Densities and Phase Equilibria of Aluminum Chloride-Sodium Chloride Melts. 2. Two-Liquid-Phase Region

Armand A. Fannin, Jr.,* Lowell A. King, David W. Seegmiller, and Haraid A. \emptyset ye[†]

Frank J. Seiler Research Laboratory (Air Force Systems Command) and Department of Chemistry, United States Air Force Academy, Colorado 80840

The separation into two immiscible liquid phases of $AiCl_3$ -NaCl binary melts was studied from ca. 190 to 348 °C. Melt densities and compositions at the point of phase separation were calculated from the expansion of liquids contained in dilatometric tubes. The mole fraction of $AiCl_3$ at phase separation varies from 0.806 at 193.7 °C to 0.777 at 348 °C. Empirical equations are given which express density and mole fraction of $AiCl_3$ at separation as functions of temperature, with overall standard deviations of 0.001 g cm⁻³ and 0.002, respectively. The thermodynamic implications of the phase separation are discussed. A phase diagram is given for the entire $AiCl_3$ -NaCl binary system.

Mixtures of AlCl₃ and NaCl exhibit a region of liquid–liquid immiscibility at high AlCl₃ content. This report describes the temperature–composition–density behavior of AlCl₃–NaCl mixtures in the immiscibility region and is a continuation of our previously reported data on densities of AlCl₃–NaCl melts (1).

Experimental Section

Densities were calculated by first measuring the volumes of the two liquid phases and the gas phase, contained in sealed, thick-walled, borosilicate dilatometer tubes. The total enclosed volume and the i.d. of each tube were ca. 3.4 cm^3 and 0.55 cm, respectively. Each tube had an index mark etched on it. The tubes were calibrated in the manner described for tubes A–D of ref 2.

The phase boundary between the two liquid layers was very nearly flat, and no meniscus corrections were made for this boundary in the calculation of either liquid-phase volume. A hemispherical meniscus existed between the upper liquid and gas phases at the lowest temperatures (2). This rather uniformly flattened with increasing temperature and exhibited no detectable curvature near the critical temperature of AICl₃. Accordingly, meniscus corrections were applied to this phase by assuming a linear variation in the height of the meniscus curvature from hemispherical at the AICl₃ triple point (193.7 °C (3)) to flat at the critical point (348 °C, see below).

Materials purifications and handling, sample preparation and loading, bath temperature control and measurement, and measurement of meniscus location all were done as described previously (1). The sample tubes were mounted on a platform which could be rotated in the vertical plane while the tubes remained submerged in the thermostated bath. Tube rotation was performed at each different measurement temperature to ensure thorough mixing and equilibrium phase compositions within each dilatometer. All volume calculations were corrected for thermal expansion of the Pyrex glassware.

Data

Individual tube and sample parameters are given in Table I. Phase volumes are given in Table II at each experimental

Table I	l. Sam	iple Par	ameters ^a
---------	--------	----------	----------------------

sample	X°	ν^{0} , cm ³	m_{AlCl_3}, g	m _{NaCl} , g	
I	0.8630	3.50	2.379	0.1655	
II	0.8781	3.26	2.204	0.1342	
III	0.8794	3.54	2.362	0.1420	
IV	0.8809	3.21	2.069	0.1226	
v	0.8930	3.44	2.240	0.1176	
VI	0.9010	3.39	2.360	0.1137	
VII	0.9050	3.36	2.244	0.1033	
VIII	0.9201	3.34	2.260	0.0861	
IX	0.9302	3.40	2.292	0.0753	
Х	0.9488	3.44	2.172	0.0514	

^a Estimated uncertainty in mole fraction = ± 0.0005 . Estimated uncertainty in total volume = ± 0.05 cm³. Estimated uncertainty in mass of AlCl₃ = ± 0.002 g. Estimated uncertainty in mass of NaCl = ± 0.0005 g.

temperature. The data in Table II were not all taken in the order listed; measurements were made with both ascending and descending temperatures. There was no observable hysteresis in the volumes.

The volume of the lower, NaCl-containing liquid, v', did only decrease slightly with increasing temperature, while the other two volumes changed much more dramatically. The volume behavior of the upper liquid phase, v'', with rising temperature fell into two clearly distinguishable groups. For samples I-V (X⁰ \leq 0.893) v'' gradually increased with temperature to approximately 340 °C and then rapidly dropped to zero; v" was zero at 347.20 °C (sample I) to 347.60 °C (sample V). On the other hand, v'' in samples VI-X ($X^0 \ge 0.901$) similarly gradually increased with temperature to approximately 340 °C and then very sharply rose further before the phase boundary suddenly vanished. Corresponding opposite changes of the gas volumes. v''', were experienced for both groups of samples. The highest temperature at which an upper liquid phase could be seen was 347.91 °C (sample X, X⁰ = 0.949). At 348.48 °C, no upper liquid phase was observable.

Calculation of the Liquid Density and the Phase Boundary

The most straightforward procedure for data analysis is first to solve simultaneously for the three phase densities from the relationship

where

$$\rho' v' + \rho'' v'' + \rho''' v''' - m_{tot} = 0$$
 (1)

$$v''' = v_{tot} - v' - v''$$
(2)

This procedure is valid as a consequence of the Gibbs phase rule: the three densities depend only on temperature, and not on overall composition. The volumes given in Table II were linearly interpolated in temperature to preselected temperatures. A simultaneous least-squares fit of all 10 samples to ρ' , ρ'' , and ρ''' was made at each of the desired temperatures.

