- (4) Liu, C.; Lindsay, W. T., Jr. J. Solution Chem. 1972, 1, 45.
 (5) Soldano, B. A.; Bien, P. B. J. Chem. Soc. A. 1966, 1825.
 (6) Holmes, H. F.; Baes, C. F.; Mesmer, R. E. J. Chem. Thermodyn. 1976. 10. 983
- (7) Holmes, H. F.; Baes, C. F.; Mesmer, R. E. J. Chem. Thermodyn. 1979. 11. 1035.
- Campbell, A. N.; Bhatnagar, O. N. Can. J. Chem. 1979, 57, 2542. (8)
- (a) Bhatnagar, O. N.; Campbell, A. N. Can. J. Chem. 1981, 59, 123.
 (10) Bhatnagar, O. N.; Campbell, A. N. Can. J. Chem. 1982, 60, 1754.
- (11) Akerlof, G.; Kegeles, G. J. Am. Chem. Soc. 1940, 62, 620.
 (12) Haywood, A. W.; Perman, E. P. Trans. Faraday Soc. 1931, 27, 59.
 (13) Mashovets, V. P.; Puchkova, L. V. Zh. Prlki. Khim. (Leningrad) 1967,
- 40, 2588.
- (14) Smith, L. B.; Keyes, F. G.; Gerry, H. T. Proc. Am. Acad. Arts Sci. **1934**, *69*, 137. Pitzer, K. S. J. Phys. Chem. **1973**, 77, 268.
- (15)
- (16) Pitzer, K. S.; Mayorga, G. J. Phys. Chem. 1973, 77, 2309.
- (17) Pitzer, K. S.; Mayorga, G. J. Solution Chem. 1974, 3, 539.
- (18) Silvester, L. F.; Pitzer, K. S. J. Phys. Chem. 1977, 81, 1822.
- (19) Robinson, R. A.; Stokes, R. H. "Electrolyte Solutions", 2nd ed.; Butterworths: London, 1959.

Received for review April 11, 1983. Accepted September 19, 1983. We thank Atomic Energy of Canada Ltd., Chalk River, Ontario, for the financial support of this project.

Conductivities of Lanthanum Chloride in Water–Dimethyi Sulfoxide Mixtures at 25 °C

Alan N. Campbell* and Elinor M. Kartzmark

Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

The conductivities of lanthanum chloride at various concentrations in water-dimethyl sulfoxide mixtures, varying from 10.6% to 100% dimethyl sulfoxide, have been determined. The densities, viscosities, dielectric constants, and surface tensions of the various solvents have also been determined.

Introduction

In previous papers (1, 2), we have dealt with the conductivities of indium chloride in water and in water-dimethyl sulfoxide mixtures and, as a standard of comparison, the corresponding data were obtained for potassium chloride. In the present study, the work has been repeated with lanthanum chloride, LaCl₃, as standard of reference. Lanthanum chloride is a more suitable standard of comparison than potassium chloride, since it has the same general formula as indium chloride, is a strong electrolyte, and does not suffer from hydrolysis at low concentrations of salt as indium chloride does.

In addition to determining the conductivities of lanthanum chloride solutions, we have determined the densities, viscosities, dielectric constants, and surface tensions of water-Me₂SO mixtures and have conducted thermal analysis of the system, water-Me₂SO.

Experimental Section

Materials. Lanthanum chloride was obtained from ICN Pharmaceutical Inc. It was claimed to be 99.99% but turned out to be LaCl₃·7H₂O. For measurements in anhydrous Me₂SO, it was therefore necessary for us to dehydrate it and this we did by heating at 40 °C for 4 days, with continuous evacuation. Gravimetric analysis, as silver chloride, showed 98.56% LaCl₃. The product, on dissolving in water, showed a slight mistiness, no doubt due to the presence of La2O3. This material would be inert as far as conductivity is concerned but allowance was made for its effect on concentration. For solutions in water-Me₂SO mixtures, the hydrate was used, allowance being made for the water it contained.

