

Figure 3. Molar excess isobaric heat capacity, $C_{p}{ }^{\mathrm{E}}$, of aqueous 1 -propanol mixtures vs. mole fraction, x, of water. Present work: (0) 288.15 K ; (Δ) 308.15 K . Curves: (-) least-squares representations by eq 2 ; ($\cdot \cdot$) smoothed results for $298.15 \mathrm{~K}(2)$.

Acknowledgment

We are indebted to Dr. O. Klyohara for discussions of this work and to Mr. C. J. Halpin for technical assistance.
Glossary
a_{1}, a_{2}, \quad coefficients in representation of $C_{p}{ }^{\mathrm{E}}$ by eq 2
\ldots, a_{j}

Solubility of Oxalic Acid Dihydrate in Nitric and Sulfuric Acid Solutions at 0, 25, and $50^{\circ} \mathrm{C}$

Joseph W. WIIllard, * Jack M. Sullivan, and Yong K. Kim
Division of Chemical Development, National Fertllzer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama 35660

Abstract

The solubility of oxalle acid diliydrate (ethanediolc acid) has been determined at $\mathbf{0}, \mathbf{2 5}$, and $50^{\circ} \mathrm{C}$ in nitric-sulfuric acld solutions. Thls study covers four levels of nitric acid concentration in two concentrations of sulfuric acid. A mathematical model equation $(\log S=A / T+B$, where S Is oxalic acid solublity ($w t \%$), T is the absolute temperature, and A and B are functions of the acid concentrations) was developed to predict the solublity of oxallc acid within the expermental ranges of the acid concentrations.

Introduction

One method for the production of oxalic acid is the use of nitric acid to oxidize cellulose in the presence of sulfuric acid
$C_{p, m} \quad$ molar isobaric heat capacity, $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$V_{m} \quad$ molar volume, $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$
x mole fraction of water
Greek Letters
$\phi \quad$ volume fraction of water
$\nu \quad$ number of coefficients in eq 2
$\sigma \quad$ standard deviation
Subscripts
1 water component
$2 n$-alcohol component

Superscripts

E excess quantity

- pure-component value

Llterature Clted

(1) Benson, G. C.; Klyohara, O. J. Solution Chem. 1980, 9, 791.
(2) Benson, G. C.; D'Arcy, P. J.; Klyohara, O. J. Solution Chem. 1980, 9, 931.
(3) Klyohara, O.; Benson, G. C. J. Solution Chem. 1981, 10, 281.
(4) Wilhoit, R. C.; Zwolinski, B. J. J. Phys . Chem. Ref. Data, Suppl. 1973, 2, No. 1.
(5) Fortler, J.L.; Benson, G. C.; Picker, P. J. Chem. Thermodyn. 1976, 8, 289.
(6) Forter, J.-L.; Benson, G. C. J. Chem. Thermodyn. 1978, 8, 411.
(7) Kell, G. S. J. Phys. Chem. Ref. Data 1977, 6, 1109.
(8) Kell, G. S. J. Chem. Eng. Data 1975, $20,97$.
(9) Sriskandarajah, S. D. Eng. Scl. Data Item 1979, No. 79028.
(10) Kalinowska, B.; Jedllíska, J.; Wöycicki, W.; Stecki, J. J. Chem. Thermodyn. 1980, 12, 891.
(11) Kalinowska, B.; Jedllíska, J.; Stecki, J.; Woycickl, W. J. Chem. Thermodyn. 1981, 13, 357.

Table I. Solubility of Oxalic Acid Dihydrate in the System $\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{H}_{2} \mathrm{O}$ at $\mathbf{0}, 25$, and $50^{\circ} \mathrm{C}$
initial composition, wt \%

a^{a} obsd = observed value; calcd = calculated value from the model eq 1.

