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Exactly Integrated Clapeyron Equation. Its Use To Calculate
Quantities of Phase Change and To Design Vapor

Pressure-Temperature Relations
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The vaporization enthaiples AH of water, methanol,
ethanol, and benzene are calculated, from p,T data and
auxiiiary data, with the differential Clapeyron equation and
with an equation derived from the exactly integrated
Clapeyron equation, and the methods are compared as
regards the sensitivity of AH to deviations In the p,T data.
The Integral method Is found to be 1-2 orders less
sensitive. It is demonsirated how the Clapeyron equation,
hitherto belleved to be unsolvable without ry
substitution of simple expressions for AH and AV, can be
transformed to an “exact differential equation” by
muttiplying by an Integrating factor, and the rigorous and
general integration is performed. The advantage of the
integral method with respect to the “third-law method” In
detecting deviating data points Is discussed. From the
integrated Clapeyron equation, several equations are
derived and their possibie use as pressure—temperature
relations is discussed. It is shown how empirical
equations ilke that of Cragoe and Frost/Kalkwarf can be
derived from a thermodynamically based eguation, and
how new equations can be designed which are focused
on special properties such as assoclation.

Introduction

The present study is a corollary of the question of how to
extrapolate enthalples of vaporization, AH, as accurately as
possible from accurate vapor pressure data. Our Interest arises
from our studies in combustion calorimetry of the condensed
normal primary alkanols (7-3) and from the finding of Sunner,
Wulff, and co-workers (4-8) that this group of compounds is
interesting in a formulation for the CH, increment in the enthalpy
of formation of a-substituted n-alkanes.

Usually, the Clapeyron equation is used with a differentiated
empirical pressure-temperature relation (EPTR) like that of
Rankine, Cragoe, Cox, etc. The subject of EPTRs received and
receives much attention. Partington (7) listed over 50 EPTRs
in 1951 (for reviews, see ref 7—77). Because EPTRs are not
thermadynamically founded, they may give physically unrealistic
extrapolations without this being recognized (8, 77, 72).

A basically identical approach is Iintegration of the Clapeyron
equation after making assumptions about AH and AV that
make the integration possible (see, e.g., ref 77, 13, and 74).
Subsequently, the integrated equation is empirically modified by
many-term expressions on the basis only of vapor pressure
data. As a consequence, extrapolation outside this region can
again be risky.

Therefore, we have Investigated whether there would be an
advantage in the use of the exactly integrated Clapeyron
equation.

Exact Integration

It has been suggested that the Clapeyron equation can only
give approximate integral solutions (75), and Lewis and Randall
(9) stated that integration would be cumbersome and only

possible after writing out AH and AV as functions of pressure
p and temperature 7. However, Martynov (76) proved the
Integrabliity of the Clapeyron equation even for different pres-
sures on the phases. Unfortunately, Martynov was only inter-
ested in the latter aspect, and, in order to carry out the inte-
gration, he made several approximations, inciuding the tradi-
tional restriction to Ideal vapors and the constancy of AC, at
coexistence. This makes his solution unsuitable for our pur-
pose. In addition, his final equation (11) for the vapor-liquid
equllibrium does not follow in the way that he states.

The Clapeyron equation In lts traditional form dp = (AH/
TAV) dT is not an “exact differentlal equation” (for the ter-
minology, see, e.g., ref 77). When it is muitiplied by the inte-
grating factor T-TAV (T, T-', AV, TAV, and AH"" are not
integrating factors)

T-'AV(P,T)dp + AH(P,T)dT' =0 §))

it is an exact differentlal equation because
[0AH(p,T)/dp]r = [8T'AV(p,T)/3T"],

Bearing in mind that p and T are independent in AV(p,T)
(analogously in AH(p,T)), a fact that Is implicitly used, e.g.,
always when one ingerts an equation of state (p and T Inde-
pendent) for AV in the Clapeyron equation, we can state that
these partial derivatives exist. This Is both a physical and a
mathematical requirement.