Characteristics of the Solvents. Ordinary distilled water was passed through an ion-exchange column, which yielded water with a specific conductivity of $k = 1.0 \times 10^{-6} \Omega^{-1} \text{ cm}^{-1}$. The

Table I.	Dielectric Constant, Density, Viscosity, and	
Surface	Cension of Me ₂ SO-Water Mixtures at 25.0 °C	

[Me2SO], wt %	dielec- tric con- stant	density, g/mL	$\eta_{\rm rel}^{a}$	surf ac e tensi on , dyn/cm
0	78.3	0.9970	1.000	71.97
10.59	77.6	1.010	1.246	69.8
20. 0 0	77.0	1.024	1.543	69.4
31.14	76.8	1.041	1.985	67.5
41.59	76.0	1.057	2.597	65.4
50.00	74.9	1.069	3.164	63.4
60.30	73.2	1.085	3.828	60.0
64.02		1.088	4.050	59.2
67.57		1.091	4.158	57.5
69.11	70.3	1.092	4.185	56.8
72.00		1.094	4.144	55.3
74.21		1.095	4.078	54.4
79.88	63.6	1.098	3.799	52.0
86.70		1.099	3.243	
88.00	58.0			48.5
100	44.4	1.096	2.214	42.3

^{*a*} Relative viscosity ($H_2O = 1.000$).

dimethyl sulfoxide was a Fisher Certified ACS product, kept over molecular sieves (type 44, grade 514).

Procedures. The techniques of conductivity and viscosity measurements have been described in our previous publications (for instance, ref 1). A word should be said about the determination of the surface tension. We have used the method of Sugden (3). The essence of this method consists in the use of two capillaries, of different bore, side by side in the same liquid. It is then only necessary to measure the difference in height of the two columns of liquid: it is not necessary to know the position of the meniscus in the outer container; this is the major uncertainty when using only one capillary.

Dielectric constants were determined by means of a Sargent oscillometer.

For the thermal analysis of the system, water-Me₂SO, ice or liquid nitrogen was used as coolant, depending on the temperature range of investigation.

Preparation of Solutions. Water-Me₂SO mixtures from 10% to 90% Me₂SO were made up by weighing. The conductivities of very dilute solutions were determined in the Shedlovsky cell. by the addition of weighed amounts of anhydrous solute. In the

Figure 1. Densities, viscosities, and dielectric constants of Me₂SOwater mixtures at 25.0 °C.

Figure 2. (a and b) Λ vs. $c^{1/2}$ for LaCl₃ in Me₂SO-water mixtures at 25.0 °C. The ordinate has been split in order to avoid confusion around the minimum at 70% Me₂SO.

range 0.005–0.1 M, solutions were made by dilution of a 0.1 M solution $({}^{1}/_{3} \text{ LaCl}_{3})$.

Results

Densities, viscosities, dielectric constants, at 25 °C, of water-Me₂SO mixtures are given in Table I and are plotted in Figure 1. Surface tensions are also given in Table I.

The conductivities, specific and molar, are given in Table II and expressed graphically in Figures 2 and 3 in the form of Λ vs. $c^{1/2}$ ad $\Lambda \eta$ vs. $c^{1/2}$.

In the thermal analysis, when Me₂SO was the solid phase separating, we were unable to obtain satisfactory freezing points because of supercooling, but every mixture in the composition range from 8.9% to 82.2% water yielded the same strongly marked eutectic at 29 °C. The system containing

Figure 3. $\Lambda \eta$ vs. $c^{1/2}$ for LaCl₃ in Me₂SO-water mixtures.

Figure 4. Λ vs. wt % Me₂SO for constant concentrations of LaCl₃ ($c^{1/2} = 0.05, 0.10, 0.20$).

31% water exhibited the eutectic halt only and therefore has the eutectic composition.

Discussion

Inspection of Figure 1 shows that the density passes through a flat maximum between 80 and 90 wt % Me₂SO. The viscosity curve exhibits a very pronounced maximum at 70 wt % Me₂SO. Morel (4) summarizes the properties of Me₂SO-water mixtures: quoting the results of Cowie and Toporowski (5), he points to the pronounced maximum on the viscosity-concentration curve, which occurs at a concentration corresponding to the formula Me₂SO·2H₂O (68.4%). Morel suggests that a complex of this type may exist in solution. The results of thermal analysis show only one eutectic and therefore this hypothetical compound does not exist in the solid state although it may exist in solution.

When the surface tension values are plotted against weight percent or mole percent, smooth curves are produced without maxima or minima.

