Propylene-Propane Phase Equilibrium from 230 to 350 K

A. Harmens
Costain Petrocarbon Ltd., Manchester M22 4TB, England

Abstract

Coherent tables are presented for the vapor-Hquid equillbrium of propylene-propane for temperatures from 230 to 350 K . The tables were calculated with a perturbed hard sphere equation of state, adapied specially to the saturation properties of the two substances. Measured equllbrium data from the ilterature were used for ifting the binary Interaction coefficient. Detalis of the calculation procedure are glven. The accuracy of the equillbrium compositions is estimated at about 2% of the smalier of the two mole fractions. It is shown that for production of pure propylene by distillation, lower pressures (but not lower than about 6 bar) have some advantage over higher pressures.

Introduction

The literature on the propylene-propane vapor-liquid equilibrium offers a somewhat disjointed picture, with the various publications being as a rule unsultable for direct application in process design. At the same time, because of the industrial importance of the system and its small relative volatilties, there is a demand for rellable equilibrium data. In the design of a C_{3} distillation colurnn the process engineer may wish to empioy a water-cooled overhead condenser, which will fix his operating temperatures at around 320 K . The proximity of the critical points sets a practical limit at about 350 K. Alternatively, he may wish to operate at substantially lower temperatures in order to exploft the larger relative volatillies. In that case the practical limit lies at around 230 K , below which the column pressure would become subatmospheric. It has been the objective of this study to represent the available equillbrium data of this system with a single continuous calculation procedure, covering the temperatures from 230 to 350 K .
Most of the empirical equillbrium data are at elevated pressures. Thermodynamic consistency analysis of such data remains somewhat controversial, because of the uncertain precision with which equations of state or generalized correlations calculate the necessary thermodynamic functions. Smith et al. (1) have analyzed this and have used the propylene-propane system as an example. Therefore, no thermodynamic consistency analysis was attempted. A hard-sphere cubic equation of state was used, adapted to the saturation properties of the pure consttuents. A single binary interaction coefficient was fitted to empirical equilibrium data, covering the entire temperature range. The calculation procedure thus obtained was used to generate the equilibrium tables.

Equation of State and Mixing Rules

A cubic equation of state as described by Ishikawa et al. (2, 3) was used

$$
\begin{equation*}
p=\frac{R T}{v}\left(\frac{2 v+b}{2 v-b}\right)-\frac{a}{v(v+b)} \tag{1}
\end{equation*}
$$

A factor of $T^{-0.5}$ appearing in the original attraction term was incorporated into the parameter a. Ishikawa et al. $(2,3)$ could show that in the calculation of phase equilibrium this equation was superior to other two-parameter equations.

Table I. Analysis of Calculated Equilibria

ref	points	AAD, \%	bias, \%	rmsd
Comparison with Underlying Empirical Data				
7	23	3.08	0.95	0.0158
8	9	6.18	-0.96	0.0199
11	23	3.09	1.19	0.0138
12	19	1.97	1.03	0.0079
total	74	3.17	0.81	0.0136
Comparison with Partly Calculated Empirical Data				
13	45	6.37	1.75	0.0228
14	63	4.24	-0.48	0.0188
total	108	5.13	0.45	0.0206

The parameters a and b are related to the critical constants by

$$
\begin{equation*}
a=\Omega_{a} R^{2} T_{c}^{2} / p_{c} \quad b=\Omega_{b} R T_{c} / p_{c} \tag{2}
\end{equation*}
$$

with Ω_{a} and Ω_{b} numerical factors. Pure-component data were taken from Angus et al. (4) for propylene and from Goodwin (5) for propane. The critical constants are as follows: propylene, $T_{c}=365.57 \mathrm{~K}, p_{c}=46.646$ bar; propane, $T_{c}=$ $369.80, p_{c}=42.42$. Since eq 1 shouid reproduce the saturation behavior of the pure components correctly, the Ω_{a} and Ω_{b} were fitted simultaneously to vapor pressure and saturat-ed-liquid volume data. The Ω 's thus obtained as functions of temperature could accurately be described by
propylene

$$
\begin{aligned}
& \Omega_{a}=1.10110-1.95859 t+0.15929 t^{2}+0.81806 t^{3} \\
& \Omega_{b}=0.12818+0.28830 t-1.36975 t^{2}+1.04981 t^{3}
\end{aligned}
$$

propane

$$
\begin{equation*}
\Omega_{a}=1.11032-2.00671 t+0.17630 t^{2}+0.95922 t^{3} \tag{3}
\end{equation*}
$$

$\Omega_{b}=0.12205+0.33897 t-1.55702 t^{2}+1.29853 t^{3}$
with $t=0.001 T$. Equations 1 and 2 with these Ω functions (3) reproduce the underlying vapor pressures virtually exactly. For fugacity formulas, see the Appendix.