It was then possible to solve simultaneously for the weight fraction of $AlCl_3$ at these same temperatures in each liquid phase from eq 3, where the assumption was made that no

$$y'\rho'v' + y''\rho''v'' + \rho'''v''' - m_{AICI_2} = 0$$
 (3)

Figure 1. Mole fractions of liquid phases, calculated from simultaneously fitting all three phase densities.

Figure 2. Densities of the two liquid phases and the gas phase. Individual points from preliminary calculation of densities from eq 1.

NaCl was present in the gas phase. A rough estimate of the pressure of gas molecules such as NaAlCl₄ or Na₂Al₂Cl₈ showed that the concentrations of these gas molecules indeed are negligible (10^{-5} %) above AlCl₃-NaCl melts with $X^0 = 0.8$ and t = 300 °C. Mole fractions were then calculated from weight fractions.

This procedure is not the best method for finding densities and mole fractions of the three phases, primarily because of the probability of large relative errors in mass being introduced into the low-density gas phase by the calculational method. Even so, two very important results came from this analysis. First, it was clear that virtually no NaCl was in the upper liquid layer. For 11 temperatures from 220 to 340 °C, inclusive, the calculated mean $X'' = 1.000 \pm 0.001$. Values of X' and X'' obtained by this procedure are shown in Figure 1.

The second observation was the appearance of typical $AlCl_3$ critical behavior at the highest temperatures. This can be seen clearly in Figure 2, in which are plotted the fitted values of ρ' , ρ'' , and ρ''' from eq 1. The apparently anomalous behavior of ρ' and ρ''' (Figure 2) and of X' and X'' (Figure 1) near the critical temperature should be ignored. This presumably is due to the profound influence of small volume errors in this region of very rapidly changing AlCl₃ liquid and vapor densities.

The critical temperature of $AlCl_3$ was found to be between 347.91 and 348.48 °C (see above). This is somewhat lower than we reported previously (4). The reason for the discrepancy is not clear.

Having established the absence of detectable NaCl in the upper liquid layer, we turned to a more suitable method for finding ρ' and X'. If ρ'' and ρ''' were available from independent measurements, eq 1 and 4 could be solved for ρ' and X' for each tube independently. Two extensive studies of ρ''

and ρ''' were published at about the same time (4, 5) and yield virtually the same values of ρ'' and ρ''' at temperatures not too near the critical temperature. Johnson et al. (5) fitted their data to the Guggenheim relationship (slightly modified to reproduce their data better at low temperatures), which is flatter near their reported critical temperature of 620.2 K than a polynomial would predict (cf. ref 4).

The solid lines in Figure 2 comprising the dome and rectilinear diameter were calculated from Johnson et al. (5). The ρ'' of Johnson et al. agree quite well with the ρ'' from our three-density fit, but, as suggested earlier, a large relative discrepancy exists in ρ''' . This discrepancy was reflected in a similarly sized absolute difference between ρ' calculated simultaneously with ρ'' and ρ''' , and ρ'' calculated independently of ρ'' and ρ''' . The latter ρ' is given by the solid line on the right side of Figure 2.

With the help of Figure 2, it is possible to understand the division into two categories of the behavior of v'' and v''' in the temperature range 340–348 °C. The grouping according to X^0 , mentioned above, proved to be fortuitous. The phenomenon is related to the average density of liquid and gaseous AlCl₃ phases, i.e.

$$\rho_{\rm av} = \frac{\rho'' v'' + \rho''' v'''}{v'' + v'''} \tag{4}$$

which in the present study lay between 0.44 and 0.58 g cm⁻³.

In the temperature region 340–348 °C, the volume and the composition of the NaCI-containing phase change only slightly, while drastic changes in volume and density of the AlCl₃ liquid and gaseous phases occur as the top of the critical coexistence dome is approached. The two AlCl₃ phases can be considered to be an isolated system with constant total volume, AlCl₃ content, and average density (eq 4) in this temperature range. As a consequence of the lever rule, samples with $\rho_{\rm av} < \rho_{\rm crit} = 0.5185 \text{ g cm}^{-3}$ (5) must exhibit a sharp decrease in v'' and increase of v''' with increasing temperature, while the opposite behavior will occur for samples with $\rho_{\rm av} > \rho_{\rm crit}$. This is in accordance with our experimental findings: $\rho_{\rm av} < 0.5158 \text{ g cm}^{-3}$ for samples I–V and $\rho_{\rm av} > 0.5158 \text{ g cm}^{-3}$ for samples VI–X.

The critical temperature will only be found when $\rho_{\rm av} = \rho_{\rm crit}$, otherwise the temperature at which the third phase will disappear will be slightly lower than the critical temperature on either side of this density. We saw a tendency to this, but as the temperature variation for the disappearance of the third phase within the present $\rho_{\rm av}$ range was less than 1 °C, a reliable description of the top of the dome could not be achieved, other than that it was very flat.