As for the conductivity results, Figure 2 shows a decrease in Λ with increasing Me₂SO content to 70% Me₂SO, followed by a slight increase in conductivity to 100% Me₂SO. In order

Table II. Conductivities and $\Delta \eta$ of Lanthanum Chloride in Water-Me₂SO Mixtures at 25.0 °C

		10 ⁵ k,	Λ, Ω ⁻¹				10 ⁵ k,	Λ, Ω ^{-ι}	
o ^a M	01/2	Ω^{-1}	cm^2	A	a ^a M	01/2	Ω^{-1}	cm^2	
C, 11	<i>C</i>	em ·	mol		<i>C</i> , IVI	<i>C</i>	cm	mol	$\Lambda\eta$
	% Me ₂ SO (*	$\eta_{\rm rel} = 1.246$	$(H_2O) =$	· 1)	0.02470	0.157	77.4	31.4	99.2
0.000 535 1	0.0231	0.86 10.5	109,6	136.7	0.03749	0.194	112.3 145.9	30.0	94.8
0.0005724 0.001575	0.0312	10.5	106.2	134.9	0.05001 0.064.24	0.224	140.2	29.0	91.9 89.5
0.001010	0.0051	21.5	105.2	131 1	0.068 36	0.260	191.5	28.0	88 7
0.002 997	0.0402	30.8	102.9	128.4	0.084 64	0.291	233.0	27.5	87.0
0.004 063	0.0637	41.1	101.2	126.2	0.1004	0.317	266.2	26.5	83.9
0.005029	0.0709	50.2	99.8	124.5					
$0.008\;510$	0.0922	82.8	97.3	121.3	6.	62.4% Me	SO $(\eta_{rel} =$	3.828)	11 - 0
$0.017\ 00$	0.1304	156.8	92.2	114.9	0.000 427 9	0.02069	1.32	30.8	117.9
0.0329	0.181	285.1	86.7	108.0	0.001 201	0.03465	3.57	29.7	113.7
0.0558	0.236	458.6	82.2	102.4	0.001 925	0.04387	5.60 10.6	29.1	111.4
0.0767	0.277	611.3	79.7	99.3	0.007.75	0.0882	21.1	23.5	104 3
0.104 5	0.323	803.1	76.9	95.8	0.01538	0.124	39.2	25.5	97.5
2.	20.0% Me	,SO $(\eta_{rel} =$	1.543)		0.034 49	0,183	78.6	23.5	89.8
$0.000\ 785\ 6$	0.0280	6.43	87.9	135.6	0.069 90	0.264	150.3	21.5	82,3
0.002024	0.0450	17.26	85.3	131.6	0.1190	0.345	240.8	20.2	83.2
$0.003\ 131$	0.0560	26.2	83.7	129.1	7	69 19 Ma	80 (m -	4 1 0 0)	
0.006 594	0.0812	52.9	80.3	123.9	0 000 430 8	0.020.76	$\frac{110}{112}$	4.199) 26.0	100.2
0.008 965	0.0947	70.1	78.2	120.7	0.001 090	0.02010	2.68	20.0	103.2
0.011 15	0.1056	85.4	76.6	118.2	0.002 20	0.0469	5.05	23.0	96.4
0.019 50	0.1397	141.9	72.8	112.3	0.005166	0.0719	10.9	21.1	88.3
0.0203	0.162	187.0	(1.0	110.0	0.010 23	0.1012	20.2	19.8	83.0
0.0338	0.104	235.0	69.0 69.1	107.2	0.016 39	0.128	31.0	18.7	79.4
0.051.0	0.205	338.0	66.3	102.0	0.058 69	0.242	95.5	16.3	68.3
0.068 8	0.262	445.0	64 7	99.8	0.1155	0.3398	171.1	14.8	62.2
0.0856	0.293	540.0	63.1	97.4	8	80.0% Me	SO(n) = 3	3 799)	
0.1009	0.318	623.0	61.8	95.3	0.002052	0.0453	5.31	25.89	984
2	20.107 Ma	80 (0.049		0.002 499	0.0500	6.28	25.15	95.5
0 000 409 5	0 0 20 20 20 20 20 20 20 20 20 20 20 20	$_{2}$ SO $(\eta_{rel} = 0.71)$	2.043)	125.0	0.004 900	0.0700	11.61	23.69	90.0
0.000 405 5	0.0202 0.0317	6 4 0	63.7	130.0	0.008 95	0.0946	20.09	22.44	85.3
0.001 525	0.0390	9.52	62.4	127.6	0.009 99	0.0999	21.86	22.18	84.3
0.002199	0.0469	13.5	61.5	125.6	0.016 77	0.129	34.93	20.83	79.1
0.002785	0.0528	16.9	60.6	123.8	0.021 0	0.145	42.83	20.31	77.2
$0.003\ 521$	0.0593	21.1	59.9	122.4	0.0274	0.166	53.63	19.57	74.4
$0.004\ 414$	0.0664	26.0	59.0	120.5	0.0397	0.199	74.15	18.70	70.7
0.007 51	0.0866	42.9	57.1	116.7	0.0402	0.201	14.73 Q4.79	17.09	70.6 67.7
0.017 15	0.131	92.0	53.7	106.5	0.080.9	0.230	134.72	16.66	633
0.03294	0.181	166.4	50.5	100.2	0.1042	0.3227	162.8	15.62	59.4
0.001 87	0.249	293.4	47.4	94.1	•••• -		202.0	10.02	00.4
0.100 5	0.522	400.5	44.9	09.1	9.	90% Me ₂ S	$O(\eta_{rel}=3.$	060)	
4.	41.6% Me	$_{2}$ SO ($\eta_{rel} = 2$	2.597)		0.002 544	0.05044	7.40	29.10	89.0
0.000 665 6	0.0258	3.29	49.4	128.4	0.039.99	0.05870	24.0 79.34	24.00 10.84	70.2 60.7
0.001 390	0.0373	6.70	48.2	125.1	0.00000	0.1000	10.04	15.04	00.7
0.002161	0.0465	10.2	47.2	122.5	10.	100% Me	$_{2}$ SO ($\eta_{rel} =$	2.214)	
0.002.848	0.0534	10.0	40.0	120.8	0.000613	0.0248	2.22	36.2	80.1
0.004.315	0.0657	19.6	45.5	117.9	0.001 486	0.0386	4.82	32.5	71.9
0.005 963	0.0772	26.5	44 5	115.6	0.00225	0.0474	6.91 7.47	30.7	68.0
0.006 576	0.0811	29.6	45.0	116.7	0.00248	0.0498	7.47	30.1 20 0	66 1
0.011 49	0.1072	49.2	42.8	112.2	0.004 19	0.0647	11.50	25.5 271	60.1
$0.022\ 2$	0.149	88.8	40.0	103.8	0.004 21	0.0649	11.2	26.6	58.9
0.03645	0.190	141.5	38.8	100.8	0.006 21	0.0788	16.0	25.8	57.1
0.065 56	0.256	237.7	36.3	94.2	0.00711	0.0843	17.7	24.9	55.1
0.1050	0.324	359.4	34.2	88.9	0.009 99	0.0999	23.9	23.9	52.9
Ö,	50.0% Me	SU $(\eta_{rel} = 3)$	3.164)	110 5	0.013 9	0.118	31.0	22.3	49.4
0.001318	0.0363	4.94	37.5	116.7	0.0183	0.135	39.9	21.8	48.2
0.003 390	0.0407	0.04 199	36.0	114.0	0.0200	0.103	53.3 79.7	20.1	44.5
0.004 744	0.0689	16.8	35.3	111.7	0.0444	0.134 0.211	14.1	18.0	42.0 40.7
0.008473	0.0920	28.7	33.9	107.2	0.074 3	0.273	124.2	167	37.0
0.009 717	0.0986	32.6	33.6	106.3	0.1141	0.338	173.6	15.2	33.7
0.01811	0.135	57.4	31.7	100.3		-		_ 2	
$a_{1/3}$ LaCl ₃ .									

