Table II. N-Arylformamidino-N'diphenylthiosemicarbazone Hvdrochlorides^a

C₂H₂

	C ₆ H ₅	S	NH				
No.	Ar	Mp,°C	Yield, %	Formula			
1.	Phenyl	202-203	68	C21H20CIN5S			
2.	2-MePh	198–199	70	C ₂₂ H ₂₂ CIN ₅ S			
3.	3-MePh	150152	62	C, H, CIN, S			
4.	4-MePh	200-201	71	C ₂₂ H ₂₂ CIN ₅ S			
5.	2-MeOPh	195-196	67	C, H, CIN OS			
6.	4-MeOPh	197–198	65	C, H, CIN, OS			
7.	4-EtOPh	160-162	72	C ₂₃ H ₂₄ CIN ₅ OS			
8.	2-CIPh	175-176	64	C ₂₁ H ₁ ,Cl ₂ N,S			
9.	3-CIPh	155-156	69	C, H, CI, N, S			
10.	4-CIPh	182-183	73	C, H, CI, N, S			
11.	4-BrPh	205-206	60	C, H, BrCIN, S			
12.	2,5-Me,Ph	204-205	66	C, H, CIN, S			
13.	1-Naphthyl	207-208	67	C ₂₅ H ₂₂ CIN ₅ S			

^aAll of the compounds gave elemental analyses (C, H, N, S) within ± 0.30 of the calculated values.

was dissolved in acetone (20.0 ml) and the solution was cooled in freezing mixtures. To this cooled solution, phenylcyanamide hydrochloride (2.4 g, 0.015 mol) dissolved in acetone (10.0 ml) was added slowly with constant shaking. After keeping it in a freezing mixture for 1 h, crystalline pure N-phenylformamidino-N-dimethylthiosemicarbazone hydrochloride was separated, filtered, and washed with acetone and petroleum ether to remove any unreacted constituents, yield 3.3 g, 80%, mp 203-204.

Other N-arylformamidino-N-dimethlthiosemicarbazone hydrochlorides, prepared by condensing dimethylthiosemicarbazone with different any canamides hydrochloride are summarized in Table I.

Using similar procedure as above several N-arylformamidino-N-diphenylthiosemicarbazone hydrochlorides, described in Table II, were obtained.

Acknowledgment

The authors are thankful to Professor K. N. Udupa, Director, Institute of Medical Sciences, Banaras Hindu University, Varanasi, for providing necessary facilities for work.

Literature Cited

- (1) Anderson, F. E., Duca, C. J., Scudi, J. V., J. Am. Chem. Soc., 73, 4967 (1951)
- (2) Behnisch, R., Mietzsch, F., Schmidt, H., Angew. Chem., 60, 113 (1948).
- Behnisch, R., Mietzsch, F., Schmidt, H., Am, Rev. Tuberc., 61, 1 (1950).
 Bernstein, J., Yale, H. L., Losee, K., Holsing, M., Martius, J., Lott, W. A., J. Am. Chem. Soc., 73, 906 (1951).
- (5) Brownlee, K. A., Hamre, D., J. Bacteriol., 61, 127 (1951).
- (6) Campaigne, E., Monroe, P. A., Arnwine, B., Archer, W. L., J. Am. Chem. Soc., 75, 988 (1953). (7) "Dictionary of Organic Compounds", Vol. 1 (A-Chlop) Eyre and Spott-
- iswoode Publishers Ltd. E. and F.N. Spon Ltd., London, 1965, p 13. Domagik, G., Behnisch, R., Mietzsch, F., Schmidt, H., Naturwissenschaften, 33, 315 (1946).
- (9) Donovick, R., Pansy, F., Stryker, G., Bernstein, J., J. Bacteriol., 59, 667
- (1950). (10) Duca, C. J., Rothlauf, M. V., Scudi, J. V., *Antibiot. Chemother.*, 2, 16 (1952).
- (11) Hamre, D., Bernstein, J., Donovick, R., Proc. Soc. Exp. Biol. Med., 73, 275 (1950)
- (12) Hoggarth, E., Martin, A. R., Storey, N. E., Young, F. H. P., Brit. J. Pharmacol., 4, 248 (1949).
- (13) Pandey, S. N., Indian J. Chem., 1, 525 (1963).
- (14) Sahasrabudhey, R. H., Krall, H. J. Indian Chem. Soc., 19, 345 (1942).
 (15) Srivastava, P. K., Saleem, M., *Tetrahadron Lett.*, 2725, 2726 (1968).
 (16) Srivastava, P. K., *J. Indian Chem. Soc.*, 2, 154 (1963).
 (17) Srivastava, P. K., Ramchandra Rao, Y., *J. Indian Chem. Soc.*, 40, 803

- (1963).
- Stillmann, W. B., Scott, A. B., U.S. patent, 2 416 239 (Feb 18, 1947).
 Thompson, R.L., Price, M. L., Minton, Jr., S. A., Proc. Soc. Exp. Biol. Med., 78. 11 (1951).