The solution of eq 1 Is (77)

T fp Avp,T)dp + frr AHpPoT)dT' = (2a)
Po o

P 7!
T j; AV Tadp+ [ AHETAT =0 (@)

The right-hand side of eq 2a,b, that is, the integration constant,
has been set equal to zero, since we want p and T to be able
to assume the values p, and T, simultaneously.

To our knowledge, the integrated form of the Clapeyron
equation has not been given before.

To obtain an expression with AH(p,,T ), we make the nec-
essary substitution in the second integrand of eq 2a, which
gives

p T T
7 J: AV(p.T) dp + fr a7 f. 4G,y T) dT =
AHP G TXT - T7) (3)

An equation with a comparable objective has been given earlier
(15), but It Is wrong, since it has a form for AC, which wouid,
in our notation, be AC,(p,,T) instead of AC,(p,,T).

Equation 3 permits the calculation of AH at any coexistence
situation (p,, T ) from the p,T data if the equations of state and
AC, at one pressure (not necessarlly p, since conversion is
possibie by means of the equations of state) are known (see
Applications).

An expression for AV(p,,T,) analogous to eq 3 is yielded by
eq 2b. The analogue here of the heat capaclity term in eq 3
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is an isothermal compressibility term.

One will be Interested often in AH(T,) at some pressure
other than the coexistence pressure, e.g., at a chosen standard
pressure p,. From eq 3 is derived (derivation in Appendix I)

P Po
r-‘J; AV(p.T)dp—To"J; AV(p,To dp +

T T
' dar-! fr AC,(p,,T)dT = AHP ,TXT ' - T (4)
To [}

Also, this relation is the starting point for designing pres-
sure—-temperature relations (see Designing p,T Relations).

Applications

To show how eq 3 and 4 can be used in practice, let one of
the phases be a gas and let the equations of state be

Vp.T)=RT/p+ colg.T) + cya. T + ... + c,(@.T)W
(5)

and an analogous expression, but without the term RT /p, for
the volume of the condensed phase, V(co,p,T). The difference
in molar volumes is then

AV(,T)=RT/p+ L (T (L short for ZA) (8)
iz0

When eq 6 is substituted into eq 3, one obtains

T T
Rinp+ [ ot { AGpuTdT+ T T (+
Ty T, 1zo

W' e(T) @ - pd*) = AHPWTNT '~ T + RiIn p,
Y]

Condensed systems are described by eq 7 when the In terms
are dropped.

When the values of the left side of eq 7 are plotted against
To' = T-Y, AH(p,,T,) is obtained as the slope. Iteration for
P, Is required. For AH at a chosen p,, instead of T,, the
procedure should be comparable.

When AC, and ¢, are known in the region to be extrapolated
into, eq 7 cannot give physically unrealistic results. The quailty
of the extrapolation is merely governed by the accuracy of the
measurements (in contrast to EPTRs). As an illustration of an
application of eq 7, the p,T data for ethanol of Driicker (78)
will be examined. These data are the only well-documented
low-temperature p,T data for ethanol in existence. An ex-
trapolation of a Cragoe fit on the p,T data of Ambrose and
Sprake (79) suggests that Driicker’s pressure values are up to
1 order too high. This is merely a suggestion, not a proof, since
there is no reason that a long extrapolation of an EPTR shouid
yield a correct vaiue. However, application of eq 7 to the p,T
data of Ambrose and Sprake (79) shows unequivocally that
Driicker’s values are far off in the low-temperature part (Table
I). In the third column of pressures, the experimental values
of Klumb and Liickert (20) are given. Although these are of
low accuracy, they confirm the picture.

The foliowing auxiliary data were used. The virlal coefficlents
and the heat capacity of the vapor were taken from the work
of Counsell et al. (27) (the denominators in the coefficients a
and ¢ should be RT? Instead of AT (22)). The degree of sat-
uration in the C, measurements did not exceed two-thirds and
was in general less than that. We have assumed that the
pertinent C,,p, T relation (27) could be extrapolated to satura-
tion, because the values for C, at 80% saturation at 101.325
kPa (23) and at 90% saturation at 99.992 kPa (24) agree well
with the vaiue calculated from the C,,p, T relation. This relation
shows good agreement with the values about 280 K (25, 26)
and even with that at 200 K (25); we have therefore found it
justified to make our calculations down to 200 K. The 1975 p,T
data of Ambrose (27) could not be used, since heat capacity
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Table 1. Comparison of Observed and Calculated Vapor Pressures
of Ethanol and Enthalpies of Vaporization at Saturation®

