82-1: 1.3.5-trichlorobenzene, 108-70-3: 1.2.3.4-tetrachlorobenzene, 634-66-2: 1.2.3.5-tetrachiorobenzene, 634-90-2; 1,2,4,5-tetrachiorobenzene, 95-94-3; pentachlorobenzene, 608-93-5; hexachlorobenzene, 118-74-1; 2-chlorobiphenyl, 2051-60-7; 2,5-dichlorobiphenyl, 34883-39-1; 2,6-dichlorobiphenyl, 33146-45-1; 2,4,5-trichlorobiphenyl, 15862-07-4; 2,4,6trichlorobiphenyl, 35693-92-6; 2,3,4,5-tetrachlorobiphenyl, 33264-53-6; 2,2',4',5-tetrachlorobiphenyl, 41464-40-8; 2,3,4,5,6-pentachlorobiphenyl, 18259-05-7; 2,2',4,5,5'-pentachiorobiphenyl, 37680-73-2; 2,2',3,3',6,6'hexachlorobiphenyl, 38411-22-2; 2,2',3,3',4,4'-hexachlorobiphenyl, 38380-07-3; 2,2',4,4',6,6'-hexachlorobiphenyl, 33979-03-2; 2,2',3,3',4,4',6-heptachlorobiphenyl, 52663-71-5; 2,2',3,3',5,5',6,6'-octachlorobiphenyl, 2136-99-4; 2,2',3,3',4,5,5',6,6'-nonachlorobiphenyl, 52663-77-1; 2,2',3,3',4,4',5,5',6,6'-decachlorobiphenyl, 2051-24-3.

Literature Cited

- (1) Sittig, M. "Handbook of Toxic and Hazardous Chemicals"; Noyes Pub-
- lications: Park Ridge, NJ, 1981. Woodburn, K. B. Masters Thesis, University of Wisconsin-Madison, Madison, WI, 1982. (2)
- (3) Neely, W. B.; Branson, D. R.; Blau, G. E. Environ. Sci. Technol. 1974, 8, 1113.
- Hansch, C.; Leo, A. "Substituent Constants for Correlation Analysis in Chemistry and Biology"; Wiley: New York, 1979.
 Mackay, D.; Mascarenhas, R.; Shiu, W. Y.; Valvani, S. C.; Yalkowsky,
- S. H. *Chemosphere* **1980**, *9*, 257
- Yalkowsky, S. H.; Orr, R. J.; Valvani, S. C. Ind. Eng. Chem. Fundam. (6) 1979, 18, 351. Banerjee, S.; Yaikowsky, S. H.; Valvani, S. C. Environ . Sci. Technol.
- (7)1980. 14. 1227
- Eganhouse, R. P.; Calder, J. A. Geochim. Cosmochim. Acta 1976, (8) 40.555.
- Hollifield, H. C. Bull. Environ. Contam. ToxIcol. 1979, 23, 579. Wauchope, R. D.; Getzen, F. W. J. Chem. Eng. Data 1972, 17, 38. (9)
- (10)
- (11) Yalkowsky, S. H.; Valvani, S. C. J. Chem. Eng. Data 1979, 24, 127.

