of the University of Missouri-Rolla for encouragement of this joint work.

LHerature Cited

(1) "1974 Annual Book of ASTM Standards"; American Society for Testing and Materials: Phlladetphia, PA, 1974; part 23, p 583.
(2) Adams, R.; Johnson, J. R.; Wlicox, C. F., Jr. "Laboratory Experiments in Organic Chemlstry"; Macmittan: Now York, 1970.
(3) Benson, J. J. Solution Chem. 1980, 9, 791.
(4) Kretschmer, C. B.; Nowakowska, J.; Wlebe, R. J. Am. Chem. Soc. 1948, 70, 1785.
(5) Osborne, N. S.; McKelvey, E. C.; Bearce, H. W. Bur. Stand. (U.S.), Bull. 1913, 9, 327.
(6) "American Instltute of Physics Handbook", 3rd ed.; McGraw-Hill: New York, 1972; p 2-157.
(7) Stern, O. Z. Phys. Chem. 1913, 81, 441.

Direct Determination of Enthalpy of Mixing for the Binary Gaseous System Methane-Carbon Dloxide by an Isothermal Flow Calorimeter

Alpha O. Barry, Serge C. Kallagulne,* and Rubens S. Ramalho
Department of Chemical Engineering, Laval University, Quebec, Quebec G1K 7P4, Canada

Abstract

Enthalples of mixing for the binary gaseous system methane-carbon dioxide were measured by an leothermal flow calortmeter at temperatures of 293.15, 305.15, and 313.15 K , with mole fractions of methiane ranging from approximately 0.2 to 0.8 . For the first two isotherms, the measurements were made at pressures of $0.507,1.115$, and $1.520 \mathrm{MPa}(5,11$, and 15 atm , respectively). For the thlrd lsotherm, measurements were made at pressures of $0.507,1.013,1.520,2.533,3.546$, and $4.600 \mathrm{MPa}(5,10$, $15,25,35$, and 45.4 atm , respectively). The experimental results were compared with those already avaliable in the liferature, as well as with predictions based upon the following equations of state: Benedict-Webb-Rubin (BWR), Recllich-Kwong, and the Redllich-Kwong equation with the moditicatlons proposed by Jacoby and Robinson.

Introduction

Enthalpy data for pure compounds and mixtures are of fundamental importance in process design. They are also particularly important from a sclentific point of view, owing to their utilization in verifying predictive methods for thermodynamic properties of mbxtures. Such methods are based upon theories of molecular interaction.

It is necessary to determine data for the enthalples of mixtures in the gaseous phase as functions of temperature, pressure, and mixture composition. The most direct method to obtain this network of data consists of the direct determination of heats of mixing, henceforth designated as excess enthalpies and denoted as H^{E}. The excess enthalpy of a mixture at constant temperature and pressure is defined as

$$
\begin{equation*}
H^{E}=\Delta H_{m}-\Delta H_{m}^{l d}=\left[H_{m}-\sum_{l} x_{l} H_{l}\right]_{P, T} \tag{1}
\end{equation*}
$$

Since for an ideal solution the heat of mixing is zero, i.e., $\Delta H_{m}{ }^{\mathrm{kd}}=0$, the excess enthalpy of a mixture is numerically equal to the heat of mixing of the pure components, i.e., $H^{E}=$ ΔH_{m}.

Although many calorimetric determinations of enthalpies of mixing for liquids are reported in the literature, relatively few data for gas mixtures are available. The experimental difficulties Involved in the determinations in the gas phase, as well as the high cost of the pure components, are the reasons for this scarcity of data. The investigations of excess enthalpies in the gas phase are summarized as follows. The first determinations by Beenakker et al. $(1-4)$ comprised the following
systems: $\mathrm{CH}_{4}-\mathrm{H}_{2}, \mathrm{CH}_{4}-\mathrm{Ar}, \mathrm{H}_{2}-\mathrm{N}_{2}, \mathrm{H}_{2}-\mathrm{Ar}, \mathrm{Ar}-\mathrm{N}_{2}, \mathrm{He}-\mathrm{CH}_{4}$, and He -Ar. Klein $(5,6)$ studied the system $\mathrm{CH}_{4}-\mathrm{N}_{2}$. Hejmadi et al. $(7,8)$ investigated the systems $\mathrm{N}_{2}-\mathrm{O}_{2}, \mathrm{~N}_{2}-\mathrm{CO}_{2}$, and N_{2} $\mathrm{C}_{2} \mathrm{H}_{8}$. Lee and Mather $(9,10)$ studied the systems $\mathrm{N}_{2}-\mathrm{CO}_{2}$ and $\mathrm{CH}_{4}-\mathrm{CO}_{2}$, and Altunin et al. (11) the system $\mathrm{N}_{2}-\mathrm{CO}_{2}$. In our laboratories, Ba et al. (12-14) obtained data for the systems $\mathrm{N}_{2}-\mathrm{O}_{2}, \mathrm{~N}_{2}-\mathrm{C}_{2} \mathrm{H}_{4}$, and $\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{CO}_{2}$. This paper presents data for the system $\mathrm{CH}_{4}-\mathrm{CO}_{2}$ at temperatures of $293.15,305.15$, and 313.15 K , with mole fractions of methane ranging from approximately 0.2 to 0.8 . For the first two isotherms, the measurements were made at pressures of $0.507,1.115$, and 1.520 MPa (5, 11, and 15 atm , respectively). For the third isotherm, measurements were made at pressures of $0.507,1.013,1.520$, $2.533,3.546$, and $4.600 \mathrm{MPa}(5,10,15,25,35$, and 45.4 atm , respectively).

Experimental Procedure

The experimental procedure, as well as a detalled description of the equipment uttlzed in this investigation, has been reported in previous articles $(7,12-14)$. The two pure gases, CH_{4} and CO_{2}, flow independently inside tubings of identical dimensions, arriving at the calorimeter at essentially the same temperature and pressure. The mixing of the two gases is accompanied by a temperature drop. To compensate for this temperature drop, a measured quantity of energy is supplied to the system by a Kepco Model SM-325-2A(M) power supply, with regulation to 0.01%. In this manner, the temperature difference between the two pure gases at the calorimeter inlet and the exit gas mixture is essentially brought to zero. The energy supplled is determined by measuring potential drops across standard calibrated resistors, utillzing a Leeds and Northrup K-5 potentiometer. Mole fractions of the gaseous constituents in the mixture were calculated from the measured values of individual flow rates.
Some improvements were performed with respect to the equipment described in the previous articles, including a forced-draft system for the calorimeter assembly and a disposal system for safe elimination of the gas mixtures to the atmosphere. The methane and the carbon dioxide were supplied by Lynde Co. of Canada and Air Liquid of Canada, respectlvely. The methane has a certified purity of 99%, containing 0.1% $\mathrm{CO}_{2}, 0.2 \% \mathrm{O}_{2}, 0.2 \% \mathrm{~N}_{2}, 0.3 \% \mathrm{C}_{2} \mathrm{H}_{8}$, and $0.2 \% \mathrm{C}_{3} \mathrm{H}_{8}$. The carbon dioxide has a certified purity of 99.8%, containing 100 ppm of $\mathrm{CO}, 50 \mathrm{ppm}$ of $\mathrm{H}_{2}, 100 \mathrm{ppm}$ of $\mathrm{H}_{2} \mathrm{O}$, and approximately $0.2 \% \mathrm{~N}_{2}$. The effect of the impurities in the gases was evaluated by utilizing Hejmadi's methods $(7,8)$ and found to be negligible.

