Vapor-Liquid Equilibrium Data at Atmospheric Pressure for the Ternary and the Subbinary Systems Containing *n*-Hexane-Benzene-1-Butanol

S. Govindaswamy, AN. Andiappan, and SM. Lakshmanan*

Department of Technology, Annamalai University, Annamalainagar-608101, Tamilnadu, India

Vapor-liquid equilibrium (VLE) data at 760 mmHg pressure are reported for the binary systems *n*-hexane-benzene and *n*-hexane-1-butanol and for the ternary system *n*-hexanebenzene-1-butanol. The VLE data for *n*-hexane-benzene compared well with the literature values. The VLE data for *n*-hexane-1-butanol were found to be thermodynamically consistent when Herington's test was applied. The ternary data were tested for thermodynamic consistency by the Li and Lu method. Both the binary and ternary data were correlated with the Wilson equations.

The binary mixture, *n*-hexane-benzene, obtained from the petroleum industry poses the problem of complete separation. Even after prolonged distillation in very efficient columns it is impossible to obtain pure *n*-hexane containing less than 2.5% by volume benzene (17). Apart from the chemical method, the separation is to be effected in the presence of a third component. The effect of different compounds on the separation of *n*-hexane-benzene mixtures had been reported by Deal and Derr (3). Tassios (16) analyzed the effect of pyridine, furfural, nitromethane, and diethylene glycol on the separation of *n*-hexane from benzene and reported the relative volatilities and separation factors.

McCracken and Smith (11) suggested methyl alcohol to be a good solvent for the separation of the above binary mixture.

Ho and Lu (δ) and Waldo and Weber (18) studied the effect of ethyl alcohol while Prabhu and Van Winkle (13) reported the role of 1-propanol on the separation of *n*-hexane-benzene mixtures. Belknap and Weber (1) discussed the importance of methyl cyclopentane on the separation of the mixture.

With a view to continue the study of the effect of polar compounds like alcohols on the separation of *n*-hexane-benzene mixtures a program has been made to use 2-propanol and all the butanols as entrainers. As vapor-liquid equilibrium data are necessary to test the solvent selectivity this paper reports the VLE (vapor-liquid equilibrium) data of the ternary system *n*hexane (1)-benzene (2)-1-butanol (3) and relevant binaries.

The VLE data for the system benzene-1-butanol had been reported by Mann, Shemilt, and Waldichuk (10) and Yerazunis, Plowright, and Smola (21). The work had been repeated by Kesavaraj (7) in this laboratory and the data compared well with the published values. The vapor-liquid equilibrium data for the system benzene-1-butanol reported by Kesavaraj (7) had been used in this paper for the computation of the ternary data.

The vapor-liquid equilibrium data were collected for the system *n*-hexane-benzene. The results conform to the earlier observations made by Tongberg and Johnston (17) and Prabhu and Van Winkle (13). This also tests the suitability of the equilibrium still.

The vapor-liquid equilibrium data for the binary *n*-hexane-1-butanol and the ternary had been measured and are reported in this paper.

Experimental Section

"Analar" grade benzene and 1-butanol supplied by B.D.H. India and guaranteed Reagent grade *n*-hexane, Japan make, were dried and distilled. The fractions boiling within ± 0.1 °C were collected and used. The physical properties of the liquids together with the literature values (*19*) are reported in Table I.

The vapor-liquid equilibrium data were determined on a still similar to the one designed by Othmer, Gilmont, and Conti (12). It differed from the original still in having the condensate receiver (vapor hold-up) as an integral part of the still. The description and working procedure are found elsewhere (12, 15).

Temperature was measured using a mercury-filled-in thermometer with an accuracy to read ± 0.05 °C and manufactured by E' mil, England. All boiling points were measured at atmospheric pressure and corrected to 760 mmHg. The compositions of the binary mixtures consisting of *n*-hexane-benzene were determined by the measurement of their refractive indices and those of *n*-hexane-1-butanol by the measurement of densities. An Abbe refractometer (Erma, Japan) provided with thermoprisms and which had a measuring provision of 0.0002 was used. The temperature of the prisms was controlled at 35 ± 0.05 °C by circulating water from an immersion Thermostat, Type E 3 E (German make). Illumination was provided by a sodium vapor lamp. Densities were measured at 35 °C using a 10-ml specific gravity bottle whose volume was ascertained by weighing double distilled water at that temperature and assuming the density from literature (7). Calibration diagrams for composition as a function of density and refractive index were prepared by measuring those properties for samples of known composition.

