Isentropic Compressibilities of Mixtures of Aliphatic Alcohols with Benzonitrile

J. Karunakar, K. Dayananda Reddy, and M. V. Prabhakara Rao*

Department of Chemistry, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India

Isentropic compressibilities of binary mixtures of homologous series of aliphatic alcohols + benzonitrile were measured at 308.15 K and are reported here. The mixtures studied are 1-propanol + benzonitrile, 1-butanol + benzonitrile, 1-pentanol + benzonitrile, 2-propanol + benzonitrile, 2-methyl-1-propanol + benzonitrile, and 3-methyl-1-butanol + benzonitrile.

Introduction

These measurements were made as part of a study of isentropic compressibilities of a number of binary liquid mixtures (1-5). In this paper we report measurements of the isentropic compressibilities of a homologous series of aliphatic alcohols with a common solvent, benzonitrile, at 308.15 K. A literature survey showed that no one has reported isentropic compressibility data for these mixtures of six alcohols with benzonitrile at 308.15 K.

Experimental Section

Measurement of Density. Densities were measured by using a bicapillary pycnometer described by Rao (6) and were accurate to 5 parts in 10^5 parts. The pycnometer was similar to that of Parkar and Parkar with minor modifications. It was a double-stem pycnometer made of Pyrex glass and it consisted of a built that held about 11 cm³. The stems were made of capillary tubing with a uniform bore of about 1 mm. The double-stem pycnometer was standardized by using triple-distilied water at 303.15 K.

Measurement of Ultrasonic Velocity. Ultrasonic velocities were measured by using a variable-path single-crystal interferometer. A crystal-controlled rf oscillator (high-frequency generator) was used to excite the transducer at a frequency of 2 MHz. The frequency was measured with an accuracy of 1 in 10⁵ by using a digital frequency meter. The voltage variations across the transducer were observed by using a microammeter. Two controls were provided for the purpose of sensivity regulation and initial adjustment of the microammeter. The interferometer cell was filled with the experimental liquid and was connected to the output terminal of the high-frequency generator through a shielded cable. Water was circulated around the measuring cell from a thermostat maintained at 308.15 \pm 0.01 K. When the liquid attained the temperature of the bath, the microammeter screw was slowly moved till the anode current meter showed a maximum.

For increasing the accuracy of the measurement, several such maxima were counted (n) by changing the distance between the transducer and the reflector. The total distance dmoved by the reflector was used to calculate the wavelength, λ , by the equation $d = n \lambda/2$. The frequency of the crystal fbeing accurately known (1.995 MHz), the sound velocity, u, was calculated by the relation $u = \lambda f$. The sound velocities are accurate to 1 in 1000 m.

Determination of Isentropic Compressibility. The isentropic compressibilities were calculated from the relation

$$K_{\rm s} = u^{-2} \rho^{-1} \tag{1}$$

Table 1. Bolling Points and Densities of Pure Compone	ole I. Boiling Points and I	ensities of Pure Com	ponent
---	-----------------------------	----------------------	--------

bp	, К	$\rho(303.15 \text{ K}), \text{g cm}^{-3}$			
present work	lit. (7)	present work	lit. (7)		
370.15	370.15	0.795 60	0.79567		
390.15	390.22	0.802 05	0.802.06		
411.00	411.10	0.807 54	0.80764		
354.85	355.35	0.776 85	0.776 90		
380.94	381.04	0.794 31	0.794 37		
404.35	405.05	0.80167	0.80179		
463.93	464.04	0.996 19	0.996 28		
	bp present work 370.15 390.15 411.00 354.85 380.94 404.35 463.93	bp, K present work lit. (7) 370.15 370.15 390.15 390.22 411.00 411.10 354.85 355.35 380.94 381.04 404.35 405.05 463.93 464.04	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		

where u and ρ denote the sound velocity and the density of the liquid, respectively.

Purtification of Materials. Benzonitrile (Riedel) was dried over freshly fused calcium chloride for 2 days and distilled at atmospheric pressure.

1-Propanol (E. Merck) was refluxed over lime for 5 h and then distilled through a 1-m fractionating column. The fraction boiling at 370.15–370.35 K was collected.

1-Butanol (BDH) was refluxed over freshly ignited calcium oxide for 4 h. The alcohol was decanted from the lime, refluxed with magnesium turnings, and then fractionally distilled. The middle fraction which bolled at 390.75 K was collected.

