Results and Discussion

The experimentally determined dew and bubble points for the carbon dioxide-propane mixtures are presented in Tables I-X and are shown graphically for two of the mixtures in Figures 3 and 4. Dew points for the ternary mixture of carbon dioxide, propane, and methane are presented in Table XI and shown graphically in Figure 5. The maximum uncertainty in pressure measurements was estimated to be ± 0.015 MPa and the maximum uncertainty in temperature measurements was estimated to be ± 0.05 K.

Pressure-composition diagrams were constructed for 10 isotherms by using the data from the literature and the dew and bubble point data obtained in this work. In order to incorporate the data of this work, the pressure values were taken from the intersection of the given constant-temperature lines with the dew and bubble point curves for each mixture. Figure 6 presents P-x curves for several temperatures and Figure 7 presents P-y curves for several temperatures. In general, good agreement was obtained between the data presented in this investigation and the data of the other investigators.

Solid formation experiments were conducted over the pressure range 0.124–0.165 MPa. The experiments were conducted for each of the binary mixtures investigated in this study. The temperature of a given mixture was lowered at constant pressure until solid crystals appeared. The mixtures were then heated at constant pressure until the solids disappeared. In general the appearance temperature was several degrees lower than the disappearance temperature. The temperatures at which solid appeared range from 183.1 to 198.3 K and the temperatures at which solid disappeared varied from 194.3 to 201.4 K. Solid formation temperatures increased as the carbon dioxide concentration increased.

Registry No. Propane, 74-98-6; methane, 74-82-8; carbon dioxide, 124-38-9.

Literature Cited

- (1) Akers, W. W.; Kelley, R. E.; Lipscomb, T. G. Ind. Eng. Chem. 1954, 46, 2535.
- Haman, S. E.; Lu, B. C. J. Chem. Eng. Data **1976**, *21*, 200.
 Jensen, R. H.; Kurata, F. AIChE J. **1971**, *17*, 357.
- (4) Nagahama, K.; Konishi, H.; Hoshiyo, D; Hirata, M. J. Chem. Eng. Jpn.
- **1974**, 7, 323.
- (5) Poettman, F. H.; Katz, D. L. Ind. Eng. Chem. 1945, 37, 847.
 (6) Reamer, H. H.; Sage, B. H.; Lacey, W. H. Ind. Eng. Chem. 1951, 43,
- 2515.
- (7) Salah, E. M.; Lu, B. C. Y. J. Chem. Eng. Data 1976, 21, 200.
 (8) Firoozabadi, A. Ph.D. Thesis, Illinois Institute of Technology, chicago,
- IL, 1974.
 Bloomer, O. T.; Parent, J. D. Inst. Gas Technol. Chicago, Res. Bull.
- (9) Bloomer, O. T.; Parent, J. D. Inst. Gas Technol. Chicago, Res. Bull. 1952, No. 17.

Received for review August 29, 1983. Accepted February 23, 1984. This work was funded by the Institute of Gas Technology.

Solubility of Carbon Dioxide in Aqueous Diethanolamine Solutions at Elevated Temperatures and Pressures

Malcolm L. Kennard and Axel Melsen*

Department of Chemical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1W5

The solubility of carbon dioxide in 10, 20, and 30 wt % aqueous diethanolamine (DEA) solutions has been determined for elevated temperatures (100-205 °C) and CO₂ partial pressures (70-4000 kPa). The results were acquired by a simple experimental procedure and agree, on the average, within 10% of literature values reported for more moderate temperatures and pressures.

Introduction

Aqueous diethanolamine (DEA) solutions are used extensively for the removal of H_2S and CO_2 from raw natural gas and other light hydrocarbon mixtures. Knowledge of the equilibrium solubility of these acid gases in DEA solution is essential for the proper design and operation of absorption and desorption equipment. Furthermore, many gas treating plants experience problems with DEA degradation, i.e., the irreversible reaction of DEA with CO_2 . To understand degradation, which is particularly serious at elevated temperatures and pressures, it is also necessary to have a good knowledge of CO_2 solubility in DEA solutions. The solubility data presented in this paper were acquired for use in a recent study on DEA degradation (1).