Results and Discussion

For each of the ca. 300 experimental observations for which $t \leq 340$ °C, ρ'' and ρ''' were calculated from Johnson et al. (5) using 348 °C as the critical temperature, and ρ' was calculated from eq 1. These values of ρ' were then fitted to a straight line, given as eq 5. The standard deviation in ρ' was

$$\rho' = 1.6848 - (8.6844 \times 10^{-4})t \tag{5}$$

0.001 g cm⁻³. Equation 5 is plotted in Figure 2. Plots of v' vs. t show no noticeable deviations as they pass 340 °C or even at temperatures above the critical temperature. It appears that one can safely use eq 5 in the region from 340 to 348 °C. In Figure 3, densities are given for the complete single-liquid-phase region at selected temperatures from 200 to 340 °C. The diagram is bounded on the right by the separation into two liquid phases. The dashed lines are interpolated values between the results of our earlier study (1) and the present work. The points on the right were located from eq 5 and 6 (see below).

The mole fraction of the NaCl-containing phase, X', was calculated at each of the ca. 300 experimental points for which

Table II.	Liquid	Phase	Volumes ^a
I a Dic II.	Liquid	1 11000	, oranico

aute II. L	iquiu i nase	volumes									
t, °C	ν', cm ³	ν'', cm ³	t, °C	<i>v</i> ′, cm³	ν'', cm ³	t, °C	ν', cm ³	ν'', cm ³	<i>t</i> , °C	ν', cm ³	ν'', cm ³
		- Sam	nla I			261.6	0.837	0.777	346.5	0.783	0.560
102.0	1 1 2 0	0 (21		1 100	0 752	201.0	0.037	0.790	246.9	0.703	0.300
192.8	1.130	0.621	274.0	1.109	0.733	200,4	0.030	0.783	246.0	0.784	0.470
193.3	1.130	0.624	282.4	1.095	0.769	271.1	0.830	0.792	340.9	0.774	0.330
1 9 7.7	1.137	0.620	289.4	1.090	0.787	276.1	0.829	0.805	347.2	0.779	0.156
197.9	1.134	0.621	297.1	1.087	0.793			Same	le V		
202.7	1.127	0.633	304.0	1.079	0.806	104.0	0.814	0.852	2817	0 791	1.011
202.8	1.130	0.632	311.7	1.074	0.817	194.0	0.017	0.032	201.7	0.791	1.011
203.6	1.135	0.629	318.6	1.063	0.827	194.3	0.812	0.040	200.0	0.780	1.027
207.8	1.130	0.635	325.8	1.056	0.834	198.9	0.813	0.861	291.6	0.780	1.039
207.8	1.135	0.632	328.1	1.061	0.821	199.4	0.816	0.856	296.2	0./86	1.042
213.0	1 1 3 8	0.642	332.8	1 041	0.827	204.1	0.812	0.867	296.6	0.777	1.049
219.1	1 1 3 4	0.652	335.8	1 049	0.804	204.5	0.812	0.868	303.6	0.781	1.057
219.1	1.134	0.652	340.1	1.041	0.004	205.0	0.812	0.868	310.8	0.774	1.071
219.2	1.134	0.032	241.0	1.041	0.775	209.7	0.813	0.875	317.7	0.767	1.088
220.9	1.130	0.002	241.9	1.041	0.740	210.1	0.814	0.875	325.1	0.766	1.100
232.9	1.130	0.677	344.9	1.032	0.034	214.0	0.814	0.879	332.3	0.761	1.117
238.4	1.129	0.685	345.4	1.038	0.604	225 7	0.814	0.900	332.5	0.761	1.115
244.2	1.126	0.694	345.5	1.032	0.593	226.3	0.816	0.898	339 7	0.759	1 1 1 6
248.9	1.127	0.699	346.7	1.032	0.430	220.5	0.010	0.020	343 5	0.755	1 093
255.0	1.128	0.708	346.7	1.034	0.398	235.0	0.811	0.924	245.9	0.753	1.055
260.2	1.118	0.725	347.1	1.034	0.289	241.7	0.808	0.933	245.0	0.767	1.013
267.4	1.113	0.740				249.0	0.812	0.943	340.2	0.763	1.017
		~	1 17			259.3	0.804	0.965	346.9	0.770	0.934
		Samp	me II		0.040	264.9	0.799	0.975	347.0	0.755	0.939
192.7	0.920	0.709	274.6	0.904	0.840	272.8	0.7 9 5	0.995	347.5	0.756	0.704
193.2	0. 9 17	0.704	282.4	0.887	0.860	280.1	0.788	1.013			
197.7	0.916	0.705	289.4	0.885	0.876			S	1. 371		
197.9	0.920	0.706	297.0	0.886	0.885	104.0	0.000	Samp		0.770	1 1 6 2
202.8	0.915	0.718	304.0	0.879	0.899	194.9	0.809	0.954	281.2	0.778	1.153
202.8	0.919	0.716	311.7	0.872	0.915	202.2	0.811	0.966	286.8	0.774	1.172
203.5	0.925	0.713	318.6	0.862	0.933	209.6	0.811	0.975	292.2	0.7 6 7	1.196