1-Pentanol (E. Merck) was dried over Drierite and fractionally distilled.

2-Propanol (BDH) was dried first with calcium chloride and then with barlum oxide and fractionally distilled.

2-Methyl-1-propanol (BDH) was purtfied by repeated fractional distillation through a 1-in.-90 plate column.

3-Methyl-1-butanol (BDH) was dried with calcium chloride and then purified by careful fractional distillation.

The purities of the chemicals were checked by comparing the values of densities at 303.15 K and boiling points corrected to 1-atm pressure with those reported in the literature (7) and are presented in Table I.

Results and Discussion

The values of isentropic compressibilities of mixtures and of pure components calculated from the measured values of sound velocities and densities were used to calculate the values of the parameter ΔK_a , by using the equation

$$\Delta K_{\rm s} = K_{\rm s} - \phi_{\rm A} K_{\rm s,A} - \phi_{\rm B} K_{\rm s,B} \tag{2}$$

where K_{a} , $K_{a,A}$, and $K_{a,B}$ are the isentropic compressibilities of the mixture and the pure components A and B, and ϕ_{A} and ϕ_{B} are the volume fractions of components A and B, respectively. The values of ΔK_{a} for the six systems are presented in Table II and represented in Figures 1 and 2.

Values of $\Delta K_{\rm s}$ for the six systems are negative over the entire range of compositions in all of the systems. The negative values of $\Delta K_{\rm s}$ in the mixtures of benzonltrile with primary straight-chain alcohols fall in the following order:

1-propanol > 1-butanol > 1-pentanol

The negative values of ΔK_s in the mixtures of benzonitrile with the remaining alcohols also fall in the same order:

2-propanol > 2-methyi-1-propanol > 3-methyl-1-butanol

Table II. Isentropic Compressibilities of Aliphatic Alcohols with Benzonitrile at 308.15 K

	• •		-									
$\phi_A{}^a$	ρ, ^b g cm ⁻³	<i>u,^c</i> m s ⁻¹	<i>K</i> _s , ^{<i>d</i>} TPa ⁻¹	∆ <i>K</i> _s , ^e TPa ⁻¹	δ <i>K</i> _s , ^f TPa ⁻¹	$\phi_A{}^a$	ρ, b g cm ⁻³	<i>u,c</i> m s ⁻¹	K_{s}^{d} , d TPa ⁻¹	∆ <i>K_s,^e</i> TPa ⁻¹	$\delta K_{s}, f$ TPa ⁻¹	
	Benzon	itrile + 1-	Propanol				Benzon	nitrile + 2	-Propanol			
0.0000	0.791 90	1171	921			0.0000	0.77276	1102	1066			
0.1134	0.821 00	1207	837	-33	+1	0.1303	0.80250	1149	942	-54	0	
0.3007	0.855 31	1245	754	-49	-3	0.2284	0.824 75	1183	867	-76	+1	
0.4391	0.882 94	1274	698	-52	+1	0.2950	0.83951	1200	827	-81	-1	
0.5780	0.91048	1301	649	-46	+1	0.4238	0.86779	1237	754	84	+1	
0.7075	0.935 56	1326	608	-37	+2	0.5080	0.886 05	1259	712	-80	+1	
0.8194	0.95765	1346	577	-24	-1	0.6210	0.89957	1287	671	-68	0	
0.9262	0.97791	1367	547	-12	0	0.7143	0. 93 0 16	1311	625	-55	0	
1.0000	0.991 98	1378	531			0.7943	0.948 42	1331	595	-43	0	
	Dengor	siteila i 1	Dutanol			0.8735	0.964 29	1349	570	-28	+1	
0.0000	0 798 10	1203	-Dutanoi 866			1.0000	0.991 98	1378	531			
0.1090	0.820.98	1229	806	-24	-1		Benzonitrile	+ 2-Meth	vl-1-nrong	mol		
0.2496	0.848 98	1257	746	-37	ō	0.0000	0.790.25	1154	950			
0.3886	0.87773	1279	696	-40	Õ	0.1316	0.81768	1191	863	-32	0	
0.5241	0.901 74	1304	652	-38	õ	0.2300	0.837 81	1216	807	-47	õ	
0.6653	0.928 04	1328	611	-32	+3	0.3466	0.861.57	1244	749	-56	+1	
0.7906	0.952 57	1346	579	-22	+1	0.4016	0.87263	1256	726	-55	$-\overline{1}$	
0.9099	0.975 01	1365	550	-11	0	0.5056	0.89345	1279	684	-54	ō	
1.0000	0.981 98	1378	531		-	0.6293	0.918 09	1304	640	-46	-1	
	-					0.6959	0.931 31	1321	615	-43	$+1^{-}$	
0 0000	Benzon	1 true + 1	Pentanol			0.8049	0.953 05	1342	582	-30	Ō	
0.0000	0.80369	1238	812	10	•	0.8666	0.965 26	1353	566	-21	0	
0.1331	0.82946	1264	/30	-18	0	1.0000	0.991 98	1378	531			
0.1778	0.83/99	1269	/41	-21	0		D			. 1		
0.2701	0.836 /1	1283	/09	- 20	-1	0.0000	Benzonitrue	+ 3-Met	nyi-1-butan	nol		
0.3/92	0.0/0 29	1290	677	- 29	+1	0.0000	0.798 20	1203	807	20	•	
0.4201	0.885.08	1204	004	-29	+1	0.1209	0.822/0	1229	803	-20	0	
0.4435	0.000 29	1217	630	-28	0	0.2285	0.843 10	1250	/38	-31	+1	
0.5270	0.90411	1222	635	-2/	0	0.3332	0.80338	1209	/19	-30	+1	
0.5/54	0.91311	1323	612	-25	0	0.4320	0.88264	1280	683	-37	0	
0.0207	0.922.99	1245	597	-22	~1	0.5252	0.90064	1210	034	-31	+1	
0.7204	0.94133	1261	550	-20	+1	0.3082	0.908 94	1214	041 624	- 35	+1	
1 0000	0.90/23	1279	521	-10	U	0.3934	0.91300	1224	034 600	- 33	0	
1.0000	0.331 30	13/0	221			0.7101	0.93/29	1245	590	-27	0	
						0.0030	0.93400	1343	560	- 20	0	
						0.0009	0.90002	1279	500	-15	+1	
						1.0000	0.331 39	13/0	221			