Data on CO_2 solubility in aqueous DEA solutions have been reported by several investigators, but no results have been published for elevated temperatures and pressures. Table I summarizes the ranges of experimental variables investigated by previous researchers. The present study provides CO_2

Table I. Summary of Experimental Conditions Used by Previous Researchers

researcher	DEA concn, wt %	temp, °C	CO ₂ partial press., kPa
Bottoms (3)	50	25-55	1.33-101.33
Mason and Dodge (4)	5-80	0-75	1.33 - 101.33
Reed and Wood (5)	25	100-140	241.3 - 1571.3
Dow (6)	5-40	20-100	1.33 - 400
Murzin and Leites (7)	5-80	20-90	0.0133-93.33
Lee et al. (8)	5-50	25-120	0.689 - 5707
Lawson and Garst (9)	25	38 - 121	2.0 - 4266

solubility data under the following conditions: DEA concentration 10-30 wt %; Temperature, 100-205 °C; CO₂ partial pressure, 70-4000 kPa.

Apparatus

Aqueous DEA solutions were prepared by mixing distilled water and commercial-grade DEA which had a purity in excess of 98%. The carbon dioxide had a minimum purity of 99.5%.

The equipment used in this work consisted essentially of a 600-mL stirred, stainless steel autoclave (supplied by the Parr Instrument Co., Moline, IL, Model 4560; see Figure 1). The autoclave, which was equipped with an electric heating mantle, could be operated at temperatures ranging from ambient to 400 °C. The temperature was controlled to within ± 0.5 °C by an automatic controller whose output was displayed on a digital

1-D

Table II. Vapor Pressure of DEA Solutions as a Function of Temperature

		vapor pr	ess., kra		
temp, °C	0% DEA ^a	10% DEA ^a	20% DEA ^a	30% DEAª	
100	101.3	101.3	101.3	101.3	
120	202.7	197.8	186.2	168.4	
140	379.0	362.5	338.5	300.4	
160	637.8	607.7	567.4	496.0	
180	1027.1	985.0	919.0	837.3	
200	1568.6	1525.8	1477.5	1352.4	
210	1971.3	1885.3	1790.7	1677.5	

^aWeight percent.

Figure 1. 600-mL autoclave used for high-pressure solubility studies.

thermometer and recorded by a strip chart recorder. The autoclave was capable of withstanding pressures up to 13 MPa at 400 $\,^{\circ}\text{C}.$

Experimental Method

The experimental method may be summarized as follows: (i) A 2-L high-pressure bomb was filled with pure CO₂ to a pressure of 5156 kPa. The filled bomb was then weighed to within ± 0.2 g.

(ii) The 600-mL autoclave was charged with 450 mL of the desired DEA solution and closed. The autoclave was then heated to the desired temperature with the stirrer set at about 150 rpm.

(iii) The bomb was connected to the autoclave and CO_2 was admitted into the autoclave until the desired pressure was reached. After equilibrium was established, which was indicated by the attainment of a constant pressure and which usually took less than 15 min, the bomb was disconnected from the autoclave.

(iv) The bomb was reweighed and the quantity of $\rm CO_2$ introduced into the autoclave was calculated from the weight change.

The amount of CO_2 in the DEA solution was determined from the total weight of CO_2 fed into the autoclave and the partial pressure of CO_2 in the autoclave. To calculate the latter, the vapor pressure of the aqueous DEA solution had to be known.