T P(obsd)® P(caled)®  P(obsd)? AHC
173.85 0.168  (0.015) (0.020)  (47.964)
177.45 0232 (0.029) 0.037)  (47.791)
181.35 0.319  (0.057) (0.070)  (47.603)
188.45 0.584  (0.188) 0.21) (47.269)
191.65 0.795  (0.311) 0.34 (47.121)
202.25 2.320 1.452 1.4 46.651
211.95 5.866 5.138 4.7 46.234
22055  13.719  14.244 13 45.872
23215 39.463  49.413  (42) 45.392
233.85 51729  S58.626  (49) 45.321

@ Temperatures are given in Kelvin, pressures in pascals, and en-
thalpies of vaporization in kJ mol!. ® Reference 8. ¢ Calculat-
ed from eq 7 with auxiliary data in text; values in parentheses are
based on extrapolated auxiliary values. ¢ Reference 20; values in
parentheses are extrapolated,

data at high degrees of saturation are lacking at high temper-
atures. The liquid volume as a linear function of temperature
(taken as independent of pressure for the range of interest) was
calculated from data in Timmerman's book (78). Fiock's
equation for the relation between the temperature and the heat
capacity of the liquid at saturation pressure (28) was used in
the form given by Green (29) in his eq 2. The liquid heat
capacity was considered to be independent of pressure, in
accordance with the linear temperature dependence of the
volume. All temperatures were recaiculated to IPTS-68. The
gas constant R was taken as 8.31441 J K~! mol~", except
where it was necessary to use a value appropriate to a cal-
culation in the literature.

The Cragoe fit on the p,T data of ref 79 follows the calcu-
lated vapor pressure of Table I very well (<5%) in this case.

Equation 7 can also be used to detect “sour” p,T data points.
In other studies, the so-called “third-law method”, advocated
by Lewis and Randall (9), is used (see, e.g., ref 12 for an
application). Unfortunately, that method can be applied only if
the difference in G° between the phases is known down to 0
K. In practice, this will generally mean that AC, and ¢, must
be known down to 0 K. Contrarily, the use of eq 7 requires
knowledge of AC, and ¢, merely down to the lowest tempera-
ture of the vapor pressure measurements.

When the 25 vapor pressures measured by Ambrose and
Sprake (19) are calculated with eq 7, i.e., the results of the
iteration, the series of residuals turns out to be nonrandom
(Table II). The highest pressure value appears to be partic-
ularly high (by about 0.1 kPa). When this measurement is left
out, the remaining 24 residuals are found to constitute a random
set, and the standard deviation of the series is reduced by a
factor 2.

An analysis of p, T data is much less likely to be successful
when an EPTR is used. This Is so becauss, in general, the type
and number of terms are chosen to obtain the best fit with the
data points. When the Cragoe equation is applied in the case
mentioned above, the set of 25 residuals is random (79) and
the sour point is not detected. Omisslon of this point leaves the
standard deviation unchanged.

Our main point of interest is the accuracy in the p,T data,
required to obtain a preset accuracy in AH. As will be shown
below, the accuracy in the p,T data must be 1 order or more
better in the differentlal method than in the integral method using
eq 7. A simple test was made by caiculating the devlation in
AH of water, methanol, ethanol, and benzene resulting from an
intentional error in T. The procedure Is described here in detail
for ethanol. (For the other three compounds, the procedure and
the criterla, as has been described, for accepting the data were
comparable.)