to make this clearer, Figure 4 shows the change in Λ with Me₂SO content for fixed concentrations of lanthanum chloride ($c^{1/2} = 0.05, 0.10$, and 0.20). There is a slight but real minimum at 70% Me₂SO, at which concentration there is a maximum in the viscosity curve. The curves of Figure 2 were extrapolated to $c^{1/2} = 0$ and the slopes determined. These

data are given in Table III. The experimental slopes decrease progressively to between 60% and 70% Me₂SO and then increase. This presumably is the result of the decrease in viscosity beyond 70% Me₂SO. Table III also has a column, headed $\Lambda\eta(c^{1/2}=0)$, where the limiting Λ has been multiplied by the viscosity of the solvent. These values are essentially

Table III. Molar Conductivities of Lanthanum Chloride Extrapolated to $c^{1/2} = 0$ in Me₂SO-Water Mixtures and Limiting Experimental Slopes of Λ vs. $c^{1/2}$

 [Me ₂ SO], wt %	$\Lambda(c^{1/2}=0)$	$\Lambda\eta(c^{1/2}=0)$	$slope-(c^{1/2}=0)$	
0	145.8	145.8	282	
10.6	114.6	142.8	172	
20.0	92.0	142.0	146	
32.1	68.6	140.1	133	
41.6	52.0	135.0	86	
50.0	40.1	126.9	62	
62.4	32.5	124.4	56	
69.4	28.0	117.6	81	
80.0	30.0	114.0	78	
100.0	42.0	93.0	181	

constant up to about 30% Me₂SO, where the dielectric constant is about 55.