Analysis of Results

The three steps involved in the thermodynamic process taking place within the calorimeter are as follows: (1) The two pure gases $\mathrm{A}\left(\mathrm{CH}_{4}\right)$ and $\mathrm{B}\left(\mathrm{CO}_{2}\right)$ arrive independently at the respective inlet ports in the calorimeter at the temperatures and pressures denoted respectively as T_{1}, P_{1} and T_{2}, P_{2}. The temperatures and pressures are nearly identical. (2) The two gases are thoroughly mixed within the calorimeter, this mixing process being accompanied by a temperature drop. (3) After the temperature drop is compensated by the addilion of a measured quantity of energy, the gas mixture exts from the calorimeter at the outlet condition denoted as T_{0} and P_{0}, for the temperature and pressure, respectlvely. These temperatures and pressures are nearly identical with the inlet values; thus, the calorimeter functions essentially in an isothermal and isobaric manner.

Application of the first law of thermodynamics for a flow process to the three-step thermodynamic process just described yields the following equation:

$$
\begin{align*}
H_{0}^{E}= & \Delta H_{\mathrm{m}}= \\
& Q / F+x_{\mathrm{A}}\left(H_{\mathrm{A}, 1}-H_{\mathrm{A}, 0}\right)+x_{\mathrm{g}}\left(H_{\mathrm{B}, 2}-H_{\mathrm{B}, 0}\right)-\Delta E_{\mathrm{k}} \tag{2}
\end{align*}
$$

In eq 2

$$
\begin{align*}
& H_{\mathrm{A}, 1}-H_{\mathrm{A}, 0}=\int_{T_{0}}^{T_{1}} C_{p, \mathrm{~A}} \mathrm{~d} T+\int_{P_{0}}^{P_{1}} \phi_{\mathrm{A}} \mathrm{~d} P \tag{3}\\
& H_{\mathrm{B}, 2}-H_{\mathrm{B}, 0}=\int_{T_{0}}^{T_{2}} c_{p, \mathrm{~B}} \mathrm{~d} T+\int_{P_{0}}^{P_{2}} \phi_{\mathrm{B}} \mathrm{~d} P \tag{4}
\end{align*}
$$

where

$$
\begin{gather*}
\phi=(\partial H / \partial P)_{T} \tag{5}\\
C_{p}=(\partial H / \partial T)_{P} \tag{6}\\
\Delta E_{\mathrm{k}}=E_{\mathrm{k}, \mathrm{~A}, \mathrm{~B}, \mathrm{O}}-\left(x_{\mathrm{A}} E_{\mathrm{k}, \mathrm{~A}, 1}+x_{\mathrm{B}} E_{\mathrm{k}, \mathrm{~B}, 2}\right) \tag{7}
\end{gather*}
$$

Equations 3 and 4 refer to the so-called primary corrections to be applied to eq 2 in order to obtain $H_{0}{ }^{\mathbf{E}}$ at the conditions P_{0} and T_{0} at the calorimeter outlet. Notice that for application of the primary corrections only thermodynamic properties of the pure gases A and B are required. In the case of our experiments for the system $\mathrm{CH}_{4}-\mathrm{CO}_{2}$, the pressure drops across the calorimeter, i.e., $\Delta P_{1}=P_{0}-P_{1}$ and $\Delta P_{2}=P_{0}-P_{2}$ are negliglbie. Also, the inlet pressures P_{1} and P_{2}, as well as the inlet temperatures T_{1} and T_{2}, were identical within the limits of precision of the respective measurements. Consequently, the mean values of the Joule-Thomson coefficients $\bar{\phi}_{A}$ and $\bar{\phi}_{\mathrm{B}}$ can be utilized in the evaluation of the second integrals in eq 3 and 4.

This same reasoning is also valid for the first integrals in eq 3 and 4. In fact, for the experiments with the system $\mathrm{CH}_{4}-\mathrm{CO}_{2}$

$$
\begin{gathered}
T_{1}=T_{2}=T_{1} \pm 0.002 \mathrm{~K} \\
T_{1}-T_{0}<0.1 \mathrm{~K}
\end{gathered}
$$

Consequently mean values for the heat capacities, $\bar{C}_{p, A}$ and $\bar{C}_{\rho, \mathrm{B}}$, can be utilized in the evaluation of the first integrals in Θq 3 and 4. In this case, eq 3 and 4 become

$$
\begin{align*}
& H_{\mathrm{A}, 1}-H_{\mathrm{A}, 0}=\bar{C}_{p, \mathrm{~A}}\left(T_{1}-T_{0}\right)+\bar{\phi}_{\mathrm{A}}\left(P_{1}-P_{0}\right) \tag{8}\\
& H_{\mathrm{B}, 2}-H_{\mathrm{B}, 0}=\bar{C}_{p, \mathrm{~B}}\left(T_{2}-T_{0}\right)+\bar{\phi}_{\mathrm{B}}\left(P_{2}-P_{0}\right) \tag{9}
\end{align*}
$$

Substitution of eq 7-9 into eq 2 leads to

$$
\begin{align*}
& H_{0}^{E}= Q / F+x_{A} \bar{C}_{p, \mathrm{~A}}\left(T_{1}-T_{0}\right)+x_{\mathrm{B}} \bar{C}_{\rho, \mathrm{B}}\left(T_{2}-T_{0}\right)+ \\
& x_{\mathrm{A}} \bar{\phi}_{\mathrm{A}}\left(P_{1}-P_{0}\right)+x_{\mathrm{B}} \bar{\phi}_{\mathrm{B}}\left(P_{2}-P_{0}\right)+x_{\mathrm{A}} E_{\mathrm{k}, \mathrm{~A}, 1}+ \\
& x_{\mathrm{B}} E_{\mathrm{k}, \mathrm{~A}, 2}-E_{\mathrm{k}, \mathrm{~A}, \mathrm{~B}, 0} \tag{10}
\end{align*}
$$

The value of $H_{0}{ }^{E}$, obtained from eq 10, refers to the conditions at the calorimeter outlet, i.e., P_{0} and T_{0}. Nevertheless, it is