207.8	0.914	0 725	325.8	0.859	0.943	219.6	0.802	1.007	29 5.7	0.767	1.203
207.8	0.014	0.720	328.0	0.862	0.933	234.5	0.801	1.031	300.9	0.763	1.219
212.0	0.925	0.720	222.0	0.002	0.935	236.6	0.802	1.030	305.6	0.762	1.235
213.0	0.922	0.731	332.0	0.832	0.949	239.0	0.787	1.051	309.8	0.760	1.250
219.1	0.925	0.736	333.8	0.855	0.936	241.7	0.786	1.049	315.0	0.764	1.264
219.2	0.923	0.738	340.1	0.844	0.935	242.9	0 7 9 5	1.046	319.8	0.760	1.286
226.8	0.921	0.749	341.9	0.849	0.918	244.2	0 798	1.051	324.8	0.757	1 307
232.9	0.922	0.759	345.4	0.842	0.845	246.2	0 794	1.061	327.4	0 747	1 3 2 8
238.4	0.917	0.773	345.4	0.842	0.840	240.2	0.799	1.001	330.8	0.745	1 349
244.2	0.917	0.781	346.6	0.844	0.758	251.0	0.790	1.070	224.6	0.740	1 272
248.9	0.917	0.788	346.7	0.844	0.742	230.5	0.790	1.078	244.0	0.740	1.575
255.0	0.912	0.799	347.0	0.840	0.670	201.0	0.789	1.099	344.3	0.733	1.515
260.2	0.909	0.813	347.2	0.843	0.416	266.5	0.787	1.111	346.5	0.733	1.665
200.2	012 02	01010		0.0.0		270.9	0.786	1.121	346.8	0.735	1.741
		Samp	le III			276.2	0.784	1.138	347.0	0.729	1.856
192.8	0.978	0.778	282.4	0.945	0.939			Sama			
193.2	0.976	0.770	289.4	0.943	0.953	102.0	0.715	Samp		0.000	1 1 6 3
197.7	0.979	0.771	297.0	0.939	0.963	193.9	0.715	0.964	283.8	0.699	1.153
202.8	0.980	0.784	311.7	0.925	0.995	194.6	0.714	0.959	288.8	0.702	1.157
202.8	0.975	0 786	318.6	0.914	1.011	198.9	0.716	0.971	291.7	0.692	1.178
202.0	0.979	0.785	325.8	0.914	1.017	199.4	0.716	0.969	296.2	0.700	1.178
205.5	0.974	0.705	328.0	0.914	1.014	204.1	0.721	0.974	296.6	0. 69 1	1.181
207.0	0.074	0.795	227 0	0.010	1 0 7 3	204.5	0.716	0.979	303.6	0.692	1.204
207.6	0.976	0.796	332.0	0.903	1.025	205.1	0.718	0.979	310.8	0.689	1.226
212.9	0.981	0.801	333.8	0.907	1.014	209.8	0.716	0.987	317.8	0.687	1.251
219.1	0.9/8	0.810	340.1	0.898	1.002	210.0	0.713	0.986	325.1	0.682	1.278
219.2	0.984	0.809	341.8	0.902	0.988	213.8	0 718	0 994	3323	0.675	1.316
226.8	0.980	0.818	344.8	0.892	0.921	210.0	0.710	1 015	337 1	0.678	1 311
232.9	0. 9 74	0.835	345.3	0.893	0.911	220.3	0.719	1 0/1	220 0	0.070	1 250
244.2	0.971	0.856	345.4	0.893	0.899	237.1	0.714	1.041	272.0 212 E	0.0/0	1.330
248.9	0.968	0.866	346.6	0.898	0.806	241.8	0.714	1.049	343.3	0.0/0	1.393
255.0	0.967	0.876	346.7	0.891	0.799	249.0	0.714	1.065	345.8	0.683	1.436
260.2	0.963	0.890	347.0	0.892	0.719	259.2	0.713	1.086	346.2	0.682	1.453
267.4	0.962	0.900	347 2	0.892	0.475	265.0	0.711	1.098	346.9	0.686	1.487
274 5	0.957	0.918		5.074		272.8	0.705	1.117	347.0	0. 66 7	1.500
- (1.5)	5.201	0.210				280.1	0.697	1.139	347.5	0.680	1.601
		Samp	ole IV			281.7	0.708	1.135	347.6	0.680	1.696
194.9	0.862	0.670	281.1	0.825	0.812			C	- 1/111		
202.2	0.859	0.683	287.0	0.822	0.823	100.0	0.000	Sampl		0 - 00	1 000
209.6	0.857	0.690	292.0	0.820	0.829	193.8	0.597	1.094	281.7	0.592	1.292
219.6	0.858	0.704	295.8	0.815	0.836	194.6	0.598	1.094	283.9	0.583	1.308
234 5	0.849	0 731	301.2	0.817	0.841	198.9	0.599	1.105	288.8	0.589	1.316
234.5	0.045	0.732	301.2	0.017	0.854	199.4	0.595	1.106	291.7	0.579	1.334
220.0	0.040	0.733	310.0	0.010	0.004	204.1	0.600	1.115	296.6	0.577	1.348
237.2	0.000	0.721	2150	0.000	0.037	205.1	0.596	1.119	303.6	0.581	1.364
241./	0.850	0./38	313.0	0.805	0.863	209.8	0.598	1.129	310.7	0.573	1.396
242.9	0.847	0./46	319.8	0.804	0.865	210.0	0.598	1,128	317.8	0.574	1.431
244.2	0.844	0.750	324.8	0.800	0.871	213.8	0.598	1,136	325 1	0.574	1.466
246.5	0.847	0.748	330.8	0.798	0.873	215.0	0.598	1 1 5 9	3323	0 567	1 518
251.6	0.847	0.761	334.6	0.796	0.864	223.0 776 A	0.570	1 1 5 9	227 1	0.007	1 5 1 9
256.6	0.837	0.796	344.3	0.779	0.772	220.4	0.000	1.130	554.7	0.500	1.510

