Literature Cited

- Dworkin, A. S., Bredig, M. A., *High Temp. Sci.*, **3**, 81 (1971).
 Feber, R. C., "Heats of Dissociation of Gaseous Halides", L.A. 3164, TID-
- 4500, 40th ed., Los Alamos Scientific Laboratory, 1965. (3) Hirayama, C., Camp, F. E., *J. Chem. Eng. Data*, **17, 4**15 (1972).
- (4) Hirayama, C., Castle, P. M., J. Phys. Chem., 77, 3110 (1973).
- (5) Hirayama, C., Rome, J. F., Camp, F. E., J. Chem. Eng. Data, 20, 1 (1975).
- (6) Krasnov, K. S., Danilova, T. G., *High Temp.* (Russ.), 7, 1131 (1958).
 (7) Shimazaki, E., Niwa, K., Z. Anorg. Allg. Chem., 314, 21 (1962).

Received for review April 4, 1975. Accepted August 4, 1975.

NEW COMPOUND SECTION

Synthesis and Spectral Data of Substituted Acetylenic β -Keto-cyanides

Mowafak Y. Shandala, H. N. Al-Jallo,¹ Nazar H. Al-Jobour, and F. H. Al-Hajjar Department of Chemistry, College of Science, University of Mosul, Mosul, Iraq

Different substituted ethyl phenylpropiolates reacted with substituted benzyl cyanides in the presence of sodium ethoxide to give substituted acetylenic β -keto-cyanides. The o-methyl and o-benzoyl derivatives of the latter were prepared. IR, NMR, and UV spectral data of the above compounds were tabulated and discussed.

In the course of our study on the reactivity of acetylenic esters toward compounds having active methylene groups, we have reported that α -(phenylpropiolyl)benzyl cyanide and 4methoxy- α -(phenylpropiolyl)benzyl cyanide are the main products obtained from the condensation of ethyl phenylpropiolate with benzyl cyanide and p-methoxybenzyl cyanide, respectively (1). We now report similar condensation reactions by use of various substitutions in both reactants. These reactions seem to be of general application since various substituted acetylenic β -keto-cyanides (lla-k) were obtained following a general modified procedure.

The reaction products were identified and were present in their enol forms (Illa-k) on the basis of spectroscopic evidence (IR, NMR, and UV spectra) (Tables I and II). The NMR values for compounds lla-k showed complex spin-spin splitting near 2.33-2.82 τ . No signals were observed at lower field which indicated that resonances due to enolic hydrogen overlapped with those due to the aromatic protons. This was concluded from the exchange of one of the protons in this region (as indicated from integration) after shaking the sample with D₂O and the appearance of the HOD signal near 5.3 $\tau.$ The presence of the enolic form in the above compounds (IIak) was further supported by conversion to their o-methyl and o-benzoyl derivatives. Methylation of compounds lla-d with diazomethane gave enol ethers (IVa-d) (Table III); singlets at 5.90-5.92 τ were assigned to the methyl protons of the

¹ Present address, Chemistry Department, NRI, Atomic Energy Commission, Tuwaitha, Baghdad, Iraq. To whom correspondence should be addressed

ether. In the same manner, compounds were benzoylated with benzoyl chloride to give the derivatives Va-k; these showed absorption in their IR spectra at 1740-1752 cm⁻¹ (C==O stretching of the vinyl aromatic ester) (2) (Table IV).

Generally, the UV spectra of substituted acetylenic β -ketocyanides and their o-methyl and o-benzoyl derivatives (Tables II-IV) showed three absorption bands in the range: I, 210-220; II, 230-260 (accompanied by shoulders); and III, 342-354 nm. The relative intensities of bands I and II (which are not well separated in certain cases) depend to a certain extent on the type and position of the aromatic substitution. As

Table I. IR and NMR Spectral Data of Substituted Acetylenic β -Keto-cyanides

Com.	IR stretch in C	ning ban HCl ₃	NMR v	alues (τ)	
pound	ОН	C≡C	C=C	in C	
lla	2400-3200	2220	1608ª	2.67 (m) ^b	All protons
llc	2400-3400	2213	1612	2.59 (m)	ArH
lld	2400-3570	2200	1613	7.62 (s) 2.57 (m)	Ar <u>Me</u> ArH
				7.31 (q) 8.75 (t)	$CH_2 - Me$
lle	2450-3500	2260 (sh)	1600	2.33-2.78 7.72 (s)	ArH Ar(CH ₃) ₂
llf llg	2400–3400 2400–3500	2265 2250	1595 1600	2.5 (m) 2.43 (m)	All protons All protons
l/ĥ Ili	2300-3400 2400-3300	2240 2235	1608 1605	2.37 (m) 2.82 (m)	All protons All protons
llj Llk	2400-3600 2500-3600	2220 2200	1612 1610	2.33 (m) 2.51 (m)	All protons ArH
		2-00		6.21 (s)	Ar <u>OMe</u>

a IR in nujol. *b* s = singlet; m = multiplet; q = quartet; t = triplet.