If the conductivities of indium chloride (2) are compared with those of lanthanum chloride, at the same concentrations of salt and Me₂SO, those of indium chloride are seen always to be lower than those of lanthanum chloride, except in the region

where hydrolysis of indium chloride occurs, that is, in dilute solutions in water-rich solvent. There is no minimum in a plot of Λ vs. Me_2SO content for fixed indium chloride content, as there is in the case of lanthanum chloride (Figure 4). The occurrence of the minimum in the latter is probably due to the decrease in the viscosity of the solvent at Me₂SO concentrations greater than 70%. The absence of a minimum in the case of indium chloride may be due to an increasing number of nonconducting ion associates in this region.

Registry No. LaCl₃, 10099-58-8; Me₂SO, 67-68-5.

Literature Cited

- Campbell, A. N. Can. J. Chem. 1973, 51, 3006-9. Campbell, A. N. Can. J. Chem. 1978, 56, 355-8.
- ì2ì
- Sugden, S. J. Chem. Soc. 1921, 119, 1483-92. Morel, J. P. Bull. Soc. Chim. Fr. 1987, 1405-11.
- (5) Cowie, D. M. G.; Toporowski, P. M. Can. J. Chem. 1961, 39,
- 2240-3.
- (6) Jones, G.; Bickford, C. S. J. Am. Chem. Soc. 1934, 56, 602-11. Longsworth, L. G.; MacInnes, D. A. J. Am. Chem. Soc. 1938, 60, ζŢ 3070-4.

Received for review May 18, 1983. Accepted September 14, 1983.

Vapor-Liquid Equilibrium in the System 2-Propanol–Isopropylbenzene

Jaime Wisniak* and Abraham Tamir

Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84120, Israel

New vapor-liquid equilibrium data have been measured for the binary system 2-propanol-isopropyibenzene at 760 mmHg and compared with previously reported data which are suspected to be thermodynamically inconsistent. The system presents strong positive deviations from ideal solution behavior. The activity coefficients are well correlated by a three-constant Redlich-Kister equation and by the Wilson equation. Boiling points are adequately described by two different equations.

Introduction

Kumar and Raju (1) have recently reported vapor-liquid equilibria data for the systems 2-propanol-isopropylbenzene and allyl alcohol-isopropylbenzene at 760 mmHg. They analyzed the thermodynamic consistency of the data using the criteria of Herrington (2), Norrish-Twigg (3), and Black (4, 5), apparently by estimating the necessary thermal data. On the basis of these methods they claim that the data are consistent in spite of the fact that the areas under the curves log γ_i against composition are substantially different. In addition, the system allyl alcohol-isopropylbenzene presents positive deviations from ideal behavior for the alcohol and negative deviations for the hvdrocarbon.

Solutions of alcohols are known to deviate strongly from ideal behavior (6-8). For aromatic hydrocarbons the analysis of the thermodynamic and spectroscopic data has suggested that the π electrons and the proton of the hydroxyl group interact strongly (7). Hwa and Ziegler (6) developed a more complicated model which assumed an additional interaction between the aromatic ring and alcohol polymeric species which does not require breaking of the hydrogen bonds. Van Ness et al. (8) Table I. Physical Constants of Pure Compounds

in- dex	compd	refractive index at 25 °C	bp(760 mmHg), °C	% purity GLC (min)
1	2-propanol	1.3756 ^a	82.30ª	99.5
2	isopropylbenzene	1.3752° 1.4890 1.4889 ^b	82.26° 152.3° 152.39 ^b	99.3

^a Measured. ^b Reference 14.

have reported the excess mixing properties for several alcohol-hydrocarbon systems.

The system discussed in this work cannot exhibit the required large thermal effects to justify the observed inconsistency in the Kumar and Raju data; instead, it must be due to data of poor quality. We have measured the vapor-liquid equilibrium at 760 mmHg to verify our assumptions.

No additional data are available for further comparison.

It should be mentioned that the behavior reported by Kumar and Raju has also been observed by Chandrashekara and Seshadri (9) for the system methyl ethyl ketone-p-xylene. Our measurements (10) have pointed out that in the latter the inconsistency was also due to data of poor quality.

Experimental Section

Purity of Materiais. Analytical-grade reagents purchased from Fluka were used without further purification. Gas chromatography analysis failed to show any significant impurities. Physical properties of the pure components appear in Table I.

Apparatus and Procedure. An all-glass modified Dvorak and Boublik recirculation still (11) was used in the equilibrium de-