First, all AH(p,,To)'s pertaining to the list of the 25 p,T data
(79) were calculated with eq 7, as described under It, and then
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Table [1. Comparison of Observed and Calculated Vapor Pressures
of Ethanol and Enthalpies of Vaporization at Saturation®

p(obsd) —

T pobsd)®  p(caled)®  p(caled) AH®
292.766 5.726 5.726  —0.000  42.683
296.776 7.269 7.268 0.001  42.470
298.864 8.205 8.205 0.000  42.356
301.299 9.430 9.428 0.002  42.221
306.475 12.566 12.564 0.002  41.926
309.747 14.981 14.979 0.002  41.732
312.377 17.200 17.200 0.001  41.573
316.368 21.109 21.108 0.001  41.325
320.489 25.914 25917 -0.003  41.059
324.221 31.047 31.049  —-0.002  40.810
327.804 36.760 36.765  —0.005  40.563
332.013 44.584 44.595  -0.011  40.264
336.006 53.267 53.279  -0.012  39.969
339.719 62.572 62.589  -0.017  39.686
343.701 74.032 74.050 -0.018  39.372
348.122 88.763 88.773  ~0.010  39.011
350.548 97.821 97.83¢  —-0.013  38.808
351.132  100.121  100.127  -0.006  38.758
351.483  101.518  101.525  -0.007  38.728
351.640  102.151  102.156  —0.005  38.714
352.331 104.983  104.972 0.011  38.655
355.506  118.719  118.742  -0.023  38.378
358.981 135.519  135.487 0.032  38.067
362.752  155.824  155.793 0.031  37.720
366.629  179.321  179.196 0.125  37.351

¢ Temperatures are given in Kelvin, pressures in kilopascals, and
enthalpies of vaporization in kJ mol™'. b Reference 19. © Calcu-
lated from eq 7 with auxiliary data given in text.

by means of the differential method with the calcuiated Cragoe
and Frost/Kalkkwarf coefficients and with Chebyshev polyno-
mials of the orders 3, 4, and 5 (8). Subsequently, the figure
for the lowest temperature in the list, 292.766 K, was changed
by —-0.05 K, and all calculations were repeated. Next, the same
was done for a +0.05 K change in the highest temperature,
366.629 K. Giving this example does not imply that deviations
of this magnitude were plausible in the accurate work of Am-
brose and Sprake, but such deviations can easily occur in work
of lower accuracy. Beslides, it is merely to illustrate what is
meant.

The following literature data were used for water, methanol,
and benzene: water, C,(}) (32), C,(g) (ret 33 and Appendix
I1I), c/(g) (34), V() (33), p.T (12); methanol, C,(l) (28, 35),
C,(9) (36), c/(9) (36), V(I), (18), p.T (19); benzene, C, (i} (18),
C,(9) (37), /(@) (37), V() (18), p,T (12). The virial coefficlent
B, in ref 37 was accounted for by writing V(g) = RTp~' + 8B,
- BjAR'Tp.

Some of our results for the four compounds are given in
Table III. Only AH at the lowest and highest temperatures
are given. In the middie of the interval, all effects are smaller.
A slight correction in AH (a few joules at the most) is incor-
porated into the calcuiated values, to obtain the AH value
pertaining to the original, measured temperatures where these
have been changed by 0.05 K. The change of AH with tem-
perature, £50-100 J K-', apparent from the literature data, was
used as a bhasis for this correction.

The five EPTRs are strikingly more strongly affected by the
change of one temperature value than the integral equation.
The effect is most pronounced with the fifth-order Chebyshev
polynomial.

Unexpected is the magnitude of the change in AH at the
high-temperature end when the intentional change of 0.05 K is
made at the low-temperature side and vice versa. This effect
is only present in EPTRs, and is again most pronounced with
the fifth-order Chebyshev polynomial (see, e.g., methanol and
ethanol, lowest T - 0.05 K, high T end). This suggests con-
sequences for the application of EPTRs in general. A set of
vapor pressure measurements often includes measurements

at medium pressures (accurate) together with measurements
at either high or low pressures (less accurate). The accuracy
of calculated enthalples of vaporization at the medium-pressure
end is thus, unexpectedly, impaired by the less accurate mea-
surements at the other end.

The vaporization enthalpies as calculated here from p,T data,
whether by means of the differential or integral method, agree
well with the calorimetric values. This is to be expected, since
only data of high quality were used (it was not necessary to use
all pertaining high-quality data in the literature to make our point
in Table III). The discrepancy for water at 400 K may be due
to the long extrapolation of the virlal coefficients. The “integral
value” agrees with the calorimetric value.