Received for review November 6, 1975. Accepted February 17, 1976. The authors (J.S.U. and R.D.S.) are thankful to the Council of Scientific and Industrial Research, New Delhi (India), for the awards of research fellowships.

Mass Spectral and Nuclear Magnetic Resonance Data of Some Bicyclo[3.2.1] Compounds

John R. Dixon, Gareth J. James, and Ivor G. Morris*

Department of Science, The Polytechnic of Wales, Treforest, Mid-Glamorgan, Great Britain

The mass spectra and NMR spectra of some bicyclo[3.2.1]octanes are reported. The main fragmentation process observed is the loss of a C_2H_5 or CHO unit. The abundance of $(P - H_2O)^+$ ions in the spectra of the alcohols was found to be related to their stereochemistry and based upon these observations a structure is suggested for one of the alcohois whose stereochemistry was initially undefined. High resolution mass measurement define the exact composition of some of the principal fragment peaks.

This mass spectrometric and NMR study of selected bicyclo[3.2.1] octanes was undertaken as an extension of the work previously reported (5) on the related bicyclo [3.3.1] system. Kwart and Blazer (6) have reported on the mass spectrum of 2-hydroxybicyclo[3.2.1]octane, and the present paper also extends their field of investigation.

The derivatives whose mass spectra are reported here (Tables I-III) are: I, bicyclo[3.2.1]octane (5); II, bicyclo[3.2.1]oct-2-ene (1, 5); III, endo-2-hydroxybicyclo[3.2.1]octane (1, 5); IV, exo-2-hydroxybicyclo[3.2.1]oct-3-ene (2, 5); V, 2-hydroxy-2methylbicyclo[3.2.1]octane (5); VI, bicyclo[3.2.1]octan-2-one (1, 5); VII, syn-8-hydroxybicyclo[3.2.1]octane (4, 5); VIII, syn-8-hydroxybicyclo[3.2.1]oct-2-ene (3, 5).

These compounds were prepared by methods analogous to those used for the bicyclo[3.2.1]nonyl series previously reported.⁵ From the preparative methods employed and analysis of the products, compounds III and IV were assigned the endo and exo configurations, respectively.

Compound VIII was prepared from a mixture of 2-exo-morpholino-8-ketobicyclo[3.2.1]octane and 2-endo-morpholino-8-ketobicyclo[3.2.1]octane by LiAlH₄ reduction followed by amine oxide pyrolysis. This procedure led to a mixture of the synand anti-8-hydroxybicyclo[3.2.1]oct-2-enes, the syn isomer accounting for 95% of the yield.

Journal of Chemical and Engineering Data, Vol. 21, No. 3, 1976 389

Table I. Fragmentation Pattern of Bicyclo[3.2.1] octyl Derivatives

Table III. High Resolution Mass Measurement

N 4 - - 1

-									
m/e	I	11	Ш	IV	m/e	I	11	111	IV
39	18	12	22	17	79	10	100	38	17
40	21				80	11	38	97	100
41	26	11	38	26	81	65		12	66
42	5				82	72		37	9
43	6			6	83	100			29
44	21				91		8		90
51	5	5		5	93		21	29	
53	7			11	95	26			26
54	21	13	13	18	96				8
55	17		17	27	97	6			
56	6				105	12			
57	8		40		106				
58			26		107				7
59		5			108		42P	29	
65		6			109		3.8		31
66	8	58	20	7	110	41P			
67	72	36	100	42	111	3.8			
68	18		15	17	122				6
69	15		15	5	123				4
70				6	124				53P
71	5				125				4.5
77		16		7	126			10P	
78		14		7	127			0.8	

Table II. Fragmentation Pattern of Bicyclo[3.2.1] octyl Derivatives

m/e	V	VI	VII	VIII	m/e	V	VI	VII	VIII
39	8	17	20	18	79	12	8	50	18
41	12	17	29	15	80	28	100	43	7
42			6		81	9	13	10	6
43	28		6		82	14		22	
51				6	83	5		26	5
53	5	8	10	8	84			9	
54		8		5	91				20
55	9	20	25	7	93	10		53	10
56			5		94			6	
57			40	80	95		11	43	9
58	8		5		96			5	
59	5				97			10	
65				. 6	98			8	
66	5	18	13	6	106		2		36
67	20	70	67	32	108			25	
68		22	10	100	122	9			
69		5	7		124		28P		28P
70			20		125	9	2.5		2.5
71	100		9		126			100P	
72	11				127			8.9	
77			8	15	140	6P			
78			6	92	141	0.6			

Compound VII was prepared directly from compound VIII by catalytic reduction in quantitative yield and the authors assumed the same relative isomeric ratio for the products.