The compositions of the ternary mixtures were deduced from the density and refractive index measurement. For estimation of ternary compositions it was necessary to prepare curves of constant densities and refractive indices as a function of composition. These curves for the system *n*-hexane-benzene-1butanol are shown in Figure 1.

Vapor pressures of pure components for the entire range of experimental temperatures were calculated using Antoine equations obtained from Weissberger (19). The liquid phase activity coefficients were computed using the equation,

$$\gamma_{i} = \frac{\pi y_{i}}{p_{i}^{0} x_{i}} \exp \frac{(\pi - p_{i}^{0})(B_{i} - v_{i})}{RT}$$
(1)

The second virial coefficient, B_i , was calculated by the method described by Hala (4).

The activity coefficients of the pure components in the liquid phases of the binary and ternary mixtures were correlated through the Wilson equation (*20*). For binary mixtures:

$$\ln \gamma_{1} = -\ln (x_{1} + \Lambda_{12}x_{2}) + x_{2} \left[\frac{\Lambda_{12}}{x_{1} + \Lambda_{12}x_{2}} - \frac{\Lambda_{21}}{x_{2} + \Lambda_{21}x_{1}} \right]$$
(2)

$$\ln \gamma_2 = -\ln \left(x_2 + \Lambda_{21} x_1 \right)$$

$$-x_{1}\left[\frac{\Lambda_{12}}{x_{1}+\Lambda_{12}x_{2}}-\frac{\Lambda_{21}}{x_{2}+\Lambda_{21}x_{1}}\right] \quad (2A)$$

٦.

where

$$\Lambda_{ij} = \mathbf{v}_j / \mathbf{v}_i \exp\left[\frac{\lambda_{ij} - \lambda_{ii}}{RT}\right]$$
(2B)

For ternary mixtures:

Table 1. Physical Properties of Pure Compo	ponents
--	---------

Table	11.	Vapo	or—Lic	quid	Equilib	rium	Data	for	n-Hexa	ane
(1)–1	-Βι	Itanol	(3) a	t 76	0 mmHg	3				

Compo-	Density (35	′, g/cm³ °C)	Refra index (active (35 °C)	Bp,°C		
nent	Obsd	Ĺit.	Obsd	Lit.	Obsd	Lit.	
<i>n</i> -Hexane	0.6469	0.6470	1.3680	1.3670	68.70	68.70	
Benzene	0.8630	0.8633	1.4916	1.4915	80.10	80.10	
1-Butanol	0.7989	0.7984	1.3940	1.3950	117.50	117.70	

Figure 1. Refractive index and density curves for system *n*-hexane (1)-benzene (2)-1-butanol (3) at 35 °C.

$$\ln \gamma_{1} = -\ln (x_{1} + x_{2}\Lambda_{12} + x_{3}\Lambda_{13}) + 1$$

$$-\left[\frac{x_{1}}{x_{1} + x_{2}\Lambda_{12} + x_{3}\Lambda_{13}} + \frac{x_{2}\Lambda_{21}}{x_{1}\Lambda_{21} + x_{2} + x_{3}\Lambda_{23}} + \frac{x_{3}\Lambda_{31}}{x_{1}\Lambda_{31} + x_{2}\Lambda_{32} + x_{3}}\right] (3)$$

Results and Discussion

Binary Systems. The vapor-liquid equilibrium data for the system *n*-hexane (1)-benzene (2) collected by the authors were in good agreement with previously published values by Prabhu and Van Winkle (13). The data were correlated through the Wilson equation and the following binary parameter values were obtained:

 $\lambda_{12} - \lambda_{11} = 30.567 \text{ cal/(g mol)}$ $\lambda_{21} - \lambda_{22} = 256.45 \text{ cal/(g mol)}$

The data were found thermodynamically consistent using Herington's test (5). The value of (D - J) was found to be 6.91.