- (12) Dexter, R. N.; Pavlou, S. P. Mar. Chem. 1978, 6, 41.
- (13) Chlou, C.; Freed, V.; Schmedding, D.; Kohnert, R. Environ. Sci. Tech-nol. 1977, 11, 475.
- (14) Hague, R.; Schmedding, D. Bull. Environ. Contam. Toxicol. 1975, 14, 13
- (15) Veith, G. D.; Austin, N. M.; Morris, R. T. Water Res. 1979, 13, 43.
- (16) Well, V. L.; Dure, G.; Quentin, K.-E. Wasser Abwasser Forschung. 1974, 7, 169. (17) Rekker, R. F. "The Hydrophobic Fragmental Constant"; Elsevier: Am-
- sterdam, 1977. (18) Pickett, L. W.; Walter, G. F.; France, H. J. Am. Chem. Soc. 1936,
- 58. 2296 (19) Williamson, B.; Rhodebush, W. H. J. Am. Chem. Soc. 1941, 63,
- 3018.
- (20) Tulp, M. Th. M.; Hutzinger, O. Chemosphere 1978, 7, 849. (21)
- (22)
- Yalkowsky, S. H.; Valvani, S. C. J. Pharm. Sci. **1980**, *69*, 912. Yalkowsky, S. H. Ind. Eng. Chem. Fundam. **1979**, *18*, 108. Tewari, Y. B.; Miller, M. M.; Wasik, S. P.; Martire, D. E. J. Chem. Eng. (23)Data 1982, 27, 451.
- Tsonopoulos, C.; Prausnitz, J. M. Ind. Eng. Chem. Fundam. 1971, 10, 593. (24)
- (25) Prausnitz, J. M. "Molecular Thermodynamics of Fluid-Phase Equilibria"; Prentice-Hall: Englewood Cliffs, NJ, 1969.
- Mackay, D.; Bobra, A.; Shiu, W.; Yalkowsky, S. H. Chemosphere 1980, 9, 791. Stolzenburg, T., University of Wisconsin-Madison, Madison, WI, (26)
- (27)1982, private communication. Ghodbane, S. Doctoral Dissertation, Georgetown University, Washing-(28)
- ton, DC, 1982. (29) "Thermal Analysis Newletter No. 3"; Perkin-Elmer Corp.: Norwalk, CT,
- 1965. (30) Wasik, S. P.; Tewarl, Y. B.; Miller, M. M.; Purnell, J. H. J. Res. Natl.
- Bur. Stand. (U.S.) 1982, 87, 311. (31) Purnell, J. H. "Gas Chromatography"; Wiley: New York, 1962.

Received for review June 27, 1983. Accepted October 14, 1983. Partial financial support from the U.S. Environmental Protection Agency is gratefully acknowledged.

Solubility of Uranium Hexafluoride in Some Low-Temperature Solvents

William B. Maler II* and Willard H. Beattle

University of California, Los Alamos National Laboratory, ESS Division, Los Alamos, New Mexico 87545

The solubility of UF_a has been measured in several liquefled gases. Phosgene, nitrous oxide, and sulfur dioxide are found to be good solvents for UFs at temperatures below 0 °C. The results are compared with ideal and regular solution theory. Regular solution theory provides a reasonably good description of the UF_a/COCl₂ system but is less good for the UF₆/SO₂ system.

Introduction

The solubility of uranium hexafluoride (UF₆) in liquids has been studied many times, particularly in halocarbons (1-3) and fluorinated halogens (4-8). A few of these studies have included temperatures below 0 °C (2, 5, 7) but there has been more interest in the solubilities at temperatures above 0 °C.

It is the purpose of this paper to report the solubilities of UF₆ in liquefied gases of small, inorganic molecules. Solubilities have been measured for temperatures between about 160 and 270 K, and the experimental observations are compared with regular solution theory.

Experimental Methods

The apparatus is a calibrated, 80-mL, graduated, cylindrical, borosilicate glass flask measuring about 4 cm in diameter by 8 cm high and attached to a vacuum system through a glass

tube. The flask is surrounded by a clear glass Dewar, and the top of the Dewar is closed with a Styrofoam plug that fits around the vacuum line. A glass-encapsulated magnetic stirring rod is inside the flask. An iron-constantan thermocouple is inserted into a thin-walled glass well that protrudes into the interior of the flask; this thermocouple well is fused to the top of the flask and reaches nearly to the bottom.

The experimental procedure is as follows. The flask is evacuated to about 10⁻⁴ torr and is heated to drive off any residual water. The bottom of the flask is then cooled with dry ice or liquid nitrogen, and the solute, ${\sf UF}_6$, is condensed out from its gas phase. The Dewar is raised into position and closed with the Styrofoam plug. Further cooling of the flask is accomplished by blowing cold N2 gas into the Dewar through a hole in the Styrofoam plug. The solvent is condensed into the flask, and the mixture of UF₆ and solvent is stirred vigorously. The temperature of the liquid is held constant, and solvent is slowly condensed into the flask in small increments. After each addition of solvent, the mixture is stirred for a period that depends on the solvent, the temperature, and the amount of undissolved UF₆. After most of the UF₆ has been dissolved, solvent is added in very small increments and the stirring times between additions are lengthened, to ensure that the solution is saturated with UFe. Some of the data points reported here have been obtained with a small fraction (<2%) of the total UF₆ still undissolved. When the UF₆ crystals just disappear under bright illumination, the stirring motion is stopped, and the level of the