p-Neto-cyanides						
Com-	EtC	ЭН	0.1 <i>N</i> NaOH			
pound	λ _{max} , nm	$\log \epsilon_{\max}$	λ _{max} , nm	log ϵ_{\max}		
lla	213	4.14	235	4.35		
	236	4.18	265 (sh)	4.2		
	266 (sh)	4.04	353	4.51		
	354	4.32				
llb	214	4.09	229	4.14		
	230	4.09	250	4.08		
	250	4.08	347	4.23		
	347	4.26				
llc	211	4.25	220	4.10		
	232	4.22	234	4.24		
	346	4.41	264 (sh)	4.08		
			352	4.32		
IId	211	4.02	235	4.27		
	234	4.01	265 (sh)	4.11		
	348	4.18	353	4.34		
lle	216	4.16	235	4.16		
	250	4.07	350	4.12		
	344	4.29				
11f	215	4.4	230	4.14		
	260	4.02	262	4.13		
	340	4.29	348	4.21		
llg	226	4.04	230	4.21		
	248 (sh)	3.97	250	4.16		
	263	3.88	260 (sh)	4.13		
	342	4.19	348	4.28		
llh	218 (sh)					
	227	4.12	230	4.23		
	245	4.1	251 (sh)	4.19		
	265 (sh)	3.97	349	4.16		
	342	4.3				
Hi	217 (sh)					
	247	4.06	234	4.14		
	265	3.96	256	4.19		
	344	4.23	349	4.21		
Hj	218 (sh)					
	225	3.98	222	4.16		
	260	3.88	252	4.05		
	342	4.08	356	4.12		
llk	217	4.06	224	4.07		
	236	4.11	263	4.02		
	255	4.04	348	4.18		
	344	4.37				

Table II. UV Absorption Bands of Substituted Acetylenic β -Keto-cyanides

Table III. IR, NMR, and UV Spectral Data of *o*-Methylated Acetylenic *b* -Keto-cyanides

			··· ·· ·			
					UV b (nm Et	ands, n) in OH
Com-	IR ba	nds in	NMR val	ues ($ au$) in		log
pound	CHCI3	, cm ⁻¹	CD	Cl ₃	λ_{max}	€max
Vla	2200	C≡C	2.41 (m)	ArH	210	4.02
	1600	C=C	5.9 (s)	C:COMe	228	4.27
					343	4.48
VIb	2230	C≡C	2.6 (m)	Ar <u>H</u>	208	3.86
	1608	C=C	5.92 (s)	C:COMe	224	4.14
					336	4.45
VIc	2190	C≡C	2.71 (m)	Ar <u>H</u>	210	4.14
	1600	C=C	5.95 (s)	C:COMe	228	4.32
			7.65 (s)	ArMe	242	4.53
VId	2200	C≡C	2.6 (m)	ArH	210	4.08
	1600	C=C	5.92 (s)	C:COMe	228	4.21
			7.33 (q)	ArCH,	344	4.49
			8.75 (t)	CH_Me		

Table IV. IR, NMR, and UV Spectral Data of Benzoylated Acetylenic β-Keto-cyanides

					UVE	bands
					(nm) in
					Ete	CH
Com-	IR ba	nds in	NMR value	s $(\tau)^a$ in	λ_{max} ,	log
pound	CHCI₃	, cm ⁻ '	CDC	13	nm	€max
Vila	2190	C≡C	2.23	ArH	213	4.23
	1603	C=C			237	4.40
	1750	C=C			340	4.48
VIIb	2230	C≡C	2.4	ArH	210	4.02
	1607	C=C			236	4.31
	1752	C=0			329	4.37
VIIc	2195	Ċ≡C	2.2	ArH	215	4.39
	1605	C=C	7.58 (s)	Ar <u>Me</u>	239	4.64
	1745	C=0			335	4.52
VIId	2190	C≡C	2.6 (m)	ArH	209	4.22
	1606	C=C	7.59 (q)	Ar <u>CH</u> 2	237	4.43
	1748	C=0	9.02 (t)	CH <u>₂Me</u>	337	4.59
Vlle	2200	C≡C	2.22-2.78	ArH		
	1600	C=C	7.75 (d)	Ar(Me) ₂		
	1750	C≔O				
VIIf	2195	C≡C	2.2–2.66	ArH		
	1595	C=C				
	1745	C=O				
VIIg	2200	C≡C	2.23-2.72	ArH		
	1605	C=C				
	1748	C=0	016 07	01.1		
VIIh	2200	C≡C	2.16-2.7	ArH		
	1745	c = 0				
VIII	2190		2 23-2 76	ArH		
VIII	1605		2.23-2.70			
	1740	C = 0				
VIII	2195	C≡C	2.18-2.66	ArH		
,	1600	C=C				
	1740	C=0				
VIIk	2185	C≡C	2.3-2.77	ArH		
	1590	C=C	6.25 (s)	Ar <u>OMe</u>		
	1740	C=C				

^a ArH, protons appeared as multiplet.

the addition of sodium hydroxide enhances the intensity of band II, band I absorbs as inflection. In the latter case, the resulting absorption spectra resemble those of the corresponding *o*-methyl derivatives. Moreover, the *o*-benzoyl derivatives showed a similar UV absorption pattern to compound II but with enhancement of the intensity of band III.