The vapor-liquid equilibrium data for the system *n*-hexane (1)-1-butanol (3) are presented in Table II and shown graphically in Figure 2. It is observed from Figure 2 that this system forms an azeotrope which boils at 68.2 °C having 0.9667 mole fraction of *n*-hexane. From a plot of log γ_1/γ_2 vs. liquid composition for this system the thermodynamic consistency of the data had been established using Herington's test. The value of (D - J) was found to be -19.28 which is less than 10 as required by the method. Table II also presents the calculated vapor composition for the system through the Wilson equation. It is observed from Table II that the calculated vapor compositions compare well with the experimental values. The mean error is reported as

				Activity	
				coeff	icients
t, °C	<i>x</i> ₁	У1	y_1 (calcd) ^a	$\gamma_{_1}$	γ_2
107.40	0.0450	0.3350	0.3571	2.7276	1.0083
100.50	0.0825	0.5200	0.5250	2.7091	0.9827
96.40	0.1030	0.6070	0.5928	2.7953	0.9674
92.90	0.1300	0.6530	0.6572	2.5976	1.0155
88.00	0.1670	0.7320	0.7241	2.5676	1.0069
82.80	0.2240	0.8000	0.7894	2.3995	1.0135
80.70	0.2550	0.8250	0.8136	2.3008	1.0157
79 . 35	0.2900	0.8350	0.8334	2.1249	1.0691
75.80	0.3530	0.8750	0.8634	2.0198	1.0494
73.20	0.4420	0.8975	0.8887	1.7820	1.1303
72.10	0.5100	0.9025	0.9013	1.6032	1.2918
70.90	0.5860	0.9125	0.9124	1.4611	1.4556
70.40	0.6730	0.9220	0.9213	1.3045	1.6834
69.05	0.8000	0.9300	0.9331	1.1520	2.6431
69.00	0.8250	0.9310	0.9352	1.1200	2.9850
68.90	0.8480	0.9340	0.9374	1.0963	3.3038
68.60	0.8850	0.9400	0.9415	1.0667	4.0302
68.50	0.9225	0.9475	0.9478	1.0346	5.2591
68.30	0.9650	0.9680	0.9621	1.0165	7.1701
68.30	0.9750	0.9730	0.9685	1.0113	8.4696
68.50	0.9900	0.9870	0.9833	1.0043	10.0924

Wilson parameters: $\lambda_{i3}-\lambda_{i1}$ = -60.3038 cal/(g mol), $\lambda_{31}-\lambda_{33}$ = 1968.857 cal/(g mol).

^a Mean error in $y_1 = 0.0060$.

Figure 2. Vapor-liquid equilibrium for *n*-hexane (1)-1-butanol (3) at 760 mmHg pressure.

0.0060 mole fraction of *n*-hexane in the vapor phase composition. The Wilson parameters for the system *n*-hexane (1)-1butanol (3) were

> $\lambda_{13} - \lambda_{11} = -60.30 \text{ cal/(g mol)}$ $\lambda_{31} - \lambda_{33} = 1968.86 \text{ cal/(g mol)}$

The binary data for *n*-hexane–1-butanol were also computed through the Wilson equation by the nomographical method suggested by Sabarathinam et al. (*14*). The mean error was 0.0055 mole fraction of *n*-hexane in the vapor phase. The Wilson parameters were $\Lambda_{13} = 0.7489$ and $\Lambda_{31} = 0.083$.

Ternary System. The ternary vapor-liquid equilibrium data are presented in Table III. The data had been tested for thermodynamic consistency by the Li and Lu method (9), selecting groups of points. The deviations were within the experimental

Journal of Chemical and Engineering Data, Vol. 21, No. 3, 1976 367

Tahla III	Vapor-1 iquid	Fauilibrium D	ata for <i>n</i> -Heya	ne (1)-Benzene	(2) = 1-Butanol (3) a	t 760 mmHa
	Tupor Erquiu	-quinorium e	ata tor // Itoxu	HO (I) DONEONO		