solvent	temp, K	concn, ^a M	soln color	comments ^b	temp range, ^c K
COCl.	270.8	2.12	pale yellow ^d	slight residue	158.7-270.8
SO ₂	264.7	1.43	\mathbf{y} ellow ^d	slow reaction slight residue	203.9-264.7
N₂O	193.7	0.185	colorless	no reaction	182.4-193.7
O 2	77	<0.003°	light blue ⁷	residue	
$H_2^{2}S$	223	е	-	reaction residue	
COS	205	< 0.072 ^g	red-brown	reaction residue	

Table I. Solubilities and Some Remarks

^a This concentration is appropriate for the highest temperature at which the solubility was measured for a given solvent. ^b Residues sometimes remained after the solvent and all remaining UF₆ were pumped away. Reactions between UF₆ and the solvent (or some undetect_d impurity in the solvent) were often observed. ^c Temperature ranges for which solubilities were measured. ^d The color depends on the concentration. ^e Insoluble, within the limitations of this experiment. ^f Pure O₂ is light blue. ^g Detailed measurements were not made on this system, but UF₆ did dissolve.

Figure 1. Molar concentration (moles of solute per liter of solution) of UF₆ in liquid N₂O at saturation vs. $10^3/T$. Data are shown as solid circles (\bullet). The solid line is judged to be an adequate representation of the data. The dashed lines are theoretical predictions of the solubility of UF₆ in liquid N₂O.

Figure 2. Molar concentration of UF₆ in liquid SO₂ at saturation vs. $10^3/T$. The solid line is judged to be an adequate representation of the data (\bullet). The dashed lines are theoretical predictions of the solubility of UF₆ in SO₂.

solution within the flask is read.

The gases used in this experiment were the best, commercially available grade. Mass-spectral analyses were made of all gases. Before the $COCl_2$ was used, it was passed through a trap filled with MgO to remove a small HCI impurity. The UF₆

Figure 3. Molar concentration of UF₈ in liquid COCl₂ at saturation vs. $10^3/T$. The solid line is judged to be an adequate representation of the data (\oplus). The long-dashed lines are experimental solubilities reproduced from Figures 1 and 2 for comparison. The short-dashed line is the solubility predicted by regular solution theory for UF₈/COCl₂.

used was obtained from the Oak Ridge Gaseous Diffusion Plant and was better than 99.9% pure; our infrared analyses of the UF₆ revealed no impurities.

Temperatures quoted herein should be accurate to ± 0.5 °C. The total uncertainty in the volume measurements is $\pm 3\%$. The amount of UF₆ condensed into the flask is known within $\pm 3\%$, and at least 98% of the UF₆ has gone into solution for any data point. The maximum possible errors in the concentrations reported here should thus be $\pm 8\%$, and the reproducibility of the data should be about $\pm 5\%$.

Results and Discussion

The liquefied gases used in this investigation are given in Table I, together with some experimental observations. UF₆ has been dissolved in N₂O, COCl₂, SO₂, and COS. The COS solution was red-brown, and the UF₆ may have been dissolved

Table	II.	Solubility	of	UF.
10010			~ -	~ ~ 4

 <i>T</i> , K	conen, mol/L	<i>T</i> , K	conen, mol/L	
 	COCl ₂ as	Solvent		
158.7	0.00502	197.7	0.0802	
158.7	0.00508	205.0	0.122	
168.7	0.0116	226.0	0.282	
169.5	0.0152	233.2	0.467	
169.5	0.0156	243.4	0.737	
177.2	0.0193	256.8	1.17	
187.7	0.0428	270.8	1.73	
191.2	0.0670			
	SO_2 as	Solvent		
203.9	0.0894	235.8	0.415	
210.2	0.123	252.2	0.755	
217.2	0.166	259.4	0.950	
225.6	0.267	263.7	1.18	
228.2	0.278	264.7	1.18	
	N_2O as S_2	Solvent		
182.4	0.0896	190.7	0.130	
182.7	0.0886	193.7	0.152	

as U(V), which has a characteristic reddish color.