For mixtures the equations were used together with the following general mixing rules:

$$
\begin{equation*}
a_{M}=\sum_{l} \sum_{l} x, x a_{l \mid} \quad b_{M}=\sum_{l} \sum_{l} x, x b_{l j} \tag{4}
\end{equation*}
$$

(analogously with mole fractions y for vapor) with

$$
\begin{equation*}
b_{l j}=1 / 8\left(b_{i}^{1 / 3}+b_{j}^{1 / 3}\right)^{3} \quad a_{i j}=\left(\frac{a a_{j}}{b_{j}}\right)^{1 / 2} b_{j} k_{l j} \tag{5}
\end{equation*}
$$

As shown by Mollerup (6), these expressions have a better foundation in the statistical theory of corresponding states than the conventional artthmetical and geometrical averages. It was found that a second interaction coefficlent, in the expression for b_{y}, couid be set equal to 1.0 . This stands to reason in vlew of the great similarity of the two molecular species.

Table II. Propylene-Propane Phase Equilibrium

Binary Interaction Coefficient $\boldsymbol{k}_{\text {II }}$

Propylene-propane equilibrium data have been published in a number of places (7-14). The data by Hill et al. (9) (only three points) had to be rejected as being inconsistent among themselves. Mann et al. (10) reported isobaric data, whout temperatures, which could not be used. Manley and Swift (13) and Laurance and Swiff (14) measured only total pressure and specific volume of given liquid mixtures and calculated the vapor compositions. That is not without risk, as Smith et al. (1) have demonstrated. Suspicion was ralsed by the fact that at 310.93
K the two papers give quite different bubble point pressures. Therefore, these data were disailowed for the fitting of $k_{l j}$, but they were used later for comparison.

So four papers remained, ghling actually measured isothermal sets of equilibrium data for a number of temperatures. The reported pure-component vapor pressures in general compared well with the vapor pressures used in this work: average absolute devlation 0.22% (maximum 0.40%) for propylene and 0.19% (maximum 1.12\%) for propane.
A computer program fitted $k_{l j}$ values to the isothermal sets of empirical equilibrium data. For a given temperature it read

Figure 1. Relative volatility α_{1} as function of pressure: (-) this work, (---) Funk and Prausnitz.

In all $\left(p, x_{1}, y_{1}\right)$ data points and adjusted $k_{l \mid}$ so as to minimize the sum of the retative discrepancies between empirical x_{1}, x_{2}, y_{1}, y_{2}, and the corresponding calculated values, at each (T, p) point. So a single optimized $k_{l /}$ was returned for each isothermal set of data.

The k_{y} thus obtained for the data by Hanson et al. (8) at 269.54 K and by Hakuta et al. (12) at 293.25 K had to be rejected as being clearly incompatible with the other results from the same source and far outside the general trend of $k_{\text {II }}$ values. The remaining nine $k_{\|}$between 228.65 and 344.26 K couid be described by

$$
\begin{equation*}
k_{y}=0.9340+0.3397 t-0.4734 t^{2} \tag{6}
\end{equation*}
$$

These k_{y} lie between 0.987 and 0.995 , close to 1 , as should be expected.

Teeting Calculated Equilibrla and Accuracy

The equillbria which could now be calculated were first tested against the underlying data. At each empirical (T, p) point the four calculated equilibrium mole fractions were compared with the corresponding empirical values. The upper part of Table I shows the results of these comparisons. They are expressed as average absolute deviation on a percentage basis (AAD, \%), bias or average deviation on a percentage basis (blas, \%), and root mean square deviation (rmsd) in mole fraction. "Deviation" here means calculated minus empirical mole fraction.

The deviations are of course partly of experimental origin. AAD contains a few large indlvidual errors (up to 19%) at the extremities of the isothermal data sets, where the small propylene or propane mole fractions have magnifled the percentage deviations. Since errors in the middle of the concentration range do not contribute materially to the blas (contributions for propylene and propane largely cancel out), the slightly positive blas indicates that the smaller concentrations tend to be calculated slightly too high.

The lower part of Table I shows comparisons with the partly calculated empirical data by Swift and co-workers (13, 14). As was to be expected, the AAD and rmsd are somewhat larger than in the previous comparison. It is interesting to note that the blases for the two sets of data have opposite signs: the calculated equillibria follow an intermediate course in between the two sets.