Figure 1. Enthalpy of mixing, $\mathrm{H}^{\mathrm{E}} /\left(\mathrm{J} \mathrm{mol}^{-1}\right)$, of methane-carbon dioxide system at 293.15 K .
impossible to adjust the outlet pressures and temperatures to a unique set of values for a given experiment. In nearly all cases there is a small, but not necessarily negligltle, difference between the measured temperatures and pressures and the nominal conditions (henceforth denoted as P_{n} and T_{n}), which serve as base values for graphical portrayal of the data. The following equation, which refers to the so-called secondary correction, is utillzed to obtain $H_{n}{ }^{\mathrm{E}}$:

$$
\begin{equation*}
H_{\mathrm{n}}^{\mathrm{E}}=H_{0}^{\mathrm{E}}+\int_{T_{0}}^{T_{\mathrm{n}}} C_{\rho}^{\mathrm{E}} \mathrm{~d} T+\int_{P_{0}}^{P_{\mathrm{n}}} \phi^{\mathrm{E}} \mathrm{~d} P \tag{11}
\end{equation*}
$$

where

$$
\begin{gather*}
C_{p}{ }^{\mathrm{E}}=\left(\partial H^{\mathrm{E}} / \partial T\right)_{P, x} \tag{12}\\
\phi^{\mathrm{E}}=\left(\partial H^{\mathrm{E}} / \partial P\right)_{T, x} \tag{13}
\end{gather*}
$$

Notice that, contrarily to the case for the primary corrections, the application of secondary corrections requires knowledge of thermodynamic properties for the gas mixture. Since in the literature there are not available data to calculate $C_{p}{ }^{E}$ and ϕ^{E} for the $\mathrm{CH}_{4}-\mathrm{CO}_{2}$ mixtures, these values were determined from the equation obtained from the Benedict-Webb-Rubin equation of state for the pure components (15). The BWR constants for methane and carbon dioxide, as well as the mixing rules utllized to calculate $C_{p}{ }^{\mathrm{E}}$ and ϕ^{E} for the $\mathrm{CH}_{4}-\mathrm{CO}_{2}$ mixtures, were those presented by Bishnoi and Robinson (16).

Results

The experimental results for the system methane-carbon dioxide are presented in Table I for the nominal temperatures $T_{\mathrm{n}}=293.15$ and 305.15 K at the nominal pressures $P_{\mathrm{n}}=$ $0.507,1.115$, and $1.520 \mathrm{MPa}(5,11$, and 15 atm , respectively) and also for $T_{n}=313.15 \mathrm{~K}$ at the nominal pressures $P_{n}=$ $0.507,1.013,1.520,2.533,3.546$, and $4.600 \mathrm{MPa}(5,10,15$, 25, 35, and 45.4 atm , respectively).

Figures 1-3 present the same data in graphical form.
After application of the primary and secondary corrections, a series expansion of $H^{\mathbf{E}}$ as a function of the mole fraction of methane has been performed to verify the approximation, made in the analysis of results, to the effect that heat losses from the caiorimeter are negliglble. The equation utilized for the correlation of results is of the same form as that utilized by Hejmadi (7, 8), i.e.
$H^{E} /\left[x_{A}\left(1-x_{A}\right)\right]=C+B\left(x_{A}-0.5\right)+A\left(x_{A}-0.5\right)^{2}$

Figure 2. Enthalpy of mixing, $H^{\mathrm{E}} /\left(\mathrm{J} \mathrm{mol}^{-1}\right)$, of methane-carbon dioxide system at 305.15 K .
where A, B, and C are constants, which were determined by polynominal regression. The testing to the effect that heat losses from the cabrimeter are negligible was based on the technique suggested by Montgomery and De Vries (17) which consists of preparing a plot of H^{E} vs. the inverse of flow rates. Ten experimental points, all in the vicinity of a mole fraction of 0.5 (ranging between 0.48 and 0.52), at 313.15 K and 1.013 MPa (10 atm), were normalized to $X_{A}=0.5$. The plots of H^{E} vs. the inverse of flow rates indicate that, for variations of flow rates of $\pm 40 \%$ from a base value (of the order of 5.153 mol s^{-1}), deviation of measured H^{E} 's never exceeded 1.0%. This can be considered as a satisfactory test, since the maximum deviation is lower than the error in the experimental measurements. Table II presents the values for the constants in eq 14.

Accuracy of Experimental Results

There are two factors which affect the accuracy of the results: (1) inaccuracies in the instruments and experimental techniques and (2) errors introduced in the analysis of results. The technique utillzed in the evaluation of errors is that described by Mickley, Sherwood, and Reld (18). The procedure involves adding weighed indtvidual inaccuracies. The weighting factors are determined from a functional relation between the independent variables, e.g., accuracy of potentiometer, of standard resistors, etc. This method, as pointed out by the authors (18), actually overestimates the error in $H_{n}{ }^{E}$, since it does not take into account the possiblity of a partial cancellaton of errors of opposite stgns. In general, for a function G, whose value is a function of n independent variables g_{i}, the error in G is determined from the relationship

$$
\begin{equation*}
\frac{\theta(G)}{G}=\sum_{i=1}^{n}\left(\frac{1}{G} \frac{\partial G}{\partial g_{i}}\right)_{g_{i k i}} \theta\left(g_{i}\right) \tag{15}
\end{equation*}
$$

The readings of the potentiometer and the dead-weight gauge etc. can be listed as the independent variables for the function $H_{n}{ }^{\text {E }}$.

The temperature and the pressure at the calorimeter outlet are known to $\pm 0.05^{\circ} \mathrm{C}$ and ± 0.001 atm; the error for the ratio QIF is estimated at 0.6% and the error in the value of the mole fractions varies between 0.003 and 0.005 . Errors due to primary corrections depend on the accuracy of the experimental measurements of temperatures, pressures, heat capacities, and

Floure 3. Enthalpy of mixing, $H^{\mathrm{E}} /\left(\mathrm{J} \mathrm{mol}^{-1}\right)$, of methane-carbon dioxide system at 313.15 K .

Joule-Thomson isothermal coefficients for the two pure components. For the case of the system methane-carbon dioxide, the relative error for the primary corrections was estimated to be between 0.5% and 1.5%. Relative errors due to the secondary corrections were also estimated. The inaccuracies are due to the estimates for $\bar{\phi}^{\mathrm{E}}$ and $\bar{C}_{p}{ }^{\mathrm{E}}$ from the BWR equation of state. For the case of the system methane-carbon dioxide, the relative error in the secondary corrections was estimated to be between 0.5% and 1\%. An appreciation of the order of magnitude for the primary correction can be obtained by calculating the average deviation $100\left[\left(H_{0}^{\mathrm{E}}-Q / F\right) /(Q / F)\right]$. These deviations were $3.7 \%, 3.5 \%$, and 2% at 293.15, 305.15 , and 313.15 K , respectively, while those for the secondary corrections determined as $100\left[\left(H_{0}{ }^{\mathrm{E}}-H_{\mathrm{n}}{ }^{\mathrm{E}}\right) / H_{0}{ }^{\mathrm{E}}\right]$ were $2.3 \%, 2.2 \%$, and 1.3% at $293.15,305.15$, and 313.15 K , respectively.