		CO	COa
	total	partial	solubility
temp.	press	press	g of CO ₂ /
°C	kPa	kPa	g of DEA
	1105.0	AT U	5 01 DER
205	4137.0	2451.9	0.283
	3103.0	1417.6	0.236
200	3826.7	2329.8	0.279
	2882.1	1385.2	0.246
	1896.0	488.9	0.185
190	3413.0	2214.7	0.290
	2502.9	1303.2	0.249
	1641.0	442.7	0.189
180	2971.7	2003.0	0.295
	2137.5	1168.7	0.257
	1365.2	369.5	0.191
170	3826.7	3067.6	0.338
	2620.1	1861.0	0.300
	1806.5	1047.4	0.262
	1123.9	364.7	0.193
160	3323.4	2731.8	0.352
	2289.1	1697.5	0.316
	1503.1	911.5	0.270
	896.4	304.8	0.196
150	4137.0	3678.5	0.423
200	2868.3	2409.8	0.376
	1937.5	1479.0	0.334
	1248.0	789.5	0.279
	710.2	251 7	0.200
140	3675.0	201.7	0.464
140	2482.2	2040.2	0.404
	1500 6	1947.2	0.350
	10126	661.9	0.349
	551 6	100.2	0.207
120	2205.9	2021.0	0.200
150	0290.0	1996 5	0.482
	2101.2	1000.0	0.408
	1330.7	1066.0	0.355
	800.8	286.1	0.292
100	427.5	162.7	0.205
120	3902.6	3711.6	0.558
	2999.3	2808.3	0.510
	1834.1	1645.1	0.430
	1123.9	932.9	0.370
	675.7	484.7	0.300
	324.1	133.1	0.200
110	3516.5	3375.8	0.580
	2702.9	2562.2	0.530
	1558.3	1417.6	0.435
	937.7	797.1	0.376
	558.5	417.8	0.303
	262.0	121.4	0.207
100	3192.4	3093.89	0.598
	2434.0	2334.4	0.540
	1324.0	1255.2	0.450
	827.4	728.8	0.382
	448.2	349.6	0.305
	200.0	105.5	0.208

The following experiments were performed to measure the vapor pressure. CO_2 -free, aqueous DEA solutions were charged into the autoclave and heated to a specified temperature. The vapor pressure of the solution, which corresponded to the total pressure in the autoclave, was then measured with a precision pressure gauge. The temperature was subsequently raised and the pressure noted again. Table II summarizes the results of these experiments.

Calculation of CO₂ Solubility

From a knowledge of the total weight of CO_2 introduced into the autoclave, the total pressure in the autoclave, the vapor pressure of the CO_2 -free DEA solution, and the temperature, the solubility of CO_2 in the liquid phase was calculated by the following method.

First, the amount of CO_2 in the vapor phase was determined by assuming that the phase obeyed Dalton's law; i.e., the total

Table III. Solubility of CO2 in 10 wt % DEA

Table V. Solubility of CO₂ in 30 wt %

Table IV. Sol	ubility of C	O ₂ in 20 wt % D	EA	Та
temp,	total press., kPo	CO ₂ partial	CO_2 solubility, g of $CO_2/$	
C	KF8	press., kra	g OI DEA	<u> </u>
205	4137.0	2539.4	0.195	
000	3102.8	1505.2	0.140	
200	3861.2	2436.0	0.198	
	2792.5	1367.3	0.152	
100	2116.8	691.6	0.112	
190	3468.2	2331.9	0.200	
	2358.1	1263.2	0.154	
190	1696.2	601.2	0.115	
180	3006.2	2103.0	0.205	
	1972.0	1069.4	0.159	
150	1475.5	573.0	0.123	
170	3806.0	3106.2	0.255	
	2606.3	1906.5	0.211	
	1641.0	941.2	0.162	
100	1241.1	541.3	0.129	
160	3371.7	2827.0	0.270	
	2165.0	1620.3	0.226	
	1310.1	765.3	0.168	
150	965.3	420.6	0.142	
150	4137.0	3713.0	0.315	
	2937.3	2513.2	0.280	
	1765.1	1341.1	0.236	
	1034.3	610.2	0.183	
1 40	744.7	320.6	0.144	
140	3619.9	3293.7	0.330	
	2509.8	2182.7	0.290	
	1496.2	1156.3	0.240	
	792.9	466.8	0.177	
100	565.4	239.3	0.146	
130	3233.8	2990.4	0.339	
	2075.4	2521.5	0.295	
	1282.5	1039.1	0.248	
	593.0	349.6	0.183	
100	420.6	177.7	0.148	
120	3557.8	3378.6	0.381	
	2827.0	2647.7	0.351	
	1834.1	1654.2	0.306	
	1075.6	896.4	0.257	
	472.3	293.0	0.185	
	324.1	144.8	0.150	
110	3240.7	3106.2	0.391	
	2530.5	2396.0	0.357	
	1516.9	1382.5	0.315	
	944.6	810.2	0.270	
	375.8	941 9	0 190	