rubie ii (co.					-							_
t, °C	ν', cm ³	ν'', cm ³	t, °C	ν', cm ³	ν'', cm³	t, °C	ν', cm ³	ν'', cm ³	<i>t</i> , °C	ν', cm ³	$\nu^{\prime\prime},\mathrm{cm^{3}}$	_
231.5	0.603	1.168	339.8	0.563	1.600	259.2	0.518	1.352	346.8	0.503	2.136	
239.1	0.602	1.187	343.5	0.562	1.684	265.1	0.513	1.371	347.0	0.491	2.192	
241.8	0,5 96	1.194	345.8	0.576	1.770	272.8	0.506	1.398	347.5	0.496	2.350	
249.1	0.597	1.210	346.2	0.575	1.814	280.2	0.510	1.418	347.6	0.497	2.405	
259.2	0.592	1.237	346.8	0.577	1.896			Samn	le V			
265.0	0.591	1.249	347.0	0.559	1.940	10/0	0.360	1 282	201 0	0 345	1 5 1 6	
272.8	0.589	1.273	347.5	0.571	2.116	1 74.7	0.300	1 202	205 7	0.349	1.510	
280.2	0.584	1.297	347.6	0.575	2.173	202.2	0.339	1.270	293.7	0.338	1.551	
						209.0	0.358	1 2 2 2	205.6	0.338	1.565	
		Samp				219.0	0.302	1.332	210.0	0.336	1.505	
193.7	0.514	1.210	284.1	0.506	1.435	234.5	0.339	1.300	215.0	0.333	1.565	
194.6	0.513	1.212	288.8	0.508	1.445	230.0	0.355	1.308	210.0	0.334	1.603	
199.0	0.516	1.218	291.7	0.504	1.458	239.2	0.349	1.3/9	319.8	0.337	1.02/	
199.4	0.515	1.221	296.2	0.506	1.467	241.7	0.345	1.390	324.7	0.338	1.051	
204.2	0.51 9	1.227	296.6	0.499	1.479	242.9	0.349	1.389	327.4	0.334	1.6//	
205.1	0.522	1.224	303.6	0.502	1.523	244.1	0.354	1.390	330.8	0.334	1.691	
209.9	0.514	1.243	310.7	0.499	1.533	251.6	0.354	1.405	334.6	0.333	1.732	
210.0	0.519	1.241	317.8	0.497	1.568	256.6	0.349	1.419	344.3	0.337	1.905	
213.8	0.516	1.251	325.1	0.496	1.612	261.6	0.346	1.434	346.5	0.331	2.035	
225.9	0.518	1.274	332.3	0.489	1.675	266.4	0.345	1.448	346.8	0.309	2.098	
226.4	0.522	1.273	332.4	0.490	1.673	271.2	0.340	1.461	347.0	0.307	2.096	
231.5	0.531	1.279	339.8	0.485	1.779	276.1	0.347	1.471	347.1	0.332	2.138	
239.1	0.520	1.301	343.5	0.485	1.883	281.1	0.342	1.486	347.4	0.332	2.194	
241.9	0.513	1.313	345.7	0.496	1.988	287.1	0.336	1.507	347.9	0.330	2.47 9	
249.1	0.514	1.332	346.2	0.503	2.034							

^a Estimated uncertainty in temperature = ± 0.5 °C. Estimated uncertainty in phase volumes = ± 0.005 cm³.

Table II (Continued)

Figure 3. Densities of the single-liquid-phase region of AlCi₃-NaCl melt: (O) calculated from eq 5 and 6; solid lines on left from ref 1.

 $t \le 340$ °C by first defining y' from eq 3, with the assumption that y'' = 1.000. These mole fractions were fitted to a cubic polynomial, given as eq 6. The standard deviation in X' was

$$X' = -0.1388 + (5.3192 \times 10^{-3})T - (9.6834 \times 10^{-6})T^{2} + (5.6223 \times 10^{-9})T^{3}$$
(6)

0.002. Equation 6 is plotted as the line of liquid-liquid immiscibility in Figure 4. As with eq 5, it appears that eq 6 can be safely extrapolated from 340 °C to the critical temperature, at which the upper liquid phase (i.e., pure $AICl_3(I)$) disappears.

Figure 4 shows for the first time the complete phase diagram for the binary system AICl₃-NaCl. Dewing (6) discusses critically the single-liquid-phase, AICl₃-rich region, the equimolar region, and the slightly NaCl-rich region. His report probably is the most authoritative to date for these composition regions and is used as appropriate in Figure 4. The present study is the basis for the liquid-liquid immiscibility gap, as are data from Shvartsman (7) and Sato and Ejima (8) for the very basic region. It should be stressed that the liquid-liquid immiscibility line is the phase boundary when the system is subject to its own vapor pressure. This reaches values considerably higher than 1 atm. The critical temperature for the AICl₃ liquid-vapor system will only be reached if $\rho_{av} = \rho_{crit}$. If ρ_{av} is less than this, the liquid AICl₃ will disappear below the critical temperature, and

Figure 4. Phase diagram of the AlCl₃–NaCl binary system: (O) data of Viola et al. (12), treated by Dewing (6); (∇) Kendall et al. (15); (\diamond) Midorikawa (16); (\square) Piotnikov and Shvartsman (17) and Shvartsman (7); (Δ) Sato and Ejima (8). X^0 , *t* for monotectic and eutectic from Dewing (6), and for limits of liquid immiscibility line from present work and ref 3.

a $\rho_{\rm av}$ greater than $\rho_{\rm crit}$ will result in the disappearance of the gaseous phase below the critical temperature.