The insensitivity of AH calculated by the integral method to
deviations In the p,T data makes the method sultable where the
differential method would fall, i.e., when only few p,T data
(minimum: 2) of low accuracy are available. On the other
hand, AH caiculated by the integral method is subject to de-
viations in AC, (see Table III). The choice to use either the
differential or integral method must depend on avaiiability and
quality of the data, either measured, calcuiated, or estimated.

We emphasize that the fact that eq 7 has been derived as
exactly as possible does not restrict its use to those cases
where AC, and ¢, are exactly known. Equation 7 can also be
useful when, e.g., only estimates are available.

Calculation of AM In Arbltrary States

AH in arbitrary states is obtained by substitution of eq 6 into
eq 4

T T
Rinp+ [ dar' { AG,p.T)aT+
T To
TV U+ )T - py™*") = AH(P 1, TXT, " -
20
TY4+RInpe+ Ty 2 (F+ 1)'c(ToXpo' ™ - 04/ (8)
120

The quantities ¢,(T) and ¢,(T ) are the values of ¢;at Tand T,.
Equation 8 is used as a linear relation, as is eq 7.

The importance of eq 8 lles in the possibiiity to calculate AH
directly in arbitrary states without an intervening calculation at
coexistence via eq 7.

AH(p,=0,T,) by eq 8 differs slightly from AH®° for the
phases in their standard states, since the standard-state pres-
sure for a condensed phase is 1 atm by convention. Numer-
lcally, the difference is negligible. Therefore, AH(p ,=0,T,) can
often be taken to represent AH°(T,). If necessary, the dif-
ference can be calculated from the equation of state of the
condensed phase. When the conversion to 1 atm for a con-
densed phase Is actually applied to eq 8, the resuit produces
the special case (9) where the AH looked for is AH®(g¥p-
(co)=1atm).

Designing p,T Relations

When AC,, and ¢; are known, eq 7-9 are complete vapor
pressure equations once the two parameters AH at chosen T,
(or po) and p, (or Ty) have been adjusted to the p,T data.
However, the required values for AC, and ¢, will often not be
available. This does not mean that an EPTR is then the only
way out. Estimates can be made of AC, or ¢, and used with
eq 7-9. These equations have the forceful advantage that they
show exactly how these quantities must be inserted, whereas
an arbitrary EPTR has no clear relationship between its terms
and their coefficlents on the one side and AC, and ¢, on the
other side. The latter fact also makes it impossible to transiate
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Table III. Consequences for AH(p,,T,) of Intentional Changes® in Measured Temperatures (without Changing the Corresponding Pressures)
and Heat Capacities ACp(p,,T) and Comparison of the Consequences for the Integral and Differential Methods?