2-Hydroxy-2-methylbicyclo[3.2.1]octane (V) was prepared from VI by a Grignard reaction with methyl magnesium iodide. The stereochemistry of V is commented upon in the discussion.

All the compounds were purified by vacuum sublimation. The mass spectra were recorded at the P.C.M.U., Harwell, England, on an AEI MS-902 spectrometer at an ionizing voltage of 70 eV. The accuracy of the high resolution data is ± 0.005 amu. The NMR spectra were recorded in these laboratories on a JEOL 60HL spectrometer.

Results and Discussion

With the exception of the exo-2-ol-3-ene (IV) all the oxy-

			tiplet		
Com-		Com-	rel	Measd	Calcd
pound	m/e	position	abund	mass	mass
111	108	C, H12		108.0931	108.0939
	93	C,H,		93.0698	93.0704
	82	C&H10		82.0780	82.0783
	80	С₄Н₅		80.0622	80.0626
	79	C ₆ H,		79.0544	79.0548
	67	C,H,		67.0543	67.0548
IV	124	C 8H13O		124.0886	124.0888
	109	C₁H , O		109.0658	109.0653
	95	C₄H₂O	4	95.0497	95.0497
	95	C_7H_{11}	1	95.0859	95.0861
	81	C₅H₅O	1	81.0337	81.0340
	81	C°H,	1.5	81.0699	81.0704
	80	C₄H³		80.0625	80.0626
	67	C₅H₁		67.0548	67.0548
V	125	C,H,,O		125.0968	125.0966
	122	C,H₁₄		122.1093	122.1096
	93	C,H,		93.0702	93.0704
	82	C6H10		82.0777	82.0783
	81	C°H,		81.0700	81.0704
	80	C°H*		80.0623	80.0626
VI	95	C₄H,O	1	95.0496	95.0497
	95	C,H,1	2	95.0859	95.0861
	81	C°H,		81.0673	81.0704
	80	C6H8		80.0616	80.0626
	68	C₄H₄O	1	68.0262	68.0262
	68	C₅H₅	10	68.0624	68.0626
	67	C,H,		67.0543	67.0548
VII	108	C 8H12		108.0949	108.0939
	95	C7H11		95.0856	95.0861
	93	C,H,		93.0704	93.0704
	80	C°H*		80.0621	80.0626
	79	с₄н,		79.0551	79.0548
	67	C₅H,		67.0545	67.0548
VIII	106	C ₈ H ₁₀		106.0785	106.0782
	93	с,н,		93.0705	93.0704
	91	C,H,		91.0548	91.0548
	78	C°H°		78.0470	78.0469
	68	C₅H₅		68.0623	68.0626
	57	C3H2O		57.0350	57.0340

genated compounds show evidence of loss of a H₂O unit from the parent ion. The spectra of compounds III, V, VII, and VIII show metastable peaks at m/e 92.6, 106.3, 92.6, and 90.7, respectively (Table IV), corresponding to the fragmentation P – H₂O.

The fact that the exo compound IV does not lose water is to be expected since the stereochemistry of the compound is such that a 1,2 trans elimination of the water cannot occur. (5) The stereochemistry of the 2-hydroxy-2-methyl compound V is assigned as an *endo*-2-hydroxy-*exo*-2-methyl compound on the basis that it does lose water and hence the hydroxyl group must be in the endo position. This assignment accords with the expected mode of attack by a Grignard reagent on a ketone during the preparation of the alcohol.

The compounds III, VII, and VIII gave a clear indication of the loss of 33 mass units upon electron impact. That these are sequential losses of the type $P - H_2O - CH_3$ is evidenced by high resolution of the P - 33 ions (Table III), the presence of the metastable ions at m/e 80.1 and 78.1 in the spectra of compounds VII and VIII, respectively, corresponding to the fragmentation ($P - H_2O$) - CH₃.

The same three compounds also show evidence of the sequential loss $P - H_2O - C_2H_4$. High resolution on the resulting ions for compounds III, VII, and VIII (Table III) confirm that they are hydrocarbons. Metastable ions corresponding to the tran-

Table IV. Metastable lons

Compound			Metastat	ole ions		
11	40.3	63.1	89.0			
111	54.8	59.3	63.1	92.6		
IV	54.8					
V	52.5	71.0	106.3			
VI	54.7	78.1				
VII	54.4	55.9	59.3	80.1	89.2	92.6
VIII	57.4	78.1	90.7			