The locus of eq 6 on a X,t diagram moves away from the AlCl₃ axis with increasing temperature and does not describe the typical dome generally observed for liquid–liquid immiscibility. The curvature is also opposite to what usually is found. As the appearance of this phase line is unusual, it is of interest to examine the thermodynamic implications of our findings.

The increasing region of immiscibility with increasing temperature (but not the curvature) may be straightforwardly understood from a species model (9) by assuming the presence of $AlCl_4^-$, $Al_2Cl_7^-$, and Al_2Cl_6 and a positive enthalpy change for the dissociation (10)

$$2AI_2CI_7^{-} = 2AICI_4^{-} + AI_2CI_6$$
(7)

Increasing temperature will increase the mole fraction of Al_2Cl_6 . As the species model assumes that the pressure of Al_2Cl_6 is proportional to its mole fraction, the phase line will have to move toward lower X^0 to maintain the equilibrium with pure AlCl₃. The species model will be further discussed in a sub-

Figure 5. Liquid-liquid immiscibility gap for the AICI₃-NaCI binary system.

sequent paper (11); here we will only outline a thermodynamic evaluation.

Refer to Figure 5 for a definition of the symbols used. P and a refer to Al_2Cl_6 . The equilibrium condition for liquid–liquid phase separation may be expressed as

$$\ln (P'_{\tau}/P'_{\tau_{M}}) = \ln (P''_{\tau}/P''_{\tau_{M}})$$
(8)

Introduction of $P_{T_{\rm M}}$ and activities at the constant temperature $T_{\rm M}$ gives

$$\ln (P'_{\tau}/P_{\tau_{M}}) + \ln (P_{\tau_{M}}/P'_{\tau_{M}}) = \ln (P''_{\tau}/P''_{\tau_{M}})$$
(9)

or

$$\ln (P'_{\tau}/P_{\tau_{M}}) + \ln (a_{\tau_{M}}/a'_{\tau_{M}}) = \ln (P''_{\tau}/P_{''\tau_{M}}) \quad (10)$$

In view of the difference between the ionic melt, AlCl₃–NaCl, and pure AlCl₃(I), consisting only of Al₂Cl₆ molecules, it is reasonable to assume that the thermodynamics of vaporization of Al₂Cl₆ differs for the AlCl₃–NaCl melt and pure AlCl₃(I). The vaporization in either case is accompanied by a change in heat capacity, C_p .

A more consistent assumption would be to assume C_{ρ} for Al₂Cl₆(I) in the AlCl₃-NaCl phase to be constant, similar to what is given for AlCl₃(I) (13). A variable ΔC_{ρ} would result following the variation in C_{ρ} for Al₂Cl₆(g). The variation in ΔC_{ρ} was, however, only +5 J mol⁻¹ K⁻¹ over the total temperature range and is ignored in the present calculation. If for the AlCl₃-NaCl phase we assume ΔC_{ρ} to be constant in the temperature range of interest (466.85 $\leq T \leq 621.15$ K) and $\Delta H_{\tau_{M}}$ to be independent of composition for the vaporization process

$$2AICI_{3}(I) (in AICI_{3}-NaCI) = AI_{2}CI_{8}(g)$$
(11)

the following equation results

$$\frac{(\Delta H_{\tau_{\mathsf{M}}} - \Delta C_{\rho} T_{\mathsf{M}})(T - T_{\mathsf{M}})}{RTT_{\mathsf{M}}} + \frac{\Delta C_{\rho}}{R} \ln (T/T_{\mathsf{M}}) = \ln (P''_{\tau}/P''_{\tau_{\mathsf{M}}}) - \ln (a_{\tau_{\mathsf{M}}}/a'_{\tau_{\mathsf{M}}})$$
(12)

where ΔH_{τ} and ΔC_{ρ} refer to eq 11. This results because, if ΔC_{ρ} is constant, then

$$\Delta H_{\tau} = \Delta H_{\tau_{M}} + \int_{\tau_{M}}^{\tau} \Delta C_{\rho} \, \mathrm{d}\tau$$

reduces to

$$\Delta H_{\tau} = \Delta H_{\tau_{\mathsf{M}}} + \Delta C_{\rho} (\tau - \tau_{\mathsf{M}})$$

Using this ΔH_r in the Clausius-Clapeyron equation

$$\frac{\mathrm{d}\,\ln\,P}{\mathrm{d}T} = \frac{\Delta H}{RT^2}$$

gives on integration the form

$$\ln P = \frac{-\Delta H_{T_{M}}}{R} (1/T - 1/T_{M}) + \frac{\Delta C_{\rho}}{R} \ln (T/T_{M}) + \frac{\Delta C_{\rho}T_{M}}{R} (1/T - 1/T_{M})$$