		Liquid composition		Vapor comp	Vapor composition (EX)		Calcd values ^a		
	Temp,					Temp,			
No.	°C	x 1	× 2	¥ 1	¥ 2	°C	¥ 1	Y 2	
1.	91.00	0.9133	0.2833	0.0468	0.6432	92.89	0.0597	0.6570	
2.	93.90	0.0233	0.1920	0.1234	0.5134	96.21	0.1210	0.5295	
3.	92.10	0.0300	0.2040	0.1590	0.5150	94.58	0.1470	0.5307	
4.	87.60	0.0375	0.3050	0.1432	0.5870	89.31	0.1466	0.6189	
5.	85.50	0.0434	0.3665	0.1485	0.6420	86.89	0.1503	0.6513	
6.	83.90	0.0600	0.3465	0.2150	0.5968	86.03	0.2019	0.6061	
7.	83.15	0.0600	0.3950	0.1868	0.6232	84.89	0.1882	0.6375	
8.	81.80	0.0700	0.3900	0.2370	0.6033	84.27	0.2140	0.6172	
9.	80.20	0.0833	0.3768	0.2850	0.5620	83.62	0.2484	0.5874	
10.	80.70	0.0868	0.4000	0.2668	0.5700	82.95	0.2483	0.5965	
11.	79.40	0.0943	0.4133	0.2720	0.5800	82.27	0.2592	0.5933	
12	78.30	0 1200	0.4120	0.3300	0.5333	80.85	0.3068	0.5581	
13.	77.70	0 1433	0.3967	0.3655	0.5120	79.89	0.3500	0.5215	
14	77.00	0 1467	0.4134	0.3668	0.5167	79 54	0 3483	0.5279	
15.	76.50	0.1720	0.3868	0.4133	0.4700	78.72	0 3943	0.4859	
16	76.30	0.1900	0.3467	0 4480	0 4400	78 40	0.4359	0 4431	
17	79.50	0 1900	0 1900	0 5468	0.2867	80.81	0.5348	0 3067	
18	77.90	0 1934	0 1934	0.5590	0.2934	80.54	0.5364	0.3079	
19	75.20	0.2268	0 3533	0.4800	0.2334	76.95	0.0004	0.4186	
20	76.65	0.2280	0 2033	0.5800	0.2800	78.64	0.5678	0.2951	
21	74 40	0.2500	0 3450	0.5200	0.2000	76.25	0.4992	0.3972	
22	74.50	0.2300	0.2668	0.5668	0,3100	76.25	0.5620	0.3273	
23	73.80	0.2800	0.2000	0.5332	0.3100	75.49	0.5353	0.3653	
24	73.00	0.2834	0.3250	0.5332	0.3300	75.75	0.5555	0.3266	
25	75.30	0.2004	0.2750	0.5734	0.2185	76 71	0.5073	0.2185	
25.	73.30	0.2900	0.1550	0.0000	0.2100	75.15	0.0373	0.2105	
20.	72.85	0.3000	0.2000	0.5307	0.3100	74 37	0.3922	0.3038	
27.	72.00	0.3400	0.2500	0.0200	0.2000	73.97	0.0224	0.2000	
20.	72.00	0.3400	0.3000	0.5550	0.3333	73.07	0.5565	0.3569	
29.	72,50	0.3520	0.2400	0.0350	0.2007	74.13	0.0301	0.2002	
30. 21	72.00	0.3007	0,1552	0.7200	0.1900	73.00	0.7101	0.1013	
31.	72.00	0.4028	0.2230	0.6607	0.2400	73.11	0.6723	0.2392	
32.	71.50	0.4100	0.2934	0.6300	0.2950	72.75	0.0320	0.2000	
33. 24	71.00	0.4220	0.2120	0.0000	0.2207	72.79	0.0097	0.2233	
34.	72.00	0.4233	0.1800	0.7000	0.2050	72.90	0.7132	0.1903	
35.	71.20	0,4550	0.2000	0.0935	0.2200	72.24	0.7065	0.2109	
30.	70.40	0.4007	0.2000	0.7105	0.1940	72.07	0.7155	0.2028	
37.	70.40	0.5200	0.2400	0.7032	0.2433	71.27	0.7071	0.2222	
30.	70.00	0.5233	0.1500	0.7434	0.1635	71.23	0.7408	0.1637	
3 9 . 40	70.40	0.5353	0.1552	0.7562	0.1565	71.23	0.7657	0.1521	
40.	70.40	0.5507	0.1600	0.7508	0.1050	70.92	0.7037	0.1575	
41.	70.30	0.5575	0.1015	0.7010	0.1367	70.92	0.7701	0.1555	
42.	69.80	0.5050	0.1300	0.7733	0.1400	70.80	0.7064	0.1445	
43.	69.35	0.0130	0.1432	0.7602	0.1330	70.34	0.7573	0,1300	
44.	69.55	0.0200	0.2035	0.7500	0.1930	70.27	0.7575	0.1300	
45.	69.00	0.6400	0.1265	0.8100	0.1234	69.87	0.8259	0.1191	
40,	69.45	0.6700	0.1108	0.8200	0.1070	69.07	0.0209	0.1071	
47.	69.40	0.0933	0.0900	0.8433	0.0815	60.52	0.0454	0.0830	
40. 10	60.00	0.7107	0.1400	0.0030	0.1432	69.55	0.0140	0.1200	
49. 50	69.10	0.7190	0.1120	0.0310	0.0910	60.28	0.0375	0.1000	
50. E1	69 70	0.7007	0.1000	0.0412	0.0900	60 10	0.04/3	0.0340	
51. 50	69.70	0.7/33	0.0033	0.0000	0.0000	60 05	0.0002	0.0739	
52.	68 40	0.7933	0.0000	0.0004	0.0734	68 00	0.0715	0.0705	
53. EA	60.00	0.0000	0.1210	0.0434	0.1033	62 04	0.0474	0,1035	
J4. 66	68 60	0.0100	0.0715	0.000/	0.0700	68 06	0.0000	0.0030	
56	68 40	0.0100	0.1107	0.0434	0.1000	68 01	0.8515	0.1012	
50.	68 60	0.0200	0.1000	0.0007	0.1000	68.85	0.8350	0.0920	
57.	00.00	0.0020	0.0000	0.0700	0.0004	00.00	0.0004	0.0000	