The solubilities of UF₆ in liquid N₂O, SO₂, and COCl₂ have been measured over as wide a temperature range as possible with our apparatus. The data are presented in Figures 1–3 and in Table II. There are too few data points for N₂O to be sure that the appropriate curve is indeed straight, but the solubilities of UF₆ in COCl₂ and SO₂, when plotted against 1/*T*, lie along straight lines over a fairly wide range of temperatures.

The other lines shown in Figures 1-3 have been computed from regular or ideal solution theory for comparison with the data (9, 10). The equations used for regular solution theory are

$$RT \ln (a_2/x_2) = V_2 \phi^2 (\delta_1 - \delta_2)^2$$

$$\phi = x_1 V_1 / (x_1 V_1 + x_2 V_2)$$

$$\delta_k = [(\Delta H_k^{\vee} - RT) / V_k]^{1/2}$$

$$\ln a_2 = (\Delta H_0^{\dagger} / R)(1 / T_0 - 1 / T)$$
(1)

For ideal solutions, $\delta_1 - \delta_2 = 0$. The numerals 1 and 2 label quantities appropriate for solvent and solute (UF₆), respectively. $T \equiv$ temperature in Kelvin. $x_k \equiv$ mole fraction of component k in solution. $R \equiv 1.988$ cal/(cm mol K). $V_1 \equiv$ molar volume of the solvent. $V_2 \equiv$ molar volume of the (hypothetical) liquid solute. $\Delta H_k^{\ v} \equiv$ heat of vaporization of component k. T_0 and $\Delta H_0^{\ f}$ are respectively the melting point of the solute and the heat of fusion of the solute at T_0 . Table III lists values used for the parameters appearing in these equations. Note that solutions of UF₆ in COCl₂ and in N₂O are expected to be nearly ideal.

We have assumed that the difference, ΔC_{ρ} , between the heat capacities of the liquid and solid solute are zero; in fact (8), for UF₆, $\Delta C_{\rho} \approx 2.1$ cal/(mol K) at the melting point of UF₆. Since $\Delta C_{\rho} \neq 0$, the plot of ln x_2 against T^{-1} should be curved,

but for us to discern this curvature experimentally $\Delta C_{p} \geq 8$ cal/(mol K) would be required. The curvature arising from finite ΔC_{p} will not, therefore, be observable in our data. The term involving ΔC_{p} is small (~20 cal/mol at 200 K) compared with ΔH_{0}^{f} (~4500 cal/mol) and has been taken to be zero.

For comparison of the calculated and experimental curves, we have estimated effects caused by variation of solvent density with temperature, and we have found the effect to be negligible. Similarly, we have calculated the number density, n_2 , of the dissolved UF₆ from $n_2 = V_1/x_2$, and we find that this assumption should cause the calculated curves for n_2 to be $\sim 3\%$ higher than the observed solubility of UF₆ in COCl₂ at 270 K; the effect of this assumption is negligible for all other data points.

The slopes of the lines computed from regular solution theory and plotted in Figures 2 and 3 are very similar to the slopes of the lines representing the observations over the temperature range for which we have data. The absolute solubilities of UF₆ in SO₂ and COCl₂ are not within estimated experimental error of the theoretical curves. Regular solution theory provides a fairly good (\sim 30%) quantitative estimate of the solubility of UF₆ in COCl₂ between 158 and 275 K but predicts that the concentration of UF₆ in SO₂ will be a factor of 2–3 below observed values.

In Figure 1, the measured and predicted absolute solubilities of UF₆ in N₂O agree fairly well, but the slope of the curve representing the observed solubilities differs significantly from the slope of the theoretical curve. The significance of this difference in slopes is hard to assess from our data, because the temperature range of our observations is small and the difference in slopes is not very far outside of the range of estimated uncertainty. Regular solution theory provides a reasonably good (5–10%) estimate of the solubility in UF₆ in N₂O between 182 and 194 K.

Regular solution theory does not represent any of the present binary systems within the estimated experimental uncertainty, but the comparison of theory and experiment may be invalidated by several things. First, values estimated for the solubility parameters depend in some cases on extrapolations which may be in error. In the case of UF₆/N₂O, uncertainties in our data may contribute significantly to the lack of agreement. Finally, the solubility parameters are estimated at 200 K, and somewhat different theoretical curves will, in practice, result if the solubility parameters are evaluated at some other temperature. We conclude that, at least for UF₆/N₂O and UF₆/COCl₂, the differences between the theory and the experiment may not be significant.