This equation gives

$$\ln P'_{T} = \frac{(\Delta H_{T_{M}} - \Delta C_{p}T_{M})(T - T_{M})}{RTT_{M}} + \frac{\Delta C_{p}}{R} \ln (T/T_{M})$$
$$\ln P_{T_{M}} = 0$$

Substitution of these forms in a rearranged eq 10

$$\ln P'_{\tau} - \ln P_{\tau_{\mathsf{M}}} = \ln \left(P''_{\tau} / P''_{\tau_{\mathsf{M}}} \right) - \ln \left(a_{\tau_{\mathsf{M}}} / a'_{\tau_{\mathsf{M}}} \right)$$

gives eq 12. In this derivation the influence of pressure on ΔH (difference in ΔH between the two liquid phases) has been neglected as

$$\int (\partial \Delta H/\partial P)_{T} \, \mathrm{d}P = \int \left[\Delta v - T (\partial \Delta v/\partial T)_{P} \right] \, \mathrm{d}P$$

is small relative to $\int \Delta C_{\rho} \, dT$ except very close to the critical point. Equation 12 permits the calculation of ΔH_{τ} and ΔC_{ρ} if $a_{\tau_{\mu}}/a'_{\tau_{\mu}}$ is known.

From the species model (10), which is based on vapor pressure data (12), we found that the activity of Al_2Cl_6 but not of AlCl₃ was proportional to X^0 in the present concentration range (0.777 $\leq X^0 \leq 0.806$). The proportionality factor was 5.4. Hence, the activity of Al_2Cl_6

$$a_{\tau_{\mu}} = a'_{\tau_{\mu}} [1 + 5.4(X'_{\tau} - X'_{\tau_{\mu}})]$$
(13)

When pure liquid AICi₃ is chosen as the standard state

$$a_{\tau_{\mu}} = 1 + 5.4(X'_{\tau} - X'_{\tau_{\mu}}) \tag{14}$$

The factor $X'_{\tau} - X'_{\tau_{u}}$ in eq 14 can be obtained from eq 6; i.e.

$$X'_{T} - X'_{T_{M}} = (5.3192 \times 10^{-3})(T - T_{M}) - (9.6834 \times 10^{-6})(T^{2} - T_{M}^{2}) + (5.6223 \times 10^{-9})(T^{3} - T_{M}^{3})$$
(15)

The factor ln $(P''_{T}/P''_{T_{M}})$ in eq 12 can be calculated from the JANAF Tables (13).

A least-squares fit of the experimental data to eq 12 yielded the values $\Delta H_{T_M} = 40.2 \pm 0.2 \text{ kJ mol}^{-1}$ and $\Delta C_p = -47.2 \pm 0.4 \text{ J mol}^{-1} \text{ K}^{-1}$. The corresponding values for vaporization of pure AICI₃(I) are 39.7 kJ mol⁻¹ and -80.3 J mol⁻¹ K⁻¹, respectively (13). Only a small change in $\Delta H_{T_{11}}$ but a more substantial difference in ΔC_p for the two phases are needed to explain the experimentally observed phase separation line. This means that, although ΔH is only slightly lower for the AICl₃ phase at temperature $T_{\rm M}$, the enthalpy diminishes much more rapidly with temperature, the values being 32.9 and 27.7 kJ mol-1 for the AICI₃-NaCI and the AICI₃ phases, respectively, at the critical temperature. The difference in vaporization behavior of Al₂Cl₆ for the two phases is most likely attributed to anomalies in the AICI3 phase, the AICI3-NaCI phase showing more normal behavior. The AICI₃ phase does approach the critical temperature in the actual temperature range, and weakening of bond forces to the Al₂Cl₈ molecules is expected to be more pronounced in this phase.

There have been some recently reported values for ΔC_p for NaAlCl₄ (11, 14). If we, as Dewing (6), set the atomic C_p 's to be equal, Dewing's value for an intermediate temperature (544 K) gives $\Delta C_p = -73.6 \text{ J mol}^{-1} \text{ K}^{-1}$ and Roger's value yields $\Delta C_p = -60.7 \text{ J mol}^{-1} \text{ K}^{-1}$. Neither is as high as our -47.2 J

X

V

mol⁻¹ K⁻¹, but both are higher values than given for pure AlCl₃(I).

The negative slope of the X', T curve can have unexpected implications in applications where one is working with AICla-NaCl mixtures near the demixing compositions. A temperature rise of a sufficiently AICl₃-rich melt could cause a phase separation which may not reequilibrate into a single phase upon cooling. It is kinetically difficult to transfer AICl₃(I) into molten AICI₃-NaCI without physically agitating the interface.

Safety

Appropriate precautions should be taken for the containment of liquids considerably above their normal boiling points in glass vessels. An especially dangerous situation can occur when $ho_{\rm av}$ $> \rho_{\rm crit}$ (see above). The gaseous phase will disappear above a certain temperature and the expansion of liquid AICI3 will then eventually result in rupture of the tube.

Acknowledgment

We thank Michael J. Dunn and Charles B. Hand for their interest and diligence when making all of the cathetometer readings.