Wilson binary energy parameters (cal/(g mol)): $\lambda_{12} - \lambda_{11} = 30.567$, $\lambda_{21} - \lambda_{22} = 256.45$, $\lambda_{23} - \lambda_{22} = 138.61$, $\lambda_{32} - \lambda_{33} = 902$. 61, $\lambda_{31} - \lambda_{33} = 1968.86$, $\lambda_{13} - \lambda_{11} = -60.30$

^{*a*} Absolute standard deviation: temp = 1.30 °C, y_1 = 0.0097, y_2 = 0.0094, y_3 = 0.0081.

errors. Figure 3 shows the vapor-liquid equilibrium tie-lines, the circle representing the liquid composition, and the tip of the arrow representing vapor composition. This system does not

form any ternary azeotrope as seen from Table III and Figure 3.

The ternary data were computed through the Wilson equation

Figure 3. Vapor-liquid equilibrium tie-lines for the system n-hexanebenzene-1-butanol at 760 mmHg pressure.

using boiling points of the ternary mixtures and the binary Wilson parameters alone. The calculated vapor compositions are given in Table III. The binary Wilson parameters were evaluated using the data collected by the authors for n-hexane-benzene and n-hexane-1-butanol systems and the data collected by Kesavaraj (7) for the benzene-1-butanol system. They are given as: nhexane (1)-benzene (2), $\lambda_{12} - \lambda_{11} = 30.567$ and $\lambda_{21} - \lambda_{22} =$ 256.45 cal/(g mol); benzene (2)-1-butanol (3), $\lambda_{23} - \lambda_{22} =$ 138.61 and $\lambda_{32} - \lambda_{33} = 902.61$ cal/(g mol); *n*-hexane (1)-1butanol (3), $\lambda_{13}-\lambda_{11}=-60.30$ and $\lambda_{31}-\lambda_{33}=$ 1968.86 cal/(g mol).