change in change in change in change in change in change in
AH(p,,T,)  aH(p, T,  AH(@p,.T,)! AH@p,T,) AH@,T,) AH{p,T,)/
@mol)  (J mol') ( mol™) (G mol™') (I mol™?) ( mol)
AH(p,,T,)/ upon upon upon changing AH(p,,T )/ upon upon upon changing
@ mol™) changing changing  ACp (p,.T) by (J mol™) changing changing  ACp, (p,,T) by
for correct lowest T by highest T by +1JK! for correct lowest T by highest T by +1JK"!
T values -0.05 K +0.05 K mol-? T values -0.05K +0.05 K mol~!
Water, T’y = 300.000 K Ethanol, T, = 292.766 K
Integ 43886 -13 -5 -47 Integ 42683 -9 -4 -35
Crag 43900 -160 -20 Crag 42695 -181 -26
Fr/K 43893 -149 ~16 Fr/K 42697 ~170 -24
Cheb 3 43956 -177 -40 Cheb 3 421703 —189 -43
Cheb 4 43903 —241 +43 Cheb 4 421715 ~298 +53
Cheb 5 43901 —338 -39 Cheb 5 42728 —458 —-69
Cal 43915¢ Cal 425587
Water, T, = 400.000 K Ethanol, T, = 366.629 K
Integ 39424 -~15 -6 +54 Integ 37351 ~8 -4 +38
Crag 39171 -79 ~83 Crag 37444 -173 -59
Fr/K 39182 -84 -~96 Fr/K 37431 -72 —-68
Cheb 3 39134 -50 ~83 Cheb 3 37439 ~-50 -58
Cheb 4 39166 +58 -176 Cheb 4 37422 +78 -158
Cheb 5 39 164 -56 -270 Cheb 5 37438 —~116 -295
Cal 394024 Cal 373977
Methanol, T', = 288.044 K Benzene, T, = 308.322 K
Integ 37880 -11 -5 -31 Integ 33285 -10 -5 -37
Crag 37948 -177 -25 Crag 33251 -132 -21
Fr/K 37943 —-168 =22 Fr/K 33248 -131 -20
Cheb 3 37962 —186 -40 Cheb 3 33285 —145 -33
Cheb 4 37973 —-183 +57 Cheb 4 33262 -218 +42
Cheb § 37988 ~418 -1 Cheb 5 33263 -321 —43
Cal 37795¢ Cal 33269¢
Methanol, T, = 356.822 K Benzene, T, = 388.847 K
Integ 33927 -9 -4 +35 Integ 28 601 -10 -3 +43
Crag 33934 -73 -60 Crag 28593 -60 —63
Fr/K 33934 -76 -69 Fr/K 28584 —-62 —-64
Cheb 3 33923 ~53 -60 Cheb 3 28571 —45 -64
Cheb 4 33901 +77 -151 Cheb 4 28580 +60 -150
Cheb § 33920 -91 -321 Cheb 5 28581 —66 —246
Cal 33 959¢ Cal 28534%

8 A correction of a few joules is incorporated in the second and third columns because of this change; see text. b Abbreviations for the
equations: Integ, integral equation 7; Crag, Cragoe; Fr/K, Frost/Kalkwarf; Cheb 3, 4, 5, Chebyshev polynomials of order three, four, and five,

respectively., Cal means calorimetrically determined value. € From ref 32 by quadratic interpolation.

From ref 32 by quadratic extrapola-

tion. ¢ From ref 22, 28, 30, 31, and 36 by quadratic fitting; the value at 288.044 K is extrapolated. 7 From ref 2/, 28, 30, and 31 by quad-

ratic fitting; the value at 292.766 K is extrapolated. # From ref 37.

data or estimates into constraints for the coefficients of the
EPTR.

e starting point for designing a p, T relation Is eq 8 with p,
0:

Iad T
Rinp+ fr d7-! fr AC,(p=0,T) dT +
TV (+ 'le(TW'* = AHP =0,T T, - T7) +
120
Rinpo+ To' L (+ 1 "e(Tolpd ™" (9)
120}

Putting p ; = 0 not only simplifies eq 8 but also shows a AC,,
independent of pressure. Leaving the heat capacity of the liquid
out of consideration for the moment, the heat capacity of the
gas is now clearly separated from the terms ¢;(g). The terms
accounting for the intermolecular interaction in the vapor are
now not distributed among AC, and ¢, (and AH) but are con-
centrated in ¢, only, thus making a simple formulation adequate
to describe C,(g) as a function of temperature.

The reader will be able to verify the foliowing example. If
we put, for instance, AC,{(p,=0,T) = Aa + AbT + AcT?,
Vigp.TY=RTp' + B,, where B, is a virial coefficient of the
type developed by Hirschfeider, McClure, and Weeks (38) for
dimerlzation or a square-well potential energy function 8, = b,
+ KT exp(yT-"), and  V(co) Is taken In this example as equal

to b, substitution in eq 9 with the aid of eq 5 and 8 gives a
tailored vapor pressure equation of the form

np=A+BT"'+CinT+ DT+ ET?+ Fp exp(dT™")
(10)

The meaning of the coefficients is given in Appendix II.
Equation 10 bears a close resemblance to eq 15 of Scott and
Osborn (72), which they derived ingeniously in a semlempirical
way. They demonstrated that their equation accurately repro-
duced the measured vapor pressures for normal and abnormal
fluids (water) alike.