Comparison with Literature Results

The only results available in the literature for the system methane-carbon dioxide are those reported by Lee and Mather
(10), which cover a range of temperatures and pressures of 283.15-353.15 K and 1.013-101.3 MPa.

For the temperature of 315.15 K and the pressure of 1.013 MPa , which correspond to data encompassing the same region covered by these authors, thelr reported values of the excess enthalples obtained by extrapolation are 24.5, 34.0, 28.5, and $19.83 \mathrm{~J} \mathrm{~mol}^{-1}$ for $0.248,0.500,0.679$, and 0.784 mole fractions, respectively, whereas our values for the same mole fractions are $27.5,34.4,31.88$, and $21 \mathrm{~J} \mathrm{~mol}^{-1}$. A comparison between these two sets of figures shows an average deviation of less than 7%, which, as will be shown later, is less than the average deviation of the Redlich-Kwong and BWR equations. This agreement is considered satisfactory.

Comparlson of Experimental Data with Predictions from Equations of State

The excess enthalpies $H_{n}{ }^{E}$ for the system methane-carbon dioxide were compared with predicted values calculated from the following equations of state: Redlich-Kwong (19), henceforth referred to as RK1; Redllch-Kwong with Jacoby-Robinson modifications (20), henceforth referred to as RK2; and Bene-dict-Webb-Rubin (15).

The RK1 equation was applled to calculate the excess enthalples $H_{n}{ }^{E}$ in conjunction whth the modified mixing ruies proposed by Chueh and Prausnitz (21). The network of equations for these calculations is as follows:

$$
\begin{gather*}
P=\frac{R T}{V-b}-\frac{a}{T^{1 / 2} V(V+b)} \tag{16}\\
a=x_{1}^{2} a_{11}+x_{2}^{2} a_{22}+2 x_{1} x_{2} a_{12} \tag{17}\\
b=x_{1} b_{1}+x_{2} b_{2} \tag{18}\\
a_{11}=\Omega_{\mathrm{a} 1} R^{2} T_{\mathrm{C}}{ }^{2.5} / P_{\mathrm{C} 1} \tag{19}\\
a_{22}=\Omega_{\mathrm{a} 2} R^{2} T_{\mathrm{C} 2}^{2.5} / P_{\mathrm{C} 2} \tag{20}\\
a_{12}=\left(\Omega_{\mathrm{a} 1}+\Omega_{\mathrm{a} 2}\right) R^{2} T_{\mathrm{C} 12}{ }^{2.5} /\left(2 P_{\mathrm{C} 12}\right) \tag{21}\\
b_{1}=\Omega_{\mathrm{b} 1} R T_{\mathrm{C} 1} / P_{\mathrm{C} 1} \tag{22}\\
b_{2}=\Omega_{\mathrm{b} 2} R T_{\mathrm{C} 2} / P_{\mathrm{C} 2} \tag{23}\\
T_{\mathrm{C} 12}=\left(T_{\mathrm{C} 1} T_{\mathrm{C} 2}\right)^{1 / 2}\left(1-k_{12}\right) \tag{24}\\
P_{\mathrm{C} 12}=Z_{\mathrm{C} 12} R T_{\mathrm{C} 12} / V_{\mathrm{C} 12} \tag{25}\\
Z_{\mathrm{C} 12}=0.291-0.08\left(\omega_{1}+\omega_{2}\right) / 2 \tag{26}\\
V_{\mathrm{C} 12}{ }^{1 / 3}=1 / 2\left(V_{\mathrm{C} 1}^{1 / 3}+V_{\mathrm{C} 2}^{1 / 3}\right) \tag{27}
\end{gather*}
$$

The enthalples of the pure components, CH_{4} and CO_{2}, were calculated from the following equation, which is derived from basic thermodynamic relationships and the Redilich-Kwong equation of state:

$$
\begin{equation*}
\left(H-H^{*}\right)_{0}=\frac{b}{V-b} R T-\frac{a}{T^{1 / 2}(V+b)}-\frac{3}{2} \frac{a}{b T^{1 / 2}} \ln \frac{V+b}{V} \tag{28}
\end{equation*}
$$

This equation is written for the CH_{4} and CO_{2} (as pure gases) and the mixture $\mathrm{CH}_{4}-\mathrm{CO}_{2}$. The excess enthalpy, $\mathrm{H}_{0}{ }^{\mathrm{E}}$, is then

$$
\begin{equation*}
H_{0} E=H_{m, 0}-\left(x_{1} H_{1,0}+x_{2} H_{2,0}\right) \tag{29}
\end{equation*}
$$

The values for the dimensioniess constants a_{l} and b_{l}, and the accentric factors $\omega_{\text {, }}$ utillzed in our computations, were those of Chueh and Prausnitz (22). The interaction constant \boldsymbol{k}_{12} in eq 24 was obtained by an lterative procedure leading to the best possible fit for the excess enthalpy data. We found that a slingle value of k_{12} equal to 0.1327 represents well our entire network
of data whereas the corresponding value of \boldsymbol{k}_{12} in the BWR equation was found to be 0.01296 . The values of all pertinent constants utillized in thls computation are presented in Table III.

The RK2 equation was also applled to calculate the excess enthalples $H_{n}{ }^{\mathbf{E}}$. The modifications proposed by Jacoby and Robinson (20) are as follows:

$$
\begin{gather*}
\frac{a}{R^{2}}=\alpha+\beta(T-311) \tag{30}\\
\frac{b}{R}=\gamma+\delta(T-311) \tag{31}\\
2 a_{12}=K_{12^{a}}+\left(1-K_{12}\right) a_{2} \tag{32}
\end{gather*}
$$

The values for constants α, β, γ, and δ are also presented in Table III. The value of the dimenslonless constant K_{12}, obtained by an Iterative procedure leading to the best possible flt for the excess enthalpy data, was equal to -0.2384 . The value for this constant for the system $\mathrm{CH}_{4}-\mathrm{CO}_{2}$, obtained by Reamer et al. (23) is -0.5 .