Figure 1. Solubility of oxalic acid dihydrate in the temperature range $0-50{ }^{\circ} \mathrm{C}$ at four levels of HNO_{3} in two levels of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (numbers on curves denote initlal $\% \mathrm{HNO}_{3}$).
$0.1^{\circ} \mathrm{C}$ and agitated at 4 rpm for a period of 7 days to establish the equillbrium conditions. They then were sampled for composition. These eight solutions then were placed in a coid room at $0 \pm 0.5^{\circ} \mathrm{C}$ and shaken periodically for 7 days before again being sampled for composition. The solutions then were placed in a water bath at $50 \pm 0.1^{\circ} \mathrm{C}$ and shaken periodically before sampling after 25 h . The short period of equilibration at $50^{\circ} \mathrm{C}$ was chosen because slight oxidation of oxalic acid occurs at this elevated temperature (7). However, solid $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was present in the solutions at all times.
The oxalic acid dllyydrate was determined by precipitation as calcium oxalate. Determination of nitric acld was by the Kjeldahl method. Sulfuric acid was determined by difference after titration with standard NaOH .

Results and Discussion

The results are given in Table I and shown in Figure 1. At the 40% sulfuric acid level there was an increase in the amount of oxalic acid dihydrate in solution as the nitric acid concentration increased (Figure 2). The same is true at the 50% sulfuric acid level, with the exception that at $50^{\circ} \mathrm{C}$ the 20% nitric acid solution contained less oxalic acid dilhydrate in solution than the 15% nitric acid solution.

Figure 1 shows that for 40% sulfuric acid the oxalic acid dihydrate in solution increases 1.6 times at 0 and $25^{\circ} \mathrm{C}$ for a fourfoid increase in nitric acid; at $50^{\circ} \mathrm{C}$ the increase is 1.3. At the 50% sulfuric acid level this uniformity of increased solubility does not hold true.

Figure 2 shows the oxalic acid dihydrate solubility as a function of the ratio $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$. There is a flattening of the solubility curves at the higher ratios $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$ at 25 and 50 ${ }^{\circ} \mathrm{C}$ for the 50% sulfuric acid solution. This indicates that in the 50% sulfuric acid solutions the maximum solubility with increase in nitric acid concentration is being approached.

Figure 2. Solubillty of oxalic acid dihydrate in nitric-sulfuric acid mixtures.

Flgure 3. Solubility of oxalic acid dihydrate as related to reciprocal of absolute temperature (numbers on curves denote infitial $\% \mathrm{HNO}_{3}$).

Solubility of the oxalic acid in the acid mixtures always increased when the solution temperature increased from 0 to 50 ${ }^{\circ} \mathrm{C}$ (Figures 1 and 2). This solubllity-temperature relationship can be expressed as a straight line according to the following Arrhenius-type expression:

$$
\begin{equation*}
\log S=A / T+B \tag{1}
\end{equation*}
$$

where S is the solubility of the oxalic acid in wt \%, T is the absolute temperature, and A and B are constants for each test. As shown below, A and B are functions of the acid composition in the initial solution before the addition of oxalic acid. Figure 3 shows plots of $\log S$ vs. $1 / T$ where A is the slope and B is the intercept of the lines. Each A and each B were evaluated by a regression analysis and are listed in Table II as the observed values. Average heat of dissolution, ΔH (kcal), is obtained from the slopes of the lines since

$$
\begin{equation*}
\Delta H=-2.303 R A \tag{2}
\end{equation*}
$$

Table II. Constants for Solubility of Oxalic Acid Dihydrate in the System $\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{H}_{2} \mathrm{O}(\log S=A / T+B)$

A		B		$\Delta H, \mathrm{kcal}$	
no. obsd ${ }^{\text {a }}$	calcd ${ }^{\text {b }}$	obsd $^{\text {a }}$	calcd $^{\text {c }}$	obsd $^{\text {a }}$	calcd ${ }^{\text {d }}$
$1-1819.48$	-1821.48	6.6480	6.6559	8.325	8.334
$2-1816.61$	-1812.46	6.6837	6.6665	8.312	8.292
$3-1768.84$	-1772.81	6.5787	6.5953	8.093	8.111
$4-1707.18$	-1702.69	6.4606	6.4545	7.811	7.804
$5-1707.42$	-1702.96	6.3540	6.3381	7.812	7.791
$6-1627.71$	-1640.12	6.2187	6.2629	7.447	7.504
$7-1384.75$	-1371.38	5.5338	5.4861	6.336	6.274
$8 \quad-968.74$	-973.83	4.2406	4.2587	4.432	4.456
r^{2}	0.999		0.999		0.999
SD	14.45		0.0524		0.066
standard \% error	0.90		0.86		0.90

${ }^{a}$ obsd = observed values obtained by regression. ${ }^{b}$ calcd $=$ cal culated values from eq $3 .{ }^{c}$ calcd = calculated values from eq 4. ${ }^{d}$ calcd $=$ calculated values from eq 5.