The clarity of the physical significance of the terms, and thelr
coefficients, of the equations derived from eq 9 enables one
to effectively impose constraints. Without constraints, if need
be estimates, equations like eq 10 will not give necessarily good
resuits in extrapolations. This is because the fitting is then
entirely directed to the quality of the fit in the interval of the
measured p, T data (useful for interpolation), but the last terms
in eq 10 and analogous relations then can acquire unrealisticalty
large values, whereas they were merely meant as corrections.
Ambrose (8) gives an example of a Cragoe equation (eq 10
with terms 3 and € left out) with four terms of comparable
magnitude. This situation has given rise to some popularity of
Chebyshev polynomials, a mathematical device which can give
large deviations in derived quantities, as we have shown.
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Table IV. Approximations in AC,, Virial Coefficients, and
Condensed Volume Implied® in Some Frequently Used Vapor
Pressure Relations

equation®
Inp=A + ACp-  type nonideality
BT'+ (p,=0) of gas V(co)
Clapeyron/ + 0 0 none 0
Clausius®
Rankine/ +CInT Aa none 0
Kirchhoff®
van Laar®¢ +CInT+ Aa+ none 0
DT AT
Cragoe® + CT + AbT + none 0
DT? AcT2
Frost/Kalkwarf + CInT + Ag =—g'R'T'+  p'?
DPT? b b

@ Approximations found, in this study, to be actually implied in
the equations. These are not always the approximations meant,
by the designers of the equations, to be implied. See text. 2’
and b’ are the van der Waals constants. According to Partington
(7), using a second virial coefficient of this form is approximately
equivalent to using the van der Waals equation. € Vapor pressure
relations in which the ¢; terms are neglected can be produced as
well from eq 7 and 8 as from eq 9. However, in cases where the
¢; terms are not neglected, eq 7 and 8 would yield vapor pressure
relations with mixed additional terms, in 7 and p, and in T and
p,, respectively,, which eq 9 does not. For homogenelty of formu-
lation, we have derived all five relations from eq 9. 4 The Nernst
equation has the same form, but its coefficient C has a fixed value.
The van Laar equation should yield better extrapolations than the
Cragoe equation, since its assumption about AC), as a function of
T is more realistic. € Coefficients in Appendix II. 7 Condensed
volume.

Finally, we show In Table IV how eq 9 ylelds some well-
known vapor pressure relations. We emphasize that the ap-
proximations in Table IV are those to which a particular
equation (s actually found to correspond in the present study.
These are not always the same as those which some authors
had in mind. For instance, van Laar (39) used the van der
Waals equation, but, presumably through some cancellation, his
resulting equation does not account for nonideallty of the gas.
Some of the assumptions made by Frost and Kalkwarf (40)
together merely amount to the effect of taking AC, (p ;=0) as
a constant.
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Appendix |
Equation 4 is developed from eq 3 as follows.

Po fAT1AV(P,T)
AH(po Ty = AH(p ,Ty) + f -1
ot or A

Analogously, we have for AC,

! T Tt T
f art f ACy(p,,T) 4T = f a7 f AC(p, NAT +A  (12)
T! T,

=T,
)

0

where

A=
L or- 1AV(p T)
N ‘"f il )|
e 1p

(13)

The form of the last integral has been obtained by using the
equality

(80AH/9T),/dp]r = [8(0AH/dp);/dT],

and then substituting (AT~'AV/0T""), for (3 AH/dp);. The term
A Is worked out as follows. The integrations are interchanged

fp., f [ (ar AV(p, r))] o
P+ aT T-1 e 1o
s0
Po aT- -1 AV(p T)
- grw T ()
Toar A
AT AApp,T) y
T ara =T, a7
P
Po
= f TAV(,T) - T 'AV(P,Ty) -
ar- 1AV(p 2]
— |,_,<r- Y [ 9 (14)

ar-!
Upon substitution of eq 11, 12, and 14 into eq 3, we obtain eq
4,

Appendix 11
The coefficlents of the equation

Np=A+BT'+CinT+ DT+ ET?+ FpexplT™)

are

A=R-Aa- Aaln Ty~ AbT, - V,AcT? +
AH(P =0,T)To ' + RiInpy + Kpo explUT o)
B = R-{AaT, + %,AbT 2 + YAcT® - AH(p=0,T,)
C=R'Aa
D= YR Ab
E= YR "'Ac
F=-RK

The coefficients of the vapor pressure relations in Table IV are
as follows (see also footnote ¢ of Table IV):

van Laar

A=R--Aa- Aaln Ty - AbT, + AH(p,=0,T)T," +

Rin po}
B = R'AaT, + %,AbT? - AH(p,=0,T,)}
C=R"'Aa
D= Y,R"Ab

Rankine: see van Laar, with Ab = 0; in the Clapeyron—Clauslus
equation, Aa = Ab = 0.