able V. Solub	ility of CO ₂	in 30 wt % D	EA	_
		CO ₂	CO_2	
	total	partial	solubility,	
temp,	press.,	press.	g of CO ₂ /	
°C	kPa	kPa	g of DEÅ	
205	4137.0	2627.0	0.165	
	3102.0	1592.7	0.114	
200	3793.3	2762.9	0.183	
	2792.5	1439.0	0.114	
	1896.1	542.6	0.089	
190	3240.7	2587.7	0.190	
	2413.3	1340.0	0.120	
	1627.2	553.7	0.081	
180	2758.0	2417.4	0.192	
	2034.0	1197.0	0.123	
	1351.4	514.4	0.090	
170	3585.4	2945.0	0.236	
	2330.5	2138.2	0.202	
	1689.3	1048.7	0.128	
	1103.2	462.7	0.090	
160	3136.5	2618.0	0.240	
	2000.0	1728.6	0.200	
	1334.5	846.0	0.132	
	910.1	411.6	0.094	
150	4137.0	3746.7	0.312	
	2482.2	2078.2	0.240	
	1723.8	1333.5	0.195	
	1048.0	657.8	0.137	
	723.9	333.7	0.104	
140	3502.7	3203.4	0.328	
	2006.4	1707.2	0.248	
	1516.9	1217.7	0.209	
	813.6	514.4	0.141	
	572.3	273.0	0.106	
130	3068.3	2845.6	0.330	
	1654.8	1432.1	0.249	
	1220.4	999.8	0.210	
	620.6	393.0	0.144	
	448.2	225.5	0.111	
120	3826.7	3659.2	0.376	
	2826.9	2659.4	0.330	
	1379.0	1210.1	0.248	
	965.3	797.8	0.212	
	468.9	301.3	0.147	
	313.7	146.7	0.111	
110	3516.5	3388.2	0.381	
	2689.1	2560.8	0.344	
	1172.2	1043.9	0.256	
	820.5	692.3	0.215	
	365.4	237.2	0.149	
100	224.8	96.5	0.108	
100	3275.1	3182.7	0.392	
	2447.7	2355.3	0.355	
	1034.3	941.9 501.0	0.264	
	013.1	021.3 1924	0.217	
	210.0 165 5	103.4	0.149	
	109.9	13.1	0.108	

pressure exerted by the vapor phase equals the sum of the partial pressures of the individual components. The validity of this assumption was proved for the present experimental conditions by calculating the total pressure exerted by CO_2 /water vapor mixtures with Daiton's law. The results were then compared with the pressures calculated by using the compressibility factor method (*2*) based on the pseudocritical temperatures and pressures of the mixtures. The compressibility factors ranged from 0.92 to 1.00, which implies that Daiton's law is valid to within less than 8%. The partial pressure of CO_2 in the vapor phase was therefore simply taken as the difference between the total measured pressure and the vapor pressure of the CO_2 -free, aqueous DEA solution, i.e.

106.9

2759.4

2159.5

1276.9

689.5

194.4

91.0

0.153

0.404

0.365

0.318

0.275

0.197

0.156

241.3

2854.5

2254.7

1372.1

784.6

289.6

186.2

100

partial pressure of $CO_2 =$

total pressure - vapor pressure of DEA solution (1)

Knowing the partial pressure of CO_2 , the volume of the vapor phase (determined from the internal volume of the autoclave and the volume of DEA solution introduced), and the temperature, we could find the number of moles of CO_2 in the vapor phase by using an equation of state. The van der Waals equation was considered to be suitable for this purpose. Although more accurate equations of state are available, the van der Waals expression is useful for providing a simple, analytical representation of the behavior of a slightly nonideal gas. Furthermore, the amount of CO_2 in the vapor phase relative to that in the liquid phase is small. The loss of some accuracy in the CO_2 content of the vapor phase has therefore only a minor effect on the solubility of CO_2 in the DEA solution.

Once the number of moles of CO_2 in the vapor phase had been found, the mass of CO_2 in the DEA solution was obtained by substracting the mass of CO_2 in the vapor phase from the total mass of CO_2 fed to the autoclave, i.e.