Finally, the BWR equation of state was also applied to predict the excess enthalples $H_{n}{ }^{E}$. The network of equations utilized in this computation is as foliows:
enthaipy departure

$$
\begin{align*}
& \left(H-H_{0}\right)=\left(B_{0} R T-2 A_{0}-\frac{4 C_{0}}{T^{2}}\right) \theta+(2 b R T-3 a) \frac{\rho^{2}}{2}+ \\
& \frac{6 a \alpha \rho^{5}}{5}+\frac{C \rho^{2}}{T^{2}}\left[\frac{3\left(1-\theta^{-\gamma \rho^{2}}\right)}{\gamma \rho^{2}}-\frac{e^{-\gamma \rho^{2}}}{2}+\gamma \rho^{2} e^{-\gamma \rho^{2}}\right] \tag{33}
\end{align*}
$$

Jouie-Thomson isothermal coefficient

$$
\begin{align*}
& \phi=\left\{\left(B_{0} R T-2 A_{0}-\frac{4 C_{0}}{T}\right)+(2 b R T-3 a) \rho+\right. \\
& \left.6 a \alpha \rho^{4}+\frac{\theta^{-\gamma \rho^{2}}}{T^{2}}\left(5 c \rho+5 c \gamma \rho^{3}-2 c \gamma^{2} \rho^{5}\right)\right\} /\{R T+ \\
& 2 \rho\left(B_{0} R T-A_{0}-\frac{C_{0}}{T^{2}}\right)+3 \rho^{2}(b R T-a)+6 a \alpha \rho^{5}+ \\
& \left.\frac{e^{-\gamma \theta^{2}}}{T^{2}}\left(3 c \rho^{2}+3 c \gamma \rho^{4}+2 c \gamma^{2} \rho^{6}\right)\right\} \tag{34}
\end{align*}
$$

heat capacity at constant pressure

$$
\begin{align*}
& \left(C_{\rho}-C_{\rho}{ }^{9}=\right. \\
& -R+\frac{6 C_{0} \rho}{T^{3}}-\frac{6 c}{\gamma T^{3}}+c e^{-\gamma \rho^{2}}\left(\frac{6}{\gamma T^{3}}+\frac{3 \rho^{2}}{T^{3}}\right)+ \\
& {\left[R \rho+B_{0} R \rho^{2}+b R \rho^{3}+\frac{2 C_{0} \rho^{2}}{T^{3}}-\right.} \\
& \left.e^{-\gamma \rho^{2}}\left(\frac{2 c \rho^{3}}{T^{3}}-\frac{2 c \gamma \rho^{5}}{T^{3}}\right)\right]^{2} /\left\{R \rho^{2}+2 B_{0} R \rho^{3}-\frac{2 A_{0} \rho^{3}}{T}-\right. \\
& \frac{2 C_{0} \rho^{3}}{T^{3}}+3 b R \rho^{4}-\frac{3 a \rho^{4}}{T}+\frac{6 a \alpha \rho^{7}}{T}+ \\
& \left.\frac{e^{-\gamma \rho^{2}}}{T^{3}}\left(3 c \rho^{4}+3 c \gamma \rho^{6}-2 c \gamma^{2} \rho^{6}\right)\right\} \tag{35}
\end{align*}
$$

In the calculation of the excess enthalpies from the BWR equation of state, the constants for the methane and carbon dioxide and the mixing rules were those presented by Bishnoi and Robinson (16). The BWR constants are presented in Table

Table I. Excess Enthalpies $\left(H^{\mathrm{E}}\right)$ for $x \mathrm{CH}_{4}+(1-x) \mathrm{CO}_{2}$ Where x Denotes Mole Fraction