Flgure 4. Relationship between A in eq 1 and the initial acid concentrations (solid lines are calculated from eq 3).
where R is the gas constant (listed in Table II as the observed values). Examination of the constants A, B, and ΔH showed that they are a function of the inlitial acid concentration. After a few trials to fit the data to model equations, the following equations were found to best represent the data:
$A=a_{0}+a_{1} C_{8}+\left(a_{2}+a_{3} C_{8}\right) C_{n}+\left(a_{4}+a_{5} C_{8}\right) C_{n}{ }^{2}$
$B=b_{0}+b_{1} C_{8}+\left(b_{2}+b_{3} C_{8}\right) C_{n}+\left(b_{4}+b_{5} C_{s}\right) C_{n}{ }^{2}$
$\Delta H=d_{0}+d_{1} C_{s}+\left(d_{2}+d_{3} C_{8}\right) C_{n}+\left(d_{4}+d_{5} C_{3}\right) C_{n}{ }^{2}$
where C_{s} and C_{n} are the initial welght percent concentrations of sulfuric and nitric acids, respectively, and a_{1}, b_{1}, and d_{i} are coefficients for each term. These coefficients are listed in Table III. Calcuiated values of A, B, and ΔH are evaluated for each test solution by using eq 3-5, respectively, and are listed in Table II as calculated values and are shown in Figures 4-6.

Agreement between observed and calculated values for all three constants is excelient. The correlation constant, r^{2}, is 0.999 for all cases. The standard percent error of the calculated values is less than 1% for A, B, and ΔH. These good

Table III. Constants for Calculating Slope (A), Intercept (B), and Heat of Solution (ΔH) of Oxalic Acid Dihydrate in Nitric-Sulfuric Acid Solutions

A	B	$\Delta H, \mathrm{kcal}$
$a_{0}=-2941.9622128$	$b_{0}=10.4033362$	$d_{0}=13460.2602738$
$a_{1}=28.8448491$	$b_{1}=-0.0967797$	$d_{1}=-131.9728629$
$a_{2}=188.4367710$	$b_{2}=-0.7182172$	$d_{2}=-862.1483893$
$a_{3}=-4.9585029$	$b_{3}=0.0187940$	$d_{3}=22.6864710$
$a_{4}=-14.6061110$	$b_{4}=0.0509961$	$d_{4}=66.8268461$
$a_{5}=0.3839517$	$b_{5}=-0.0013253$	$d_{5}=-1.7566814$

Figure 5. Relationship between B in eq 1 and the initial acid concentrations (solld lines are calculated from eq 4).

Figure 6. Relationshlp between heat of dissolution, ΔH, and the initial acid concentrations (solid lines are calcuiated from eq 5).
agreements are demonstrated in Figures 4-6, where the lines represent the calculated values from eq 4-6, respectively.
With these developed parameters the solubility of oxalic ack dhydrate was calculated for the test solutions and listed as the calculated values in Table I. There is good agreement between calculated and observed values. Therefore, eq 1 can be used as a model to predict the solubilly of the oxalic acid in mixtures of nitric and sulfuric acids when the concentration of these mineral acids is known.

Lherature Ched

(1) Simpson, G. S. U.S. Patent, 2057 119, 1936.
(2) Soltzberg, S. U.S. Patent, 2380 196, 1945.
(3) Chapin, E. M.; Bell, J. M. J. Am. Chem. Soc. 1931, 53, 3284.
(4) Trapp, H. J. Prakt. Chem. 1936, 144, 193.
(5) Herz, W.; Neukkrch, E. Z. Anorg. Allg. Chem. 1923, 131, 303.
(6) Masson, J. I. O. J. Chem. Soc. 1912, 101, 103.
(7) Robles, C. R.; Moles, E. Anales Soc. Españ. Fís. Quím. 1934, 32, 474.

Recelved for review March 17, 1982. Accepted June 2, 1982.