An answer to the question as to how accurately the calculated mole fractions actually represent the true equilibrium should embody three aspects: (1) the limiting pure-component phase equillibrium is presumably represented without error; (2) the inaccuracy in the calculated mole fractions is likely to be smaller than the deviations disclosed by the tests; (3) the preponderance of the smaller mole fractions in determining the inaccuracy should be manifested. In vlew of this, it is estimated that the average absolute error in a calculated equilibrium composition is about 2% of the smaller of the two mole fractions.
The results of the tests against the 74 undertying data points also showed that almost without exception calculated x_{1} and y_{1} were elther both too large or both too small. This being so, the numerator and the denominator of the relative volatilly α_{1} are both affected to about the same degree by the inaccuracy in the calculated mole fractions. This makes the α_{1} largely insensitive to those inaccuracies.

Tabulated Equillbria and the (α, p) Diagram

The computation procedure was incorporated into a bubble point program to generate the equllibrium data and relative volatillties α_{1} shown in Table II.
The propylene-propane equilibrium has been analyzed before, by Funk and Prausnitz (15), using the composite thermodynamic treatment of Prausnitz and Chueh (16). They presented their results in an (α, p) diagram showing lines for constant x_{1}. A similar dlagram was prepared on the basis of our equation of state procedure (Figure 1). It shows curves for five x_{1} values, and three corresponding curves from ref 15. At low pressures there is a measure of agreement, but toward higher pressures the Funk-Prausnitz curves run increasingly too high. This is probably caused by insufficlent refinement of the Prausnitz-Chueh procedure, which uses constant Ω_{a} and Ω_{b} and (for this system) a $k_{l /}=1.0$.
The present $x_{1}=0.99$ curve shows a maximum at about 6 bar. At low pressures it falls toward $\alpha_{1}=1.0$. The reason for this is that propane has only a slightly lower vapor pressure than propylene while the liquid mixtures are almost ideal: at constant T the total pressure at the propylene end is almost constant. Table II confirms this. Since at the propylene end Raoult's law approximately holds for propylene, y_{1} / x_{1} equals about 1 and consequently α_{1} approaches 1 . Toward higher pressures the present curve is noticeably steeper than the Funk-Prausnitz curve. This indicates that for producing pure propylene by distillation it is advantageous to operate at lower pressures, but not below about 6 bar.

Appendlx

Fugactty Formulas for Eq 1.
For a single substance

$$
\ln \varphi=2 \ln \left(\frac{2 v}{2 v-b}\right)+\frac{a}{b R T} \ln \left(\frac{v}{v+b}\right)+\begin{aligned}
& Z-1-\ln Z \text { (7) }
\end{aligned}
$$

For a component / in a mixture

$$
\begin{align*}
\ln \varphi_{1}= & 2 \ln \left(\frac{2 v}{2 v-b}\right)+ \\
& \frac{1}{b R T}\left(a+\frac{\partial a}{\partial x_{1}}-\frac{a}{b} \frac{\partial b}{\partial x_{1}}\right) \ln \left(\frac{v}{v+b}\right)- \\
& \left(\frac{2}{2 v-b}-\frac{1}{b R T} \frac{a}{v+b}\right)\left(b-\frac{\partial b}{\partial x_{1}}\right)-\ln Z \tag{8}
\end{align*}
$$

In this formula a and b equal a_{M} and b_{M} of eq 4.

Clossary

a, b	parameters in equation of state (1)
k	binary interaction coefficient
p	total pressure, bar
R	gas constant (83.1448 bar $\left.\cdot \mathrm{cm}^{3} / \mathrm{mol} \cdot \mathrm{K}\right)$
T	absolute temperature, K
t	$0.001 T$
v	molal volume, $\mathrm{cm}^{3} / \mathrm{mol}$
x	mole fraction in liquid
y	mole fraction in vapor
Z	compressibility factor pv/RT
α_{1}	relative volatility $y_{1} x_{2} / x_{1} y_{2}$
φ	fugacity coefficient
Ω_{a}, Ω_{b}	numerical factors in a and b, eq 2 and 3

Subscripts

1,2 refer to propylene and propane, respectively
$1, /$ refer to any of the components

C critical
M mixture

Reglatry No. Propylene, 115-07-1; propane, 74-98-6.