					$H_{\mathrm{n}}{ }^{\mathrm{E}}, \mathrm{J} \mathrm{mol}{ }^{-1}$			
$T_{0}, \mathrm{~K}$	P_{0}, MPa	x	$Q / F, \mathrm{~J} \mathrm{~mol}^{-1}$	$H_{0}{ }^{\mathrm{E}}, \mathrm{J} \mathrm{mol}^{-1}$	expt	BWR	RK1	RK2
Nominal Conditions: $T_{\mathrm{n}}=293.15 \mathrm{~K} ; \mathrm{P}_{\mathrm{n}}=0.507 \mathrm{MPa}$								
293.140	0.516	0.253	19.50	${ }^{18.20}$	17.90	15.4	14.3	14.6
293.155	0.521	0.477	26.66	26.23	25.63	20.1	18.8	19.7
293.166	0.532	0.501	28.83	27.47	26.39	20.1	18.8	19.1
293.154	0.521	0.816	16.27	18.76	18.45	12.0	11.2	11.4
$\begin{array}{lllllll}\text { Nominal Conditions: } & T_{\mathrm{n}}=293.15 \mathrm{~K} ; P_{\mathrm{n}}=1.114 \mathrm{MPa} \\ 293.160 & 1.139 & 0.169 & 30.33 & 30.01 & 29.30 & 27.7\end{array}$								
293.220	1.101	0.317	46.47	46.34	46.98	42.1	39.2	39.6
293.180	1.160	0.393	50.32	50.39	48.21	46.1	42.9	43.4
293.150	1.160	0.445	49.30	49.98	47.72	47.5	44.2	44.7
293.180	1.167	0.707	46.43	44.86	42.78	39.7	36.3	36.8
293.150	1.146	0.883	25.18	22.57	21.95	19.3	17.9	18.2
Nominal Conditions: $T_{\mathrm{n}}=293.15 \mathrm{~K} ; \mathrm{P}_{\mathrm{n}}=1.520 \mathrm{MPa}$								
293.154	1.539	0.358	61.21	62.06	61.05	64.6	60.0	60.5
293.147	1.510	0.500	61.18	62.00	62.54	69.1	64.1	64.7
293.145	1.493	0.689	49.68	49.26	50.48	58.1	53.8	54.4
293.149	1.514	0.829	33.39	33.60	33.78	37.9	35.1	35.5
Nominal Conditions: $T_{\mathrm{n}}=305.15 \mathrm{~K} ; \mathrm{P}_{\mathrm{n}}=0.507 \mathrm{MPa}$								
305.136	0.522	0.168	13.81	12.51	12.18	10.0	9.0	10.0
305.155	0.531	0.459	17.08	17.76	16.89	17.6	17.5	17.5
305.150	0.532	0.630	14.86	14.08	13.21	16.5	16.3	16.4
305.153	0.509	0.799	11.49	11.16	11.12	11.3	11.2	11.2
305.151	1.129	0.493	43.02	42.59	41.97	41.7	41.3	41.3
305.147	1.127	0.696	39.26	37.79	37.34	34.8	34.5	34.5
305.141	1.123	0.817	22.78	21.73	21.53	24.5	24.2	24.2
Nominal Conditions: $T_{\mathrm{n}}=305.15 \mathrm{~K} ; \mathrm{P}_{\mathrm{n}}=1.520 \mathrm{MPa}$								
305.140	1.565	0.181	30.94	40.18	38.85	36.5	36.3	36.2
305.161	1.511	0.443	57.86	57.42	57.82	59.1	58.5	58.4
305.170	1.549	0.689	51.18	51.34	50.23	50.2	49.6	49.6
305.148	1.504	0.843	32.49	30.64	31.01	30.6	30.3	30.3
Nominal Conditions: $T_{\mathbf{n}}=313.15 \mathrm{~K} ; \mathrm{P}_{\mathbf{n}}=0.507 \mathrm{MPa}$								
313.133	0.522	0.252	11.66	11.58	11.17	12.4	12.8	12.7
313.135	0.537	0.456	19.02	19.55	18.51	16.2	16.7	16.6
313.152	0.524	0.644	15.21	15.14	14.60	14.9	15.4	15.3
313.156	0.512	0.770	10.26	10.01	9.88	11.5	11.8	11.8
Nominal Conditions: $T_{\mathrm{n}}=313.15 \mathrm{~K} ; \mathrm{P}_{\mathrm{n}}=1.013 \mathrm{MPa}$								
313.151	1.033	0.248	31.59	31.50	30.94	26.0	26.9	26.7
313.152	1.004	0.487	35.04	35.52	35.87	34.3	35.4	35.1
313.148	1.007	0.490	33.35	33.72	33.94	34.3	35.4	35.1
313.149	1.006	0.491	33.83	34.30	34.58	34.3	35.4	35.1
313.154	1.005	0.500	33.92	34.40	34.71	34.3	35.4	35.1
313.156	1.008	0.503	33.98	34.57	34.83	34.3	35.4	35.1
313.155	1.010	0.504	33.79	34.27	34.38	34.3	35.4	35.1
313.149	1.014	0.508	34.04	34.84	34.80	34.3	35.4	35.1
313.148	1.020	0.520	33.09	33.79	33.54	34.3	35.5	35.1
313.145	1.023	0.679	31.71	31.88	31.56	29.7	30.6	30.3
313.100	1.060	0.784	21.12	21.00	19.83	22.9	23.6	23.5
Nominal Conditions: $T_{\mathrm{n}}=313.15 \mathrm{~K} ; \mathrm{P}_{\mathrm{n}}=1.520 \mathrm{MPa}$								
313.183	1.495	0.212	41.10	40.44	41.18	37.2	38.6	38.2
313.160	1.513	0.493	53.20	53.08	53.35	54.3	56.0	55.5
313.180	1.526	0.757	39.98	40.02	39.87	39.1	40.3	39.9
313.150	1.523	0.842	28.80	28.51	28.45	28.1	29.0	28.7
Nominal Conditions: $T_{\mathrm{n}}=313.15 \mathrm{~K} ; \mathrm{P}_{\mathrm{n}}=2.533 \mathrm{MPa}$								
313.140	2.536	0.255	73.73	74.83	74.71	80.4	83.5	82.3
313.180	2.547	0.361	88.82	89.52	88.85	95.8	99.2	97.8
313.133	2.538	0.496	93.49	94.66	94.38	101.6	104.8	103.4
313.120	2.562	0.630	87.20	88.07	86.64	92.9	95.5	94.3
Nominal Conditions: $T_{\mathrm{n}}=313.15 \mathrm{~K} ; P_{\mathrm{n}}=3.546 \mathrm{MPa}$								
313.161	3.507	0.095	61.10	61.90	63.11	63.0	66.3	64.9
313.147	3.559	0.192	105.83	107.08	106.48	110.0	114.9	112.6
313.154	3.532	0.313	128.80	130.07	131.04	147.0	152.4	149.4
313.145	3.522	0.513	137.72	138.91	140.56	162.0	166.6	163.7
313.140	3.524	0.668	107.16	110.18	111.45	138.9	142.3	139.9

Table I (Continued)

$T_{0}, \mathrm{~K}$	P_{0}, MPa	x	$Q / F, \mathrm{~J} \mathrm{~mol}^{-1}$	$H_{0}{ }^{\mathrm{E}}, \mathrm{J} \mathrm{mol}^{-1}$	$H_{\mathrm{n}}{ }^{\mathrm{E}}, \mathrm{J} \mathrm{mol}^{-1}$			
					expt	BWR	RK1	RK2
Nominal Conditions: $T_{\mathrm{n}}=313.15 \mathrm{~K} ; \mathrm{P}_{\mathrm{n}}=4.600 \mathrm{MPa}$								
313.145	4.602	0.158	135.82	137.67	137.5	153.8	161.6	157.1
313.150	4.599	0.351	218.54	219.87	220.0	240.0	248.0	241.9
313.147	4.584	0.514	223.95	225.39	226.88	247.5	253.1	247.4
313.131	4.601	0.686	192.78	193.25	193.13	201.8	205.2	201.0
313.152	4.553	0.782	140.50	142.40	145.0	155.4	157.7	154.5

Table II. Regression Coefficients for the Equation $H^{\mathbb{E}} /\left[x_{\mathrm{A}}(1-\right.$ $\left.\left.x_{\mathrm{A}}\right)\right]=C+B\left(x_{\mathrm{A}}-0.5\right)+A\left(x_{\mathrm{A}}-0.5\right)^{2}$

$T, \mathrm{~K}$	$\begin{aligned} & P_{\mathrm{n}}, \\ & \mathrm{MPa} \end{aligned}$	$\begin{gathered} A, \mathrm{~J} \\ \mathrm{~mol}^{-1} \end{gathered}$	$\begin{gathered} B, \mathrm{~J} \\ \mathrm{~mol}^{-1} \end{gathered}$	$\begin{gathered} C, \mathrm{~J} \\ \mathrm{~mol}^{-1} \end{gathered}$	$\begin{gathered} 100 \mid\left(H_{\mathrm{n}} \mathrm{E}_{\mathrm{exptd}}-\right. \\ \left.H_{\mathrm{n}}^{\mathrm{E}} \text { calcd }\right) / H_{\mathrm{n}}^{\mathrm{E}} \mathrm{E}_{\text {exptu }} \end{gathered}$
293.15	0.507	-75	6.32	103.61	6.5
	1.114	167.22	24.51	198.36	2.2
	1.52	12.61	-50.72	252.19	2.5
305.15	0.507	182.31	-30.68	62.96	5.1
	1.114	-0.88	-64.02	176.88	5.5
	1.52	180.22	-30.06	234.18	0.9
313.15	0.507	242.71	-4.13	74.25	1.0
	1.013	86.82	-92.57	137.93	2.1
	1.52	192.25	-53.38	215.85	1.0
	2.533	58.57	-47.37	377.78	0.1
	3.546	516.87	-190.1	573.89	1.2