Activity Coefficients at Infinite Dilution by Gas-Liquid Chromatography. 1. Hydrocarbons and n-Chloroparaffins in Organic Solvents

Paolo Alessi, " Ireneo Klkic, Aldo Alessandrinl, and Maurizio Fermeglia
Istituto dl Chimica Applicata e Industriale, Università di Trieste, 34127 Trieste, Italy

Abstract

Actlvity coetficients at infinite dilution of parafilns, olefins, aromatics, and n-chloroparaffins in $\mathbf{1 2}$ statlonary phases were determined by gas chromatography. The stationary phases employed were n-hexadecane, n-octadecane, n-tetracosane, 1-hexadecene, 1-octadecene, 1-chlorohexadecane, 1-chlorooctadecane, 1-dodecanol, 1-tetradecanol, 10 -nonadecanone, 2 -dodecanone, and 9 -heptadecanone. The investigation was carried out at temperatures ranging from 30 to $80{ }^{\circ} \mathrm{C}$.

Introduction

Fluid-phase equilibrium data at low pressures are usually interpreted through excess functions. This means that it is possible to calculate the compositions of the phases at equilibrium from the excess quantities (activity coefficients) for the liquid mixtures and, vice versa, the excess quantities of the liquid phase from the experimentally determined compositions of the phases. In both cases, it is generally useful to have a model which expresses the variation of the excess quantity as a function of various variables (temperature, pressure, and composition), so that the effect of such quantities on equillbrium can be evaluated correctly.

In the building up of a thermodynamical model, the effect of pressure is usually neglected and that of temperature is considered a secondary one. In other words, the model is built up principally to provide the composition dependence of the excess quantity, primarily of excess free energy. The effect of the temperature is often added subsequently, by considering the temperature dependence of the parameters which are included in the model.

The majority of liquid-solution models contain two arbitrary parameters per binary pair. Generally, such parameters are not determinable a priori.

Even if we consider the limitations involved in the use of binary constants alone, the calculation of any equilibrium for a multicomponent system ($n=$ number of components) will require the knowledge of $n(n-1)$ interaction parameters. Even when we use methods which allow rapid and accurate experimental determinations, the amount of work required will obviously be enormous, even if we are "lucky" enough to have

Table I. Solute Components

solute no.	compd	solute no.	compd
1	n-pentane	10	methylcyclohexane
2	n-hexane	11	ethylcyclohexane
3	n-heptane	12	benzene
4	n-octane	13	toluene
5	1-pentene	14	ethylbenzene
6	1-hexene	15	1 -chloropropane
7	1-heptene	16	1 -chlorobutane
8	1-octene	17	1-chloropentane
9	cyclohexane	18	1 -chlorohexane

Table II. Activity Coefficients at Infinite Dilution in n-Hexadecane

solutes	temp, ${ }^{\circ} \mathrm{C}$	31.7	42.2	51.3
2		0.91	0.92	0.87
3		0.93	0.93	0.93
5		0.95	0.92	
6		0.96	0.93	0.92
7		1.04^{a}	1.03^{b}	0.94
12		1.05^{a}	1.04^{b}	
13		1.18	1.16	1.12
16		1.19	1.17	1.13
17				

${ }^{a} 38.9^{\circ} \mathrm{C} . \quad{ }^{\mathrm{b}} 43.8^{\circ} \mathrm{C}$.
Table 1II. Activity Coefficients at Infinite Dilution in n-Octadecane

solutes	temp, ${ }^{\circ} \mathrm{C}$	51.4	61.4	70.5	80.5
2		0.85	0.86	0.88	0.86
3		0.86	0.89	0.89	0.88
6		0.85		0.88	0.86
7		0.88	0.90	0.90	0.89
12		1.03	1.03^{a}	1.03^{b}	1.02^{c}
13		1.04^{a}	1.04^{b}	1.04^{c}	
14		1.02	1.03	1.13^{b}	1.13^{c}
16		1.05	1.03	0.99	
17					
${ }^{a} 60.0^{\circ} \mathrm{C}$.	${ }^{b} 68.8^{\circ} \mathrm{C}$.	${ }^{c} 78.8^{\circ} \mathrm{C}$.			

at our disposal data for some binary mixtures. In view of these considerations, the methods based on group contribution come into use because they allow the infinite variety of organic compounds to be reduced to a large but finite number of or-