Cragoe
A = RY-AbT, ~ ACT 2 + AH(P =0,T)T,' + RIn py}
B = RLAbT 2 + YAcT® - AH(p =0,T )}
Cc= YR 'Ab
D= R 'Ac



J. Chem. Eng. Data 1982, 27, 251-252 251

Frost/Kalkwarf
A= R -Aa-Aain Ty + AH{P,=0,T)T, '+ Rinp, -
R~'a’poTy 3
B = R-"{AaT, - AH(p ,=0,T )
C=R"Aa
D= R’

Appendix I11

Apparently, C,(g,p,T) for water has not been measured.
However, the virial coefficients and the ideal heat capacity
C,(9.p 1=0,T) are known. To account for C(g,p, T)ineq7
without double differentiation followed by double integration of
the very complex virial coeftticients, we retained the ideal gas
part in the double integral and shifted the rest to the c(g) terms
(in the following, we omit g for gas).

7! T 7! T
[ AT [ Cplp,, 1) dT= [ 4T [ Cp(p,=0,T) dT -
! T, 0! T,

T T

T! T
T @+ Dipyitt [ ATt [ T[dc(DH/dT?)1 4T (15)
i20 T,™! T,

Applying partial integration with T as the primitive and d2c;,-
(T)/dT2 as the derivative in the last integrand and adding the
result of the integration of the last term of eq 15 to the gas part
of the Y_c, term in eq 7 ylelds the combined term

+71 2+ D Ne(T T - elTpo M1+ (To - T) X
120
[dcz(T)/dT]r,Do’“}

At the same time, this yiekls yet another type of vapor pressure
equation.

Into this term, a substitution is made to account for the fact
that Wexler’s virial coefficients are ¢,(T)R-'T-'. (There is a
printing error in Wexler's expression for C’. It should read log
(-C’) instead of -log C’.)
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Aqueous Dissociation of Phenylpropiolic Acid

Lowell M. Schwartz,” Robert 1. Gelb, and Danlel A. Laufer

Department of Chemistry, University of Massachusefts, Boston, Massachusefts 02125

The acid dissociation constant of aqueous phenyipropiolic
acld (3-phenyl-2-propynoic acid) has been determined
between 15 and 45 °C by pH potentiometry. The
standard enthalpy and entropy of dissoclation are
caiculated from the temperature variation of the
dissociation constant. The '*C NMR resonance
displacement of the carboxylate carbon upon acid
dissociation was measured, and Iits correlation with the
standard entropy of dissoclation implles that the molecular
form of aqueous phenylproplolic acid exists partly as an
lon pair In equilibrium whith the covalently bonded
structure.

0021-9568/82/1727-0251$01.25/0

The literature seems not to contain reliable values of acid
dissociation parameters for aqueous phenyipropiolic acid (3-
phenyl-2-propynoic acid). The “Handbook of Biochemistry and
Molecular Biology” lists two entries, a value of pK, = 2.269 at
16.8 °C together with AH® = -0.792 kcal mol™' and AS° =
~13 cal mol~' K- (7) and a value of pK, = 2.23 at 25 °C (2).
The entry at 16.8 °C makes reference to a paper by Walde (3),
but this paper makes further reference to a paper by Harned
and Sutherland (4) as the primary source. Harned and Suth-
erland, however, do not mention phenylpropiolic acid so that
details of the 16.8 °C experiment are unknown. The 25 °C
entry in the handbook is attributed to Mansfield and Whiting (5),
who, indeed, report a pH potentiometric measurement of pK',
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