Table III. Constants Utilized in RK1 and RK2 Equations of State

	CH_{4}	CO_{2}	ref
Ω_{a}, dimensionless	0.4546	0.4184	10
Ω_{b}, dimensionless	0.0872	0.0794	10
$T_{\mathrm{C}}, \mathrm{K}$	190.6	304.2	18
$P_{\mathrm{C}}, \mathrm{MPa}$	4.60	7.38	18
$V_{\mathrm{C}}, \mathrm{cm}^{3} \mathrm{~mol}^{-1}$	99.0	94.0	18
ω, dimensionless $_{\alpha, \mathrm{K}^{2,5} \mathrm{MPa}^{-1}}$	0.013	0.225	18
$\beta, \mathrm{~K}^{1.5} \mathrm{MPa}^{-1}$	44.648	90.175	22
$\gamma, \mathrm{~K} \mathrm{MPa}^{-1}$	-24.969	27.338	22
$10^{4} \delta, \mathrm{MPa}^{-1}$	3.375	3.316	22
	0.00	0.691	22

Table IV. Constants for the BWR Equation (15)

	CH_{4}	CO_{2}
$A_{0}, \mathrm{MPa} \mathrm{dm}^{6} \mathrm{~mol}^{-2}$	0.1896036	0.1861047
$10^{2} B_{0}, \mathrm{dm}^{3} \mathrm{~mol}^{-1}$	4.320305	3.2014927
$C_{0}, \mathrm{MPa} \mathrm{dm}{ }^{6} \mathrm{~mol}^{-2} \mathrm{~K}^{2}$	23811.516	17836.04
$10^{3} b, \mathrm{dm}^{6} \mathrm{~mol}^{-2}$	3.9787382	6.2530078
$a, \mathrm{MPa} \mathrm{dm}{ }^{9} \mathrm{~mol}^{-3}$	0.007011487	0.024525569
$10^{-4} \mathrm{c}, \mathrm{MPa} \mathrm{dm}{ }^{9} \mathrm{~mol}^{-3} \mathrm{~K}^{2}$	0.3057917	0.19259978
$10^{5} \alpha, \mathrm{dm}^{9} \mathrm{~mol}^{-3}$	9.6835765	4.8784066
$10^{3} \gamma, \mathrm{dm}^{6} \mathrm{~mol}^{-2}$	5.71181250	4.2808218

IV. The largest devlation between our results and those predicted by the BWR equation was 21% at $0.507 \mathrm{MPa}(5 \mathrm{~atm})$. In all other cases the deviation was below 10%. In general, the predictions from the BWR equation of state compare better wth our experimental results than the prediction from elther the RK1 or RK2 equation. Also, the results obtained from the two latter equations are approximately the same.
One of the interesting results of this comparison is the good fit obtained with the Redlich-Kwong equation etther in the ori-ginal-version RK1 or with the Jacoby-Robinson modification RK2. Indeed replacing the two-constants RK equation wth the elght-constants BWR equation ylelds a rather small improvement in the average deviation. In both cases only one adjustable constant k_{y} was utilized.

Clossary

a	constant in Redilich-Kwong equation, $\mathrm{Pa} \mathrm{K} \mathrm{K}^{1 / 2} \mathrm{~cm}^{6}$ mol^{-1}
$\begin{gathered} a_{11}, a_{22} \\ a_{12} \end{gathered}$	terms in Redlich-Kwong equation defined by eq 19-21, respectively

b_{1}, b_{2} terms in Redlich-Kwong equation defined by eq 22 and 23, respectively
a, b, c, constants in BWR equation of state, eq 33, dimen-

A_{0}	
B_{0}	\quad sions listed in Table IV

BO_{0}
$C_{p} \quad \begin{gathered}\text { molar } \\ K^{-1} \\ \\ \mathrm{~K}^{-1}\end{gathered}$
$E_{\mathrm{k}} \quad$ kinetic energy, $\mathrm{J} \mathrm{mol}^{-1}$
$F \quad$ flow rate, $\mathrm{mol} \mathrm{s}^{-1}$
H molar enthalpy, $\mathrm{J} \mathrm{mol}^{-1}$
$k_{12} \quad$ characteristic binary constant for RK1 equation, eq 24, dimensionless
$K_{12} \quad$ characteristic binary constant for RK2 equation, eq 32, dimensioniess
$P \quad$ pressure, MPa
$P_{C 12}$ term defined by eq $25, \mathrm{MPa}$
Q heat supplied to gas system by the power supply, J s^{-1}
$R \quad$ universal gas constant, $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
T temperature, K
$T_{\mathrm{C} 12} \quad$ term defined by eq 24, K
V molar volume, $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$
x mole fraction, dimensionless
$Z_{C 12}$ term defined by eq 26, dimensionless
Subscripts

A	denotes pure gas $\mathrm{A}\left(\mathrm{CH}_{4}\right)$
B	denotes pure gas $\mathrm{B}\left(\mathrm{CO}_{2}\right)$
A, B	denotes gas mixture ($\mathrm{CH}_{4}-\mathrm{CO}_{2}$)
C	denotes critical temperature or critical pressure: namely, $P_{C 1}$ and $P_{C 2}$, critical pressures for gases 1 and 2, respectively; $T_{\mathrm{C} 1}$ and $T_{\mathrm{C} 2}$, critical temperatures for gases 1 and 2 , respectively
1	denotes component i
m	denotes mixture
n	denotes a nominal outlet condition, in conjunction with $H_{n}{ }^{E}, P_{n}$, or T_{n}
P, T	denotes constant temperature and pressure
1	denotes inlet conditions (P_{1}, T_{1}) for gas 1
2	denotes inlet conditions (P_{2}, T_{2}) for gas 2
0	denotes outlet conditions (P_{0}, T_{0}) for gas mixture
E	denotes an excess thermodynamic property, namely , excess enthalpy, H^{E}
ld	denotes ideal solution
	denotes mean values (for Joule-Thomson coefficient and for heat capacitles at constant pressure, C_{p})
	denotes a hypothetical ideal gas state at temperature T and zero pressure

Greek Letters

$\alpha, \gamma \quad$ constants in BWR equations of state, eq 33, dimensions listed in Table IV
α, β, γ, constants in RK2 equation of state (refer to eq 30-32), dimensions listed in Table III
$\Delta E_{\mathrm{k}} \quad$ change of kinetic energy for gaseous system across calorimeter, $\mathrm{J} \mathrm{mol}^{-1}$
$\Delta H \quad$ enthalpy change, $\mathrm{J} \mathrm{mol}^{-1}$
$\Delta H_{m} \quad$ heat of mixing for a real solution, $\mathrm{J} \mathrm{mol}^{-1}$

$\Delta H_{m}{ }^{16}$	heat of mixing for an ideal solution $\left(\Delta H_{m}{ }^{k d}=0\right), J$ mol^{-1}
ρ	gas density, mol cm^{-3}
ϕ	isothermal Joule-Thomson coefficient, defined by eq $5, \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~Pa}^{-1}$
$\Omega_{\mathrm{a}}, \Omega_{\mathrm{b}}$	constants in eq 19-21, dimensionless
ω	accentric factor, eq 26, dimensioniess (ω_{1} and ω_{2} refer to accentric factors for CH_{4} and CO_{2}, respectively)