Lherature Ched

(1) Smith, B. D.; Muthu, O.; Dewan, A.; Gerlach, M. J. Phys . Chem. Ref. Data 1082, 11, 841.
(2) Ishtkawa, T.; Chung, W. K.; Lu, B. C. Y. AIChE J. 1980, 26, 372.
(3) Ishikawa, T.; Chung, W. K.; Lu, B. C. Y. Adv. Cryog. Eng. 1980, 25, 671.
(4) Angus, S.; Armstrong, B.: de Reuck, K. M. "International Thermodynamic Tables of the Fhuld State, 7-Propylene"; International Union of Pure and Applled Chemlstry; Oxtord, 1980.
(5) Goodwin, R. D. "Provisional Thermodynamic Functions of Propane from 85 to 700 K at Pressures to 700 bar"; U.S. National Bureau of Standards: Washington, DC, July 1977; NBSIR-77-880.
(6) Mollerup, J., presented at the 7 1st Annual Meeting of the American Institute of Chemical Engineers Marni, FL, Nov 1978.
(7) Reamer, H. H.; Sage, B. H. Ind. Eng. Chem. 1951, 43, 1628
(8) Hanson, G. H.; Hogan, R. J.; Nelson, W. T.; Cines, M. R. Ind. Eng. Chem. 1952, 44, 604.
(9) Hill, A. B.; McCormick, R. H.; Barton, P.; Fenske, M. R. AIChE J. 1882, 8, 681.
(10) Mann, A. N.; Pardee, W. A.; Smyth, R. W. J. Chem. Eng. Data 1963, 8, 489.
(11) Hirata, M.; Hakuta, T.; Onoda, T. Int, Chem. Eng. 1968, 8, 175.
(12) Hakuta, T.; Nagahama, K.; Hirata, M. Bull. Jpn. Pet. Inst. 1969, 11, 10.
(13) Manley, D. B.; Swift, G. W. J. Chem. Eng. Data 1971, 16, 301
(14) Laurance, D. R.; Swift, G. W. J. Chem. Eng. Data 1972, 17, 333.
(15) Funk, E. W.; Prausnitz, J. M. AIChE J. 1971, 17, 254.
(16) Prausnitz, J. M.; Chueh, P. L. "Computer Calculations for High Pressure Vapor-Liquld Equlllbria"; Prentico-Hall: Englewood Clifts, NJ, 1868.

Vapor-Liquid Equillibrium in Aqueous Solutions of Various Glycols and Poly(ethylene glycols). 3. Poly(ethylene glycols)

Mordechay Herskowitz and Moshe Gottlleb*
Chemical Engineering Department, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel

The activity of water In solutions of poly(ethylene glycols) (PEGs, molecular welghts 200, 600, 1500, 6000) was measured over a wide range of welght fractions at 293.1, 313.1 , and 333.1 K . The dala were obtained by an isoplestic method. A comparison between the measured activities and predicted values by the UNIFAC method gives a good agreement for PEG 200 solutions only.

Introduction

Poly(ethylene glycols) are polymers that find a wide range of industrial applications due to their high solubility in water. They are commonly used in the pharmaceutical industry as exciplents in drug formulation, as surface-active agents in water treatment, as fiber-forming aids in the textlie industry, in the manufacture of lubricants and mold release agents, and recently as reactive moleties in the preparation of hydrophllic polyurethane networks for medical purposes (1,2). The properties of the aqueous solutions of poly(ethylene glycols) have been extensively studied by various methods (3-6).

Malcolm and Rowlinson (7) measured the vapor pressures of aqueous solutions of poly(ethylene glycol) of molecular weights 300,3000 , and 5000 at $303-338 \mathrm{~K}$. The water actvity was calculated from the data. Adamcova (8) employed an
isopiestic method to measure the water activity in aqueous solutions of poly(ethylene glycols) (molecular weights 200$\mathbf{2 0 0 0 0)}$ at 298 K . This study was limited to relatively dilute solutions (polymer weight fraction less than 0.5).

In this work we have enlarged the body of available data on the actlvity of aqueous PEG solutions by obtaining data for polymers in the molecular weight range of 200-6000 over the entire concentration range.

Experimental Section

The isopiestic apparatus employed in this study is described in detail elsewhere (9). The reference solute was lithium chioride, manufactured by Merck Co. Its purity analyzed by atomic absorption and titration was better than 99.8%. The poly(ethylene glycols), manufactured by BDH, were used as supplied. After the salt and the polymers were dried at $120^{\circ} \mathrm{C}$, their water content measured by Karl Fischer analysis was less than 0.3% and 0.7%, respectively.

Results and Diecussion

The water activity was calculated from the expression

$$
\begin{equation*}
\ln a_{w}=-\nu_{r} m_{r} \phi_{\mathrm{r}} / 55.51 \tag{1}
\end{equation*}
$$

where ν_{r}, m_{r}, and ϕ_{r} are the number of ions, the molallty, and