Table VI. Comparison between CO_2 Solubilities in DEA Solutions Ubtained in This and Other Stu	fable VI
--	----------

	temp, °C	CO2 partial press., kPa	CO_2 concn, g of CO_2/g of DEA			
DEA concn, wt %			this study	lit.	diff, %	ref
20	100	689.5	0.272	0.27	0.74	7
20	120	689.5	0.238	0.212	12.26	7
20	140	689.5	0.204	0.186	9.68	7
20	100	2178.8	0.366	0.348	5.17	7
20	120	2178.8	0.331	0.294	12.58	7
20	140	2178.8	0.29	0.25	16.00	7
25	107	591.6	0.22^{a}	0.218	0.92	8
25	107	2185.7	0.31^{a}	0.287	8.01	8
25	121	335.8	0.165^{a}	0.143	15.38	8
25	121	1585.9	0.275^{a}	0.248	10.89	8
25	121	2771.2	0.33^{a}	0.3	10.00	8
					av = 9.24	

^a Interpolated results from Figures 3 and 4.

Figure 2. Solubility of CO2 in a 10 wt % aqueous DEA solution.

Figure 3. Solubility of CO2 in a 20 wt % aqueous DEA solution.

Figure 4. Solubility of CO_2 in a 30 wt % aqueous DEA solution.

mass of CO_2 dissolved = total mass of CO_2 fed to autoclave – mass of CO_2 in vapor phase (2)

From the mass of CO_2 dissolved in the aqueous DEA solution and the known mass of DEA in the autoclave, the solubility of CO_2 expressed as (g of CO_2)/(g of DEA) could be easily calculated.

Results

Tables III-V summarize the solubility data as a function of

temperature, CO_2 partial pressure, and DEA concentration. For convenience, the corresponding, smoothed data are also presented in Figures 2–4. The solubility curves are virtually straight lines at elevated temperatures and pressures. Similar behavior had already been observed by others for comparable or milder conditions (4-8).

Accuracy of Data

It is realized that the method for determining the CO_2 solubility data is simple and somewhat approximate. To check the accuracy of the present method, the results were compared with literature values where possible. The comparisons are summarized in Table VI and show an average deviation of less than 10%.

The largest error probably arose from calculating the mass of CO₂ in the vapor phase. However, when it is noted that the mass of CO₂ in the vapor phase is generally less than 25% of the CO₂ dissolved in the liquid phase, an error of $\pm 30\%$ in the vapor phase mass causes an error of only $\pm 10\%$ in solubility. Such errors were considered to be acceptable for the purposes of our degradation studies.

Conclusions

The results obtained in this study extend the range of data on CO_2 solubility in aqueous DEA solutions beyond those reported previously. The data are in reasonable agreement (10% on the average) with the findings of other investigators under milder conditions. Furthermore, the present experimental method requires only simple equipment and is easy to perform.

Registry No. CO2, 124-38-9; DEA, 111-42-2.

Literature Cited

- (1) (1) Kennard, M. L. Ph.D. Thesis, University of British Columbia, Vancouver, British Columbia, Canada, 1983.
- (2) Gas Processors Association. "SI Engineering Data Book"; Gas Processors Suppliers Association: Tulsa, OK, 1980.
- (3) Bottoms, R. R. Ind. Eng. Chem. 1931, 23, 501.
 (4) Mason, J. W.; Dodge, B. F. Trans. Am. Inst. Chem. Eng. 1936, 32,
- Reed, R. M.; Wood, W. R. Trans. Am. Inst. Chem. Eng. 1941, 37,
- 363. (6) Dow Chemical Company. "Gas Conditioning Fact Book"; The Dow Chemical Co. Midland MI 1962.
- Chemical Co.: Midland, MI 1962. (7) Murzin, V. I.; Leites, I. L. Zh. Fiz. Khim. 1971, 45, 2642.
- (8) Lee, J. I.; Otto, F. D.; Mather, A. E. J. Chem. Eng. Data 1972, 17, 465.
- (9) Lawson, J. D.; Garst, A. W. J. Chem. Eng. Data 1976, 21, 20.

Received for review April 21, 1983. Revised manuscript received November 30, 1983. Accepted February 7, 1984. We gratefully acknowledge the financial support provided by the Canadian Gas Processors Association for the study.