Conclusions

Liquid COCl₂, SO₂, N₂O, and even COS are all reasonably good solvents for UF₆. Regular solution theory adequately represents our data for the solubility of UF₆ in N₂O and COCl₂ but is less good for the solubility of UF₆ in SO₂. Although our temperatures are lower than in some previous investigations, it appears that the liquids studied here are better solvents for

Table III. Heats of Fusion (ΔH_0^f) , Heats of Vaporization (ΔH^v) , Molecular Weight (M_r) , Molar Volumes (V_i) , and Solubility Parameters (δ_i) Evaluated at T = 200 K

molecule	$\Delta H_0^{\rm f},$ kcal/mol	$\Delta H^{v},$ kcal/mol	M _r	V_i , cm ³	$\begin{array}{c} \delta , cal^{1/2} \\ cm^{-3/2} \end{array}$	
UF ₆	4.587 <i>ª</i>	7.61 ^b	352.03	84.42^{c}	9.24	
SO 2		6.70^{f}	64.06	39.74^{e}	12.63	

^a Taken from ref 11. ^b Obtained by subtracting the heat of fusion, 4.587 kcal, from the heat of sublimation, 12.20 kcal (p 423, ref 8) at 200 K. ^c Computed from the equation for the density in ref 12. ^d Obtained from data in ref 13 and from ref 11. ^e Computed from formulas and densities in ref 14. ^f Estimated by extrapolating the data in ref 15. ^g Taken from ref 15.

 UF_6 than many of the halocarbons and fluorinated halogens studied in the past (1, 4). Thus, reasonably good, low-temperature solvents exist for uranium hexafluoride, even among rather simple solvent molecules.

Registry No. UFa, 7783-81-5; COCl₂, 75-44-5; N₂O, 10024-97-2; SO₂, 7446-09-5

Literature Cited

- Galkin, N. P.; Sudarikov, B. N.; Zaitsev, V. A.; Vlasov, D. A.; Kosarev, V. G. At. Energ. (Engl. Transl.) 1961, 10, 138.
 Barber, E. J.; Posey, J. C.; Junkins, J. H. Report No. K-1075; Carbide and Carbon Chemicals Co.: Oak Ridge, TN, 1953.
 Kuykendall, W. C.; Jones, C. G.; Rapp, K. E.; Barber, E. J. Report No. K-1303; Union Carbide Nuclear Co.: Oak Ridge, TN, 1957.
 Toranov, J. V. Mikolawa, N. S.; Ukivawakawa, Y. a. Onalouskii, A.
- Tananaev, I. V.; Nikolaev, N. S.; Luk'yanychev, Yu. A.; Opalouskii, A. (4)
- A. Russ. Chem. Rev. (Engl. Transl.) 1961, 30, 654.
 (5) Wendolkowski, W. S.; Barber, E. J. J. Phys. Chem. 1958, 62, 750.
 (6) Rutledge, G. P.; Davis, W. J. Phys. Chem. 1959, 63, 166.

- (7) Fischer, J.; Vogel, R. C. J. Am. Chem. Soc. 1954, 76, 4829.
 (8) Katz, J. J.; Rabinowitch, E. "The Chemistry of Uranium the Element,
- Its Binary and Related Compounds"; Dover Publications: New York, 1951; Chapter 13.
- Hildebrand, J. H.; Prausnitz, J. M.; Scott, R. L. "Regular and Related (9) Solutions"; Van Nostrand-Reinhold: New York, 1970; pp 21 ff, 87, 207 ff.
- (10) Beattie, W. H.; Maier, W. B., II; Freund, S. M.; Holland, R. F. J. Phys. Chem. 1982, 86, 4351 (11) Landolt, H. H.; Börnstein, R. "Zahlenwerte and Functionen"; Band II,
- Teil 4; Springer-Verlag: West Berlin, 1961; p 228. Hoge, H. J.; Wechsler, M. T. *J. Chem. Phys.* **1949**, *17*, 617
- Giauque, W. F.; Ott, J. B. J. Am. Chem. Soc. 1972, 82, 2689. "International Critical Tables of Numerical Data, Physics, Chemistry, (13)(14)and Technology"; Washburn, E. W., Ed; McGraw-Hill: New York, 1928.
- "Zahlenwerte and Functionen"; Band IV, Teil 4; Springer-Verlag: (15)West Berlin, 1962; pp 717, 726.