^a Volume fraction of benzonitrile. ^b Density. ^c Sound velocity. ^d Values of K_s calculated from u and ρ . ^e Values of ΔK_s computed from eq 2. ^f $\delta K_s = \Delta K_{s,exptl} - \Delta K_{s,calcd(eq 3)}$.

Figure 1. Parameter ΔK_e -volume fraction curves for (\Box) 1-propanol, (∇) 1-butanol, and (\oplus) 1-pentanol with benzonlitrile at 308.15 K.

The dependence of $\Delta K_{\rm s}$ on composition may be represented in terms of a power series

$$\Delta K_{\rm s} / (\phi_{\rm A} \phi_{\rm B}) = b_0 + b (\phi_{\rm A} - \phi_{\rm B}) + b_2 (\phi_{\rm A} - \phi_{\rm B})^2 \quad (3)$$

Figure 2. Parameter ΔK_{\bullet} -volume fraction curves for (\Box) 2-propanol, (∇) 2-methyl-1-propanol, and (\bullet) 3-methyl-1-butanol with benzonitrile at 308.15 K.

where ϕ_A and ϕ_B are volume fractions of components A and B, and b_0 , b_1 , and b_2 are arbitrary constants whose values have been obtained by the least-squares principle. Values of

Table III. Standard Deviation (σ) and Values of the Constants in Eq 3 at 308.15 Ka

system	bo	b_1	<i>b</i> ₂	σ
benzonitrile + 1-propanol	-196.01	96.40	-85.39	2
benzonitrile + 1-butanol	-148.71	68.60	-57.21	1
benzonitrile + 1-pentanol	-108.90	43.38	-21.40	1
benzonitrile + 2-propanol	-320.48	150.55	-84.44	1
benzonitrile + 2-methyl-1-propanol	-218.90	66.60	-26.83	1
benzonitrile + 3-methyl-1-butanol	-144.03	37.25	-15.47	1

^a All values in TPa⁻¹.

these constants are given in Table III along with the standard deviation, σ , which is obtained by using the equation

$$\sigma = \left[\frac{\sum (\Delta K_{s, expti} - \Delta K_{s, calcd})^2}{n - \rho} \right]^{1/2}$$
(4)

where n is the number of results and p is the number of parameters in eq 3.

Acknowledgment

We thank the Department of Chemistry, Sri Venkateswara University, for providing the necessary facilities for completion of this work.