Literature Ched

(1) Beenakker, J. J. M.; Coremans, J. M. J. "Proceedings of the 2nd Symposkun on Thermophyslcal Properties"; Amerlcan Soclety of Mechanrical Englneers: New York, 1962; p 3.
(2) Beenakker, J. J. M.; Van Eijnsberger, B.; Knoester, M.; Taconts, K. W.; Zandberger, P. "Proceedings of the 3rd Symposium on Thermophyst' cal Propertes"; Amerlcan Soclety of Mechanical Engineers: New York, 1965; p 114.
(3) Knoester, M.; Taconis, K. W.; Beenakker, J. J. M. Physica (Utrecht) 1987, 33, 389.
(4) Van Eijnsberger, B.; Beenakker, J. J. M. Physica (Utrecht) 1988, 39, 499.
(5) Klein, R. R. Ph.D. Thesis, Yale Unlversity, New Haven, CT, 1969.
(6) Kleln, R. R.; Benett, C. P.; Dodge, B. F. AICHe J. 1971, 17, 958.
(7) Hejmadl, A. V. Ph.D. Thesls, University of Michigan, Ann Arbor, MI, 1970.
(8) HeJmadi, A. V.; Katz, D. L.; Powers, J. E. J. Chem. Thermodyn. 1971, 3, 483-96
(9) Lee, J. I.; Mather, A. E. J. Chem. Thermodyn. 1970, 2, 281.
(10) Lee, J. I.; Mather, A. E. J. Chem. Thermodyn. 1972, 17, 189.
(11) Altunin, V. V.; Bondarenko, V. F.; Kuznetsov, D. O. Teplofiz. Vys. Temp. 1973, 11, 3, 533; 1974, 12, 3, 513.
(12) Ba, L. B.; Naln, V. P. S.; Kallaguine, S. C.; Ramalho, R. S. J. Chem. Eng. Data 1977, 72, 171.
(13) Ba, L. B.; Kallagulne, S. C.; Ramalho, R. S. J. Chem. Thermodyn. 1978, 10, 603-12.
(14) Ba, L. B.; Kallaguine, S. C.; Ramalho, R. S. Can. J. Chem. Eng. 1979, 57, 363-6.
(15) Benedict, M.; Webb, G. B.; Rubin, L. C. J. Chem. Phys. 1940, 8, 334.
(16) Blehnol, P. R.; Roblnson, D. B. Can. J. Chem. Eng. 1972, 50, 2, 101.
(17) Montgomery, J. B.; De Vries, J. J. Am. Chem. Soc. 1942, 64, 2372.
(18) Mickley, H. S.; Sherwood, T. K.; Reid, C. E. "Applled Mathematics in Chemical Engineering"; McGraw-Hil: Now York, 1957; p 53.
(19) Redllch, O.; Kwong, J. N. S. Chem. Rev. 1949, 44, 233.
(20) Robinson, R. L.; Jacoby, R. H. Hydrocarbon Process. 1085, 44, 4, 141.
(21) Chueh, P. L.; Prausnitz, J. M. Ind. Eng. Chem. Fundam. 1987, 6, 492.
(22) Chueh, P. L.; Prausnitz, J. M. AICHo J. 1967, 13, 6, 1099.
(23) Reamer, H. H., et al. Ind. Eng. Chem. 1044, 36, 88.

Recelved for review October 6, 1981. Accepted March 26, 1982.

Investigation of Vapor Pressures and Heats of Vaporization of Condensed Aromatic Compounds at Elevated Temperatures

Alwarappa Sivaraman and RIki Kobayashl*
Department of Chemical Engineering, Rice University, Houston, Texas 77001

Abstract

A high-temperature static apparatus is used to investigate vapor pressures in the range $\mathbf{1 - 2 7 8 0} \mathbf{~ m m H g}$ over the temperature range 425-840 K for three aromatic compounds strilar to those which are often found in coal llquids: fluorene, dibenzofuran, and dibenzothiophene. The expermental vapor pressure data of fluorene and its homomorphs cited above have been filted to Chebyshev polynomlats. The values of $\mathrm{dp} / \mathrm{d} T$ calculated from the Chebyshev polynomials, the compreestbility factors of saturated vapor and IIquid eetimated from three-parameter corresponding states correlation, and the acentric factors determined from thelr experkmental vapor pressure data presented in this peper were used to evaluate the heats of vaporization of the aromatic compounds mentioned above from the Clapeyron equation.

Introduction

The purposes of this article are (I) to investigate the vapor pressures of some commercially important substances found in coal liquids, viz., fluorene, dibenzofuran, and dibenzothiophene, and (II) to determine the heats of vaporization of fluorene and the homomorphs mentioned above. The determination of vapor pressures of some oxygen- and sulfur-containing coal-derived liquids is an important consideration from not only the purely scientific standpoint but also a commercial standpoint. Hydrocarbon fractions derived from the liquefaction of coal are composed largely of hydrogen-deficient con-densed-ring molecular systems. Since many of the pure compounds that are members of these systems are low vapor pressure solids at room temperature, the amount of rellable physical and thermodynamic data avallable for them, compared to that for alkane hydrocarbons (1), is sparse. Vapor pressure

Is an important physical property required in designing coa-Hquid processing and separation plants. The idea of choosing these condensed aromatic compounds is that the thermodynamic properties are virtually unknown, especially at high temperatures. Moreover, it is interesting and valuable to study the properties of the coairelated compounds belonging to the same family or homomorphs (2) which will help to generate best correlations for better prediction of physical properties. No experimental vapor pressure values are reported in the literature for these compounds in the temperature range of the present investigation. However, Edwards and Prausnitz (3) report vapor pressure measurements in solid and liquid dibenzothiophene at fairty low temperatures. The experimental data of vapor pressures were fltted to Chebyshev polynomials and values of $\mathrm{dp} / \mathrm{d} T$ were calculated. No literature measurements of heats of vaporization over the range of temperatures were found for these compounds. For design of coal-conversion processes these data are very much necessary. The following paper presents the calculated values of heats of vaporization from our experimental vapor pressure data over a range of temperature. The Clapeyron equation was used to calculate the heat of vaporization. The compressibility factors of saturated vapor and liquid needed for the above calculation were estimated from Pitzer's three-parameter corresponding states correlation using the acentric parameters obtained from this study.

Experimental Vapor Pressure Measurements

Materlats. All compounds studied were purchased from Aldrich Chemical Co. with the following purties: fluorene, 98%; dibenzofuran, 98%; and dtbenzothiophene, 95%. These substances were purified by 48 passes in a zone refiner to a purity of 99.99%. The purity was estimated by the freezing-point