From Table III it is observed that the average deviations in temperature-vapor-phase compositions are: $\Delta T = 1.30$ °C, Δy_1 = 0.0097, Δy_2 = 0.0094, Δy_3 = 0.0081. Further it is noted from Table III that the deviations are more in the dilute region than in the concentrated region. This may be due to the characteristic feature of the two-parameter Wilson equation in describing the VLE in the dilute regions as observed by Cukor and Prausnitz (*2*).

Conclusion

The vapor-liquid equilibrium data for the binary system nhexane-benzene are comparable with earlier works.

The vapor-liquid equilibrium data for the binary system nhexane-1-butanol showed that it was azeotropic at 0.9667 mol fraction of n-hexane with a boiling point 68.2 °C. The vaporliquid equilibrium data for the ternary system n-hexane-benzene-1-butanol showed that there was no ternary azeotrope. The binary and ternary data were thermodynamically consistent and correlated well with the Wilson equations.

Nomenclature

- B_i = second virial coefficient of component *i*.
- p_i^0 = vapor pressure of pure component *i*
- R = qas constant
- Т = absolute temperature
- v_i = molar liquid volume of component *i*
- x_i = liquid phase mole fraction of component *i*
- y_i = vapor phase mole fraction of component *i*
- γ_{i} = activity coefficient of component *i*

 λ_{II} = Wilson's binary interaction energy parameter

 $\Lambda_{ll} =$ Wilson parameter as defined by eq 2B

 π = total pressure

Literature Cited

- Belknap, R. C., Weber, J. H., *J. Chem. Eng. Data*, **6**, 485 (1961).
 Cukor, P. M., Prausnitz, J. M., *Int. Chem. Eng. Symp., Series*, No. 32e 3,
- 88 (1969).
- Deal, C. H., Derr, E. R., *Ind. Eng. Chem., Process Des. Dev.*, **3**, 394 (1964).
 Hala, E., Pick, J., Fried, V., Vilim, O., "Vapour-Liquid Equilibrium," 2d ed, Pergamon press, New York, N.Y., 1967.

- Herington, E. F. G., *J. Inst. Pet., London*, **37**, 457 (1951).
 Ho, J. C. K., Lu, B. C.-Y., *J. Chem. Eng. Data*, **8**, 553 (1963).
 Kesavaraj, N., M.E.(chem) Thesis, Annamalai University, 1973.
- (8) Lange, N. A., "Hand-Book of Chemistry", 10th ed, McGraw-Hill, New York, N.Y., 1961.
 (9) Li, J. C. M., Lu, B. C. Y., Can. J. Chem. Eng., 37, 117 (1959)
- (10) Mann, R. S., Shemilt, L. W., Waldichuk, M., J. Chem. Eng. Data, 8, 502 (1963).
- (11) McCracken, P. G., Smith, J. M., AIChE. J., 2, 498 (1950)
- Othumer, D. F., Gilmont, R., Conti, J. J., *Int. Eng. Chem.*, **52**, 625 (1960).
 Prabhu, P. S., Van Winkle, M., *J. Chem. Eng. Data*, **8**, 210 (1963).
- (14) Sabarathinam, PL., Andiappan, AN., Lakshmanan, SM. Indian Chem. Eng., 16. 11 (1974)
- (15) Satagopan, T. M., M.E.(chem) Thesis, Annamalai University, 1972 (16) Tassios, D. P., Azeotropic and Extractive Distillation Symposium, Division
- of Industrial and Engineering Chemistry, American Chemical Society, Chicago, III., 1970.
- Tongberg, C. O., Johnston, F., Ind. Eng. Chem., 25, 733 (1933).
- (17) Yongoeng, C. O., Johnston, F., *Ind. Eng. Chem.*, 29, 733 (1933).
 (18) Waldo, R. A., Weber, J. H., *J. Chem. Eng. Data*, 8, 349 (1963).
 (19) Weissberger, A. "Technique of Organic Chemistry", Vol. VII, 2d ed, Interscience, New York, N.Y., 1965.
 (20) Wilson, G. M., *J. Am. Chem. Soc.*, 88, 127 (1964).
- (21) Yerazunis, S., Plowright, J. D., Smola, F. M., AlChE J., 10, 660 (1964).

Received for review September 2, 1975, Accepted March 4, 1976,