial p)_{T}-x_{1}\left(\partial V_{1} / \partial p\right)_{T}-x_{2}\left(\partial V_{2} / \partial p\right)_{T}$
$\left(\partial V^{E} / v p\right)_{T}$ stands for the difference between the real and ideal values of the system and is therefore an excess function. Some authors (15) consider it the most important quantity in this kind of study. Therefore we have calculated it, and the results are given in Table III.

Still the most utilized "excess" function is the one defined by Orwoll and Flory (16) as

$$
\begin{equation*}
\kappa_{T}^{E}=-V^{-1}\left(\partial V^{E} / \partial p\right)_{T}=\kappa_{T}-\phi_{1} \kappa_{T, 1}-\phi_{2} \kappa_{T, 2} \tag{8}
\end{equation*}
$$

where ϕ_{l} is the corresponding volume fraction defined as

$$
\begin{equation*}
\phi_{i}=x_{i} V_{i} / V \tag{9}
\end{equation*}
$$

V being the mixture volume calculated from eq 4. "Excess" isothermal compressibility, $\kappa_{T}{ }^{E}$, is not a proper excess function but is widely used (16, 17). Therefore, we have calculated it, and its values at the four temperatures reported in Table III are fitted to eq 10. The B_{0} coefficients and the standard deviations

$$
\begin{equation*}
y^{E}=x_{1} x_{2} B_{0} \tag{10}
\end{equation*}
$$

σ are given in Table VI.

Flgure 2. "Excess" isothermal compressibilities $\kappa_{T}{ }^{E}$ against the mole fraction x, of benzene.

Figure 3. "Excess" isentropic compressibilities $\kappa_{\mathbf{8}}{ }^{\mathbf{E}}$ against the mole fraction x_{1} of benzene.

Figure 4. Excess heat capacities at constant volume $C_{v}{ }^{E}$ against the mole fraction x_{1} of benzene.

We have also calculated the "excess" isentropic compressibility, $\kappa_{\mathrm{s}}{ }^{\mathrm{E}}$, and the excess heat capacity at constant volume, $C_{v}{ }^{\mathrm{E}}$, applying respectively eq 11 and 12 , where $C_{v, i}$ is the molar

$$
\begin{gather*}
\kappa_{\mathrm{s}}^{\mathrm{E}}=-V^{-1}\left(\partial V^{\mathrm{E}} / \partial p\right)_{\mathrm{s}}=\kappa_{\mathrm{s}}-\phi_{1} \kappa_{\mathrm{s}, 1}-\phi_{2} \kappa_{\mathrm{s}, 2} \tag{11}\\
C_{v}^{\mathrm{E}}=C_{v}-x_{1} C_{v, 1}-x_{2} C_{v, 2} \tag{12}
\end{gather*}
$$

heat capacity at constant volume for the pure component i. Similary, results at the four temperatures for both excess functions were fitted to equations like eq 10. The B_{0} coefficients are in Table VI.
Plots of the three excess functions $\kappa_{T}{ }^{\mathbf{E}}, \kappa_{\mathrm{s}}{ }^{\mathrm{E}}$, and $C_{\nu}{ }^{\mathrm{E}}$ against x_{1} are given in Figures 2-4, respectively. The two "excess" quantities $\kappa_{T}{ }^{\mathrm{E}}$ and $\kappa_{s}{ }^{\mathrm{E}}$ are positive throughout, whereas $C_{V}{ }^{\mathrm{E}}$ is negative. Also, the three excess functions are symmetric in this representation, their maxima or minima being located at x_{1} $=0.5$.

The plots show that $\kappa_{T}{ }^{E}$ and $\kappa_{s}{ }^{E}$ increase with temperature at a constant mole fraction, whereas no simple definite trend could be ascribed to $C_{V}{ }^{E}$. Worth mentioning is that $C_{V}{ }^{E}$ values

Table V. Vaiues of Compressibilities κ_{T} and κ_{s}, Thermal Expansivity α, Heat Capacities C_{p} and C_{U}, and Heat Capacity Ratio γ for Pure Components