Table V. NMR Data of Bicyclo [3.2.1] octyl Derivatives^a

1	<u>5</u> 4	H ₁ , H ₅	7.85	umc
	8 >3	H,	8.20	umc
	7 1 2	H, H,	8.45	umc
		H,, H,, H,	8.55	umc
	6 5 4	H, H,	4.17,4.66	d (pairs)
	8 3	H, H,	7.71	umc
		H _a , H _a , H _a , H _a	80-8.8	bumc
111	6 5 4	Η,	6.30	umc
	6) 3	нÒ	7.58	s
		н,, н,	7.83	umc
endo	, - OH	H, H, H, H, H,	8.0-8.8	bumc
١V	6 5 4	H, H	4.05	mc → q
	8 33	H,	6.15	d
		нÖ	7.53	s
exo	ОН	н,, н,	8.00	bumc
		H_{6} , H_{7} , H_{8}	8.3-8.8	bumc
V	6 5 4	H, H,	7.95	umc
		HÔ	8.28	S.
	7 1 2 CH ₃	H ₃ , H ₄ , H ₆ , H ₇ , H ₈	8.2-8.8	bumc
	òн	Н,	8.88	s
VI	6 <u>5</u> 4	H,	7.3	umc
	8¢ ∕3	H ₁ , H ₃	7.45-7.9	bumc
	7 1 2	$H_{4}, H_{6}, H_{7}, H_{8}$	7.95-8.5	bumc
VII	6 <u>5 4</u>	H _s	5.95	umc
	8)-OH) 3	H ₁ , H ₅	7.70	umc
	7 1 2	но	7.95	S
syn		H ₂ , H ₃ , H ₄ , H ₆ , H ₇	8.2-8.8	bumc
VIII	6 5 4	H ₂ , H ₃	4.35	mc → q
	8)-OH) 3	H,	5.95	umc
syn	7 1 2	Н ₁ , Н ₅	7.65	umc
		HO	7.95	S
		H_4 , H_6 , H_7	8.0-8.4	bumc

a s = singlet, d = doublet, q = quartet, mc = multiple complex, umc = unresolved multiple complex, bumc = broad unresolved multiple complex. All spectra were run at 60 MHz; chemical shifts are given in τ values relative to Me₄Si; approximately 10% solutions in CDCl₃ or CCl₄ (II and VIII).

sition (P - H₂O) to (P - H₂O - C₂H₄) were observed in the spectra of these compounds (Table IV).

The high resolution data (Table III) suggests a sequential loss $P - H_2O - C_2H_5$ occurring in the compounds III, VI, VII, and VIII. However, this is not substantiated by appropriate metastable ions.

The compounds I, II, IV, VI, VII, and VIII gave a clear indication of the loss of 29 mass units upon electron impact. In the case of the hydrocarbons I and II, this is obviously due to loss of a C_2H_5 fragment.

The oxygenated compounds show evidence of loss of both C_2H_5 and CHO fragments. High resolution mass measurement (Table III) shows that in IV the loss of CHO vs. C_2H_5 is 1 to 4, while in VI the ratio is 2 to 1.

The compounds I, II, VII, and VIII all showed a loss of 31 mass units. It is evident that this is a concerted loss of H₂ and 29 mass units. In the case of the hydrocarbons I and II it is obviously a loss of H₂ and C₂H₅. In the oxygenated compounds high resolution (Table III) shows that it is exclusively a loss of H₂ and CHO.

A loss of a 15 mass unit is shown by the compounds I, II, IV, and V. It is not shown by the 8-hydroxy compounds. It may be noted that there is a similar loss of 15 mass units occurring in the analogous bicyclononanes (5).

As in the case of the bicyclononanes (5) the loss of an OH unit is not characteristic of this series, being shown only the *exo*-2-ene (IV).

The NMR spectra reported (Table V) appeared mainly as unresolved multiplets. However, certain structural features of the molecules were clearly identifiable. The OH peaks appeared as singlets and were identified using deuterium oxide. Configurations where known are shown in Figure 1.

Acknowledgments

The authors wish to thank Mr. D. A. Williams and Mr. J. A. Winter for assistance with some of the experimental work, and the S.R.C. for credit facilities enabling some of the mass spectra to be recorded at the P.C.M.U. Harwell, England.

Literature Cited

- (1) Baggaley, K. H., Dixon, J. R., Evans, J. M., Graham, S. H., *Tetrahedron*, 23, 299 (1967).
- Davies, J. M., Graham, S. H., J. Chem. Soc. C, 2040 (1968).
 Dean, C. S., Dixon, J. R., Graham, S. H., Lewis, D. O., J. Chem. Soc. C
- (3) Dean, C. S., Dixon, J. R., Graham, S. H., Lewis, D. O., J. Chem. Soc. C, 1491 (1968).
- 4) Dixon, J. R., Ph.D. Thesis, University of Wales, G. B., 1963.
- (5) Dixon, J. R., James, G. J., Morris, I. G., J. Chem. Eng. Data, 20, 123 (1975).
- (6) Kwart, H., Blazer, T. A., J. Org. Chem., 35, 2726 (1970).

Received for review December 24, 1975. Accepted March 30, 1976.