Received for review June 27, 1983. Accepted October 21, 1983. This work was performed under the auspices of the U.S. Department of Energy.

Heat Capacities of Some Binary and Ternary Aqueous **Nonelectrolyte Systems**

Ian R. Tasker,[†] Sushil K. Suri,[‡] and Robert H. Wood*

Department of Chemistry, University of Delaware, Newark, Delaware 19711

Heat capacities of a variety of binary and ternary aqueous nonelectrolyte systems were measured and the data fitted to $C_{\rho,\phi} = C_{\rho,\phi} \circ + c_2 m + c_3 m^2$. The systems studied were aqueous solutions of acetamide, acetone, p-dioxane, dimethylformamide, ethyl acetate, formamide, hexamethylenetetramine, methyl formate, s-trioxane, and combinations of two of the above solutes. Internal consistency of data is very good and c_2 coefficients agree with literature values. However, small discrepancies of ${\it C}_{p,\phi}$ ° with literature values are observed, indicating a problem with the calorimeter.

Introduction

Heat capacities of binary and ternary aqueous solutions of myoinositol (IN), p-mannitol (MAN), cyclohexanol (CHEX), formamide (F), N,N-dimethylformamide (DMF), s-trioxane (T), and hexamethylenetetramine (HMT) were measured to complement recent enthalpy studies (1-5). Heat capacity measurements contribute to an understanding of solutions: details of structural effects have been found (6, 7), solute-solvent and solute-solute interactions have been uncovered (8-12), evidence of pseudophase transitions in binary aqueous organic systems (13) has been cited, and means have been provided for evaluating both the temperature dependence of excess thermodynamic properties (14) and isothermal compressibilities from isentropic compressibilities (15).

Much of the interest in heat capacity measurements has arisen in the past decade as a result of the widespread use of flow calorimeters, particularly those of the Picker type (16). Flow calorimetry offers a number of advantages over earlier techniques: higher sensitivity, elimination of vapor-space corrections, short response times, small sample size, and rapid collection of data. These inherent advantages, together with some elegant design features, make possible the use of "the general principle that it is preferable to measure heat capacities as a function of temperature and integrate to obtain enthalpies at various temperatures than to derive heat capacities from the temperature dependence of enthalpies" (15). This type of calorimeter is now being used for measurements at high temperatures (17-23). With the great importance now attached to heat capacity measurements, it is essential that the accuracy of the data should not be called into question. The results presented here give rise to some concern over this matter.

Experimental Section

Materials. The purification of myoinositol (1), p-mannitol (1), cyclohexanol (1), formamide (2), N, N-dimethylformamide (2), s-trioxane (3), and hexamethylenetetramine (5) used by one of us (I.R.T.) has been previously reported. The purification of acetamide, acetone, dioxane, ethyl acetate, formamide, hexamethylenetetramine, p-mannitol, methyl formate, and s-trioxane (used by S.K.S.) has also been reported elsewhere (24). Details of solution preparation and handling are also available (1-3, 5).

Apparatus and Procedure. Measurements were taken with a Sodev Model CP-C Picker-type flow heat capacity microcalorimeter (16, 25, 26). Essentially, two liquids (1 and 2) with heat capacities per unit volume of σ_1 and σ_2 are maintained at the same temperature and flow rate as they enter twin cells; here they are simultaneously heated in such a manner that their final temperatures are identical. If W_1 and W_2 are the electrical powers supplied to produce the temperature rise, then, under ideal circumstances (i.e., no heat losses), we have

$$\frac{W_2 - W_1}{W_1} = \frac{\sigma_2 - \sigma_1}{\sigma_1} \tag{1}$$

The instrumentation is arranged so that the difference in applied

[†]Current address: Alberta Research Coucil, Oil Sands Research Department, Edmonton, Alberta, Canada T6G 2C2.

[‡]Current address: Department of Chemistry, Indian Institute of Technology, Hauz Khas., Bombay 400099, India.