function	298.15 K	308.15 K	318.15 K	333.15 K	
${ }_{\kappa} / \mathrm{TPa}^{-1}$	Benzene			1277.0	
$k_{T} / \mathrm{TPa}^{-1}$	966.0	1044.0	1128.0		
$k_{\mathrm{S}} / \mathrm{TPa}^{-1}$	671.1	729.2	791.3	901.7	
$\alpha / \mathrm{kK}^{-1}$	1.223^{a}	1.244^{a}	1.268^{a}	1.313^{a}	
$C_{p} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$	135.22^{6}	$137.14^{\text {b }}$	$139.26^{\text {b }}$	$143.00^{\text {b }}$	
$C_{v} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$	93.94	95.79	97.69	100.97	
γ	1.439	1.432	1.425	1.416	
Toluene					
$\kappa_{T} / \mathrm{TPa}^{-1}$	911.5	977.9	1053.9	1183.6	
$\kappa_{s} / \mathrm{TPA}^{-1}$	679.1	734.2	798.5	910.1	
$\alpha / \mathrm{kK}^{-1}$	1.071	1.083	1.095	1.113	
$C_{p} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$	157.24^{c}	$160.13^{\text {c }}$	163.10^{c}	$167.68^{\text {c }}$	
$C_{\mathrm{v}} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$	117.14	120.22	123.58	128.94	
γ	1.342	1.332	1.320	1.300	
${ }^{a}$ Interpolated from ref $11 .{ }^{b}$ Interpolated from ref 12. ${ }^{c}$ Interpolated from ref 13.					
Table VI. Values of Coefficient B_{0} for the Adjustment of $\kappa_{T}{ }^{\mathrm{E}}, \kappa_{\mathbf{s}}{ }^{\mathrm{E}}$, and $C_{v}{ }^{\mathrm{E}}$ in Eq 10					
function		B_{0}		σ	
$k_{s} \mathrm{E} / \mathrm{TPa}^{-1}$		23.5			
$C_{U}{ }^{\mathrm{E}} /\left(\mathrm{J} \mathrm{K} \mathrm{K}^{-1} \mathrm{~m}\right.$	ol^{-1})	0.98			
$\mathrm{E}^{\text {c }}$ ($\quad T=308.15 \mathrm{~K}$					
$\kappa_{T}^{\mathrm{E} / \mathrm{TPa}^{-1}}$		36.5 ± 6		0.9	
$\kappa_{s}{ }^{\mathrm{E}} / \mathrm{TPa}^{-1}$		25.8			
$C_{U} \mathrm{E} /\left(\mathrm{J} \mathrm{K}{ }^{-1} \mathrm{~m}\right.$	ol^{-1})	1.06			
$T=318.15 \mathrm{~K}$					
$\kappa_{T}{ }^{\mathrm{E} / \mathrm{TPa}^{-1}}$		44.5 ± 8		1.2	
$\kappa_{s} \mathrm{E} / \mathrm{TPa}^{-1}$		33.3			
$C_{v} \mathrm{E} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~m}\right.$	mol^{-1})	0.94			
$T=333.15 \mathrm{~K}$					
$\kappa_{T}{ }^{\mathrm{E}} / \mathrm{TPa}^{-1}$		53.5 ± 8.5		1.2	
$\kappa_{\mathrm{s}}{ }^{\mathrm{E}} / \mathrm{TPa}^{-1}$		41.3			
$C_{U}{ }^{\mathrm{E}} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~m}\right.$	ol^{-1})	1.00			

around the minima are only $\sim 0.15 \%$ of the corresponding C_{v} values, and that is within the experimental error.

Glossary

A_{0}, A_{1}, coefficients of adjustment in eq 5
...., A_{i}

B_{0}	coefficient of adjustment in eq 10
C_{0}	heat capacity at constant pressure, $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$C_{p}{ }^{\text {E }}$	excess heat capacity at constant pressure, $\mathrm{J} \mathrm{K}^{-}$ mol^{-1}
C_{v}	heat capacity at constant volume, $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$C_{v}{ }^{\text {E }}$	excess heat capacity at constant volume, $\mathrm{J} \mathrm{K}^{-}$ mol^{-1}
p	pressure, TPa
T	temperature, K
v	molar volume, $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$
V^{E}	molar excess volume, $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$
x_{i}	mole fraction of component i
Greek Letters	
α	coefficient of thermal expansion, kK^{-1}
γ	heat capacities ratio
κ_{s}	isentropic compressibillty, TPa^{-1}
$\kappa_{s}{ }^{\text {E }}$	"excess" isentropic compressibility, TPa^{-1}
K_{T}	isothermal compressibility, TPa^{-1}
$K_{T}{ }^{\text {E }}$	"excess" isothermal compressibility, TPa^{-1}
ρ	density, $\mathrm{g} \mathrm{cm}^{-3}$
σ	standard deviation
ϕ_{i}	volume fraction of component i

Literature Cited

(1) Dlaz Peña, M.; McGlashan, M. L. Trans. Faraday Soc. 1981, 57, 1511.
(2) Dlaz Peña, M.; Cavero, B. An. R. Soc. Esp. Fls Qulm. 1984, 5, 357.
(3) Diaz Peña, M.; Tardajos, G. J. Chem. Thermodyn. 1978, 10, 19.
(4) Rossini, F. D. et al. "Selected Values of Physical Thermodynamic Properties of Hydrocarbons and Related Compounds", API Research Project 44; Carnegle Press: PHtsburgh, PA, 1953.
(5) Nigam, R. K.; Singh, P. P. Trans. Faraday Soc. 1989, 65, 950.
(6) Rajagopal, E.; Subrahmanyam, S. V. J. Chem. Thermocyn. 1974, 6, 873.
(7) Freyer, E. B.; Hubbard, J. C.; Andrews, D. H. J. Am. Chem. Soc. 1929, 51, 759.
(8) Shralber, L. S. Isr. J. Chem. 1975, 13, 185
(9) Tyrer, D. J. Chem. Soc. 1914, 105, 2534.
(10) Tyrer, D. J. Chem. Soc. 1913, 103, 1675.
(11) Wood, S. E.; Austin, A. E. J. Am. Chem. Soc. 1945, 67, 480.
(12) Staveley, L. A. K.; Tupman, W. I.; Hart, T. R. Trans. Faraday Soc. 1955, 51, 323.
(13) Scott, D. W.; Gutherle, G. B.; Messerly, J. F.; Todd, S. S.; Berg, W. T.; Hossenlopp, I. A.; McCullogh, J. P. J. Phys. Chem. 1982, 66, 911.
(14) Fortier, J. L.; Benson, G. C. J. Chem. Eng. Data 1979, 24, 34.
(15) Prigogine, I. "The Molecular Theory of Solutions"; North-Holland Publishing Co.: Amsterdam, 1957.
(16) Orwoll, R. A.; Flory, P. J. Am. Chem. Soc. 1965, 87, 1833.
(17) Ewing, M. B.; Marsh, K. N. J. Chem. Thermodyn. 1977, 9, 371.