Glossary

activity of Al₂Cl₆ а С_р Н heat capacity at constant pressure, J mol-1 K-1 enthalpy, kJ mol-1 m mass, g Ρ ideal gas pressure of Al₂Cl₆ t, T temperature, °C and K, respectively $T_{\rm M}$ triple-point temperature of AlCl₃, 466.85 K volume, cm³

- mole fraction AlCi₃, AlCi₃-NaCl scale
- weight fraction AICI₃, AICI₃-NaCl scale
- ρ °', '', density, g cm⁻³
 - superscripts denoting overall sample, AlCl₃-NaCl 'n. phase, AlCl₃(I) phase, and AlCl₃(g) phase, respectively

Literature Cited

- Fannin, A. A., Jr.; Kibler, F. C., Jr.; King, L. A.; Seegmiller, D. W. J. Chem. Eng. Data 1974, 19, 266.
 King, L. A.; Seegmiller, D. W. J. Chem. Eng. Data 1971, 16, 23.
 Viola, J. T.; Seegmiller, D. W.; Fannin, A. A., Jr.; King, L. A. J. Chem.
- Viola, J. 1., Steegininer, D. W., Fahmin, A. A., Jr., King, L. A. J. Chem.
 Eng. Data 1977, 22, 367.
 Seeginiler, D. W.; Fannin, A. A., Jr.; Olson, D. S.; King, L. A. J.
 Chem. Eng. Data 1972, 17, 295.
 Johnson, J. W.; Cubicciotti, D.; Sliva, W. J. High Temp. Sci. 1971, 3, 2000 (4)
- (5) 523.
- Dewing, E. W. Metall. Trans., B 1981, 12, 705.
- (7) Shvartsman, Yu. I. Zap. Inst. Khim., Akad. Nauk Ukr. RSR 1940, 7,
- Sato, Y.; Ejima, T. Nippon Kinzoku Gakkaishi 1978, 42, 905.
 Øye, H. A.; Rytter, E.; Klaeboe, P.; Cyvin, S. J. Acta Chem. Scand.
- 1971, 25, 559.
- (10) Øye, H. A., Universitetet i Trondheim, Trondheim, Norway, unpublished data, 1981. (11) Fannin, A. A., Jr.; King, L. A.; Øye, H. A., United States Air Force
- Academy, unpublished data, 1981.
 Viola, J. T.; King, L. A.; Fannin, A. A., Jr.; Seegmiller, D. W. J. Chem. Eng. Data 1978, 23, 122.
- "JANAF Thermochemical Tables", 2nd ed.; Nati. Stand. Ref. Data (13)
- Ser. (U.S., Natl. Bur. Stand.) 1971, No. 37 Rogers, L. J. J. Chem. Thermodyn. 1980, 12, 51. (14)
- (15) Kendall, J.; Crittenden, E. D.; Miller, H. K. J. Am. Chem. Soc. 1923, 45.963
- (16) Midorikawa, R. Denki Kagaku 1955, 23, 72.
- Plotnikov, V. O.; Shvartsman, Yu. I. Zap. Inst. Khim., Acad. Nauk (17)Ukr. RSR 1936, 3, 387.

Received for review December 11, 1980. Accepted November 2, 1981.

Equilibrium Phase Properties of Selected *m*-Xylene Binary Systems. *m*-Xylene–Methane and *m*-Xylene–Carbon Dioxide

Heng-Joo Ng, Sam S.-S. Huang, and Donald B. Robinson*

Department of Chemical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G6

Vapor and liquid equilibrium phase compositions have been measured at 310.9, 394.3, and 477.6 K for the m-xylene-methane binary system and at 310.9, 338.7, 394.3, and 477.6 K for the m-xylene-carbon dioxide system. At each temperature, the pressure ranged from the vapor pressure of *m*-xylene to about 15 MPa, although in the case of the *m*-xylene-carbon dioxide system, pressures were extended to the vicinity of the critical region at about 17 MPa. The data were used to calculate equilibrium ratios for each component in the binary system.

Introduction

In order to predict the behavior of typical natural gas condensate and other systems containing heavier undefined fractions of interest to the gas processing industry, it is necessary to have information on the binary pairs making up the mixtures. This is particularly true when the system contains nonparaffinic hydrocarbons and nonhydrocarbons such as carbon dioxide, hydrogen sulfide, or nitrogen. Successful modeling of the behavior of these complex mixtures requires good information on the pure compounds and on the binary interactions that exist between the different molecular species.

The recent work of Ng and Robinson (1, 2) on toluenecarbon dioxide, methylcyclohexane-carbon dioxide, and methylcyclohexane-hydrogen sulfide and Kalra et. al. (3) on nheptane-carbon dioxide binary systems represented part of a continuing program to measure the properties of typical light hydrocarbons or nonhydrocarbons with C7+ binaries. In this study, two systems containing m-xylene were studied. Equlibrium vapor and liquid phase compositions in the m-xylenemethane system were measured at three temperatures ranging from 311 to 478 K and pressures from the vapor pressure of m-xylene to about 15 MPa. In the m-xylene-carbon dioxide system the measurements were made at four temperatures ranging from 311 to 478 K and pressures from the vapor pressure of *m*-xylene to the vicinity of the critical region at each temperature. This range of temperature overlaps slightly the temperatures studied for this system in the recent work of Sebastian et al. (4), who made experimental phase composition measurements at four temperatures from 463 to 583 K. The measured phase compositions were used to calculate the