Experimental

Infrared spectra were obtained with a Unicam SP 200 spectrophotometer, ¹H NMR spectra with a Varian A-60 D instrument with TMS as internal standard, and UV spectra with a Unicam SP 800 instrument. Compounds were analyzed at the Max Planck Institute, Ruhr, West Germany. Melting points were determined with a Kofler hot-stage apparatus.

Condensation of ethyl arylpropiolate with arylacetonitriles. General procedure. The reported procedure (1) for the reaction of ethyl phenylpropiolate with benzyl cyanide and *p*methoxybenzyl cyanide was modified and used in this work (Figure 1). Equimolar amounts of ethyl arylpropiolate (1 mole

Figure 1. Reactions of ethyl arylpropiolate with different benzyl cyanides

Table V. F	Results for	Acetylenic	β-Keto-cy	/anides ^a
------------	-------------	------------	-----------	----------------------

Compound ^b	Mp,°C	Yield, %	Formula
lla	216-217	33.1	C ₁₇ H ₁₀ NOCI
llb	212-213	15.5	C ₁₇ H ₁₀ NOF
llc	174-175	44.6	C ₁₈ H ₁₃ NO
lld	144-145	42.7	C, H, NO
lle	142	20	C ₁₉ H ₁₅ NO
l I f	188	15.9	C ₁ , H ₁₀ NOF
lig	192	13.6	C ₁₇ H ₁₀ NOF
IIĥ	182	31.8	C ₁ ,H ₁₀ NOCI
Hi	218	21.3	C ₁₂ H ₁₀ NOCI
Nj	170	32	C ₁₇ H ₁₀ NOCI
llk	120	17.1	C ₁₈ H ₁₃ NO ₂

⁴ Elemental analyses (C, H, N) in agreement with theoretical values were obtained and submitted for review. *b* Compounds IIa,b,f,h-k were recrystallized from methanol, and IIc-e,g from benzene.

Table VI. Results for o-Methylated β -Keto-cyanides^a

Compound	Mp,°C	Yield, %	Formula
Vla	112	83.3	C ₁₈ H ₁₂ NOCI ^b
Vlb	125	95.2	C ₁₈ H ₁₂ NOF ^b
Vlc	112	83.2	C ₁₉ H ₁₅ NO ^b
Vld	70	95.2	C ₂₀ H ₁ ,NO ^c

^{*a*} Elemental analyses (C, H, N) in agreement with theoretical values were obtained and submitted for review. *b* Compounds recrystallized from methanol. ^{*c*} Compound recrystallized from petether $(30-40^\circ)$.

Table	VII.	Results	for o-l	Benzoylate	ed Acety	/lenic
		β-Keto-c	vanide	esa		

Compound ^b	Mp, °C	Yield, %	Formula
VIIa	104	65.6	C, 4H, 4NO, CI
VIIb	78–80	43.5	C, H, NO, F
VIIc	136	57.1	C ₂₅ H ₁₇ NO ₂
VIId	82	50.7	C ₂₆ H ₁₉ NO ₂
VIIe	92	35	
VIIf	85	41	
VIIg	94	38	
VIIh	101	48	
VIIi	67	52	
VIIj	78	46	
VIIk	108	39	

 a Elemental analyses (C, H, N) in agreement with theoretical values were obtained and submitted for review. b Compounds recrystallized from methanol, except VIIb from pet-ether (30–40°).

equiv.), arylacetonitrile (1 mole equiv.), and sodium ethoxide (1 g-atom equiv.) in dry ether were allowed to stand at room temperature for three days. The reaction mixture, which gradually became deep red, was poured into water and stirred well. Acidification with dilute sulfuric acid and extraction with ether, drying (MgSO₄), and evaporation gave the appropriate acetylenic β -keto-cyanides (Table V) which were present in their enol forms as 3-hydroxy-2,5-diarylpent-2-en-ynenitriles (Illa-k). In certain cases, an unidentified crude solid compound was obtained as a by-product.

o-Methyl and o-benzoyl derivatives of compound II. Compounds IIa-d were methylated by use of diazomethane in ether, and compounds IIa-k were benzoylated by use of benzoyl chloride, following the reported procedures (1) to give 3methoxy and 3-benzoyloxy-2,5-diarylpent-2-en-ynenitrile (IVad and Va-k), respectively (Tables VI and VII).

Literature Cited

- (1) Al-Jallo, H., El-Kholy, I., Shandala, M., Al-Hajjar, F., J. Chem. Soc., C, 1969, p 915.
- (2) Bellamy, L. J., "The Infrared Spectra of Complex Molecules," p 221, Methuen, London, England, 1958.

Received for review September 23, 1974. Accepted August 6, 1975.