Literature Cited

- Rao, M. V. P.; Naldu, P. R. *J. Chem. Thermodyn.* **1974**, *6*, 1195. Rao, M. V. P.; Naldu, P. R. *J. Chem. Thermodyn.* **1976**, *8*, 73. Rao, M. V. P.; Naldu, P. R. *J. Chem. Thermodyn.* **1976**, *8*, 96.
- (2) (3)

- Rao, M. V. P.; Naidu, P. R. J. Chem. Thermodyn. 1976, 8, 96.
 Reddy, K. S.; Naidu, P. R. J. Chem. Thermodyn. 1976, 8, 1208.
 Reddy, K. S.; Naidu, P. R. J. Chem. Thermodyn. 1978, 10, 201.
 Rao, M. V. P. Ph.D. Thesis, Sri Venkateswara University, Tirupati, India, 1974, Chapter 2.
 Timmermans, J. "Physicochemical Constants of Pure Organic Compounds"; Elsevier: New York, 1965.

Received for review August 5, 1981. Accepted April 22, 1982.

Speed of Sound in Saturated Liquid *n*-Pentane

Martin Chávez, * José Ma. Palacios, † and Ricardo Tsumura‡

Universidad Autonoma Metropolitana, Iztapalapa, México

The speed of sound in saturated liquid n-pentane has been measured in the temperature range -70 to 35 °C from 7.3 to 12 MHz. Two different methods were used, and the agreement of the two data sets is within the experimental error. These data were combined with available density data to obtain the adiabatic compressibilities.

Introduction

Measurements of the speed of sound offer a convenient method for determining certain thermodynamic properties of dense fluids not easily obtained by other means. We have measured the speed of sound W in saturated liquid n-pentane from -70 to 35 °C using the pulse-echo-superposition (PES) and pulse-echo-overlap (PEO) methods at frequencies from 7.3 to 12 MHz. The results have been used with the available density ρ_{σ} data to obtain isontropic compressibility β_{s} by means of the relation $W^2 = (\rho_{\sigma}\beta_s)^{-1}$.

Experimental Procedure

The speed of sound was measured by using two different methods. The first was the pulse-echo superposition (PES), used previously in this laboratory for measurements on trichlorofluoromethane (1) and described previously (1, 2). The second method, used widely in solids (3, 4), was the pulse-echo overlap (PEO) described in detail elsewhere (3, 5). Measurements were made by using two 10-MHz X-cut quartz crystals. The first data set was obtained by using the PES method where the crystals vibrated at their resonant frequencies. In the second data set, obtained with the PEO method, at each temperature, the crystals were forced to vibrate around two frequencies, 7.3 and 12 MHz, at which the observed signal on the

oscilloscope was clearer. The differences in the overlapping criteria with these frequencies were always less than 10 Hz in the repetition rate frequency. This corresponds to less than 0.02% in the measured speed of sound. This, together with the uncertainties in the acoustic path length and pulse repetition frequency, gives an uncertainty in the measured speed of sound of less than 0.05%, which is comparable with that estimated for the PES method.

The sample cell made of heavy copper was immersed in a thermostated ethanol bath which was controlled with a sensitive proportional temperature regulation. Temperatures were measured by using platinium resistance thermometer calibrated on the IPTS-68. This thermometer was located in a thermowell inside the sample cell in contact with the liquid n-pentane. The temperature could be maintained within ±0.006 °C during the measurements. The n-pentane used was commercially obtained from Merck with reported minimum purity of 99.0% and probable impurities of water and sulfur compounds. The npentane was not further purified except for the degassing performed at 25 °C. At each temperature, the sound speed was measured at least twice with some n-pentane being removed from the sample cell between the measurements. Identical sound speed observations indicated that the two-phase condition existed in the sample cell.

Results and Discussion

The speed of sound for the saturated liquid n-pentane has been measured at about 5 °C intervals from -70 to 35 °C for both data sets. These data are shown in Table I. For the PEO method the data are those obtained with the crystals vibrating around 12 MHz. The speed of sound data set measured with the PES method was fitted to a quadratic equation of the form

$$W(t) = a + bt + ct^2 \tag{1}$$

where, a b, and c were found by an unweighted least-squares method. The coefficients obtained are a = 1126.257, b =-4.935006, and c = 0.0016748. Deviations of the two data

[†] Instituto Mexicano del Petróleo (IBP)

[‡] Instituto de Investigación de Materiales, UNAM, México, D. F.