Table II. Boiling Poini Data of β-Ethoxypropionitrile

$\begin{array}{cl} \mathrm{Sl} \\ \text { no. } \end{array}$	P, mmHg	Boiling point ${ }^{\circ} \mathrm{C}$		$\begin{gathered} \text { d(deviation) } \\ \text { in } \% \end{gathered}$
		Exptl	Calcd	
1	25	75.1	77.5	+3.2
2	30	81.0	81.4	+0.49
3	40	88.2	87.7	-0.57
4	50	93.5	92.9	-0.64
5	60	97.4	97.2	-0.21
6	70	102.5	100.9	-1.56
7	80	103.7	104.2	+0.48
8	90	106.5	107.2	+0.66
9	100	109.4	109.9	+0.46
10	200	128.6	128.9	+0.23
11	300	141.1	141.0	-0.07
12	400	150.7	150.1	-0.40
13	500	158.5	157.4	-0.69
14	600	164.6	163.7	-0.55
15	760	171.7	172.1	+0.23

${ }^{a}$ (Calculated - experimental)/experimental $\times 100$. Average deviation $=0.696 \%$.

Results

The experimental results are fitted to the Calingaert-Davis equation using the method of least squares. The constants A and B of the Calingaert-Davis equation are found to be 7.6998 and 1937.5, respectively. The equation is as follows:

$$
\log P=7.6998-(1937.5 /(230+t))
$$

where $P=$ pressure in mmHg and $t=$ boiling point, ${ }^{\circ} \mathrm{C}$.
The calculated values from the above equation are compared with the experimental values (Table II), and the average deviation is found to be 0.696%.

Literature Cited

(1) Evans, D. P., Davies, W., Jones, W. J., J. Chem. Soc., 1310 (1930).
(2) Hala, E., Pick, J., Fried, V., Vilim, O., "Vapor Liquid Equilibrium", 2d English ed, Translated by G. Standart, Pergaman Press, London, 1967, pp 240, 254.

Experimental Pressure-Volume-Temperature Relations for Saturated and Compressed Fluid Ethane

Arun K. Pal, ${ }^{\dagger}$ Gary A. Pope, ${ }^{\ddagger}$ Yasuhiko Aral ${ }^{\S}{ }^{\S}$ Norman F. Carnahan, and Riki Kobayashi*
Department of Chemical Engineering, William Marsh Rice University, Houston, Texas 77001

Abstract

In this paper we present the results of high precision experimental PVT measurements in compressed fluid ethane. The PVT measurements were performed on 22 nearly isochoric samples of ethane whose nominal densitles ranged from 0.03 to $0.57 \mathrm{~g} \mathrm{~cm}^{-3}$. In addition to these isochoric measurements, saturated vapor pressures have been measured at temperatures ranging from 214 to 305 K . Saturated liquid densities, thought to be accurate to wilhin a few tenths of one percent, have been obtalned from the intersection of the equation of state used to smooth the experimental isochoric data and the vapor pressure curve. The accuracy of the data is estimated to be within 0.2% except in the very neighborhood of the critical point.

There have been three major experimental investigations of pressure-volume-temperature relationships for compressed fluid ethane. The earliest study was performed by Reamer et al. (7) in 1944 and covered the temperature range of $310-510 \mathrm{~K}$, with pressures ranging from 5 to $70 \mathrm{MPa}(1 \mathrm{MPa}=9.869233$ atm $=145.0377$ psia $=10$ bar). Later, Michels et al. (6) published PVT measurements in the range of $273-423 \mathrm{~K}$ and $1.5-22$ MPa. More recently, Douslin and Harrison (3) have reported comprehensive high precision measurements in the temperature range of $248-623 \mathrm{~K}$ with pressures ranging from 1.2 to 41 MPa . Even though these investigations cover a considerable portion

[^0]of the PVT surface for ethane (see Figure 1), the low temperature, high density fluid remains uninvestigated.

In an attempt to correct this situation, the PVT relationship for 22 nearly isochoric samples of fluid ethane has been measured. These measurements range in density from 0.03 to 0.57 $\mathrm{g} \mathrm{cm}^{-3}$ with temperatures ranging from 157 to 340 K at pressures to 70 MPa . Pressure measurements for the saturated vapor over the temperature range of 214-305 K are also reported and graphically compared to the results of other authors. Finally, saturated liquid densities have been obtained from the intersection of the function used to smooth the experimental PVT data and the vapor pressure curve.

Experimental Section

The experimental apparatus and procedure have been described in detail elsewhere (9,11). Briefly, however, the stainless steel isochoric chamber was charged with ethane to a predetermined pressure, the mass of the charge being determined by differential weighings. The zero pressure volume of the system had been previously determined as a function of temperature by making a series of Burnett (1) type expansions into a reference chamber of known volume. The actual volume of the system at a given temperature and pressure was then calculated by correcting for the pressure distortion of the isochoric chamber (8). The uncertainty in the system volume obtained in this manner was estimated to be less than 0.025%.

Temperatures were measured on the IPTS-1948 using a platinum resistance thermometer which had been calibrated by the manufacturer. (This calibration was traceable to a calibration by the National Bureau of Standards.) These temperatures were then converted to the IPTS-1969 using the tables found in ref 2. The temperature of the system was controlled to within ± 0.002

		13.6156	328.588	27.6381	339.989
	15.4913	335.200			
	17.2370	341.335			
$0.41241 \mathrm{~g} \mathrm{~cm}^{-3}$	$0.43763 \mathrm{~g} \mathrm{~cm}^{-3}$	$0.45251 \mathrm{~g} \mathrm{~cm}^{-3}$			
2.6071	269.313	2.2940	257.326	1.9908	249.192
2.8600	269.861	2.6232	257.911	2.6578	250.248
3.1732	270.539	3.2730	259.065	4.6318	253.374
3.5523	271.359	5.7440	263.450	7.9639	258.654
4.2140	272.788	8.6662	268.631	12.5036	265.858
6.4519	277.605	11.4107	273.496	16.9763	272.972
8.4030	281.789	16.8341	283.116	20.7790	279.035
10.5196	286.317	21.4327	291.287	24.6290	285.189
12.3976	290.328	25.4120	298.372	30.6459	294.840
15.1557	296.212	30.3884	307.254	36.6230	304.470
17.9385	302.145	37.2415	319.529	44.2010	316.744
21.9583	310.715				
25.8855	319.093				
32.9676	334.225				
a $1 \mathrm{MPa}=$	9.869233 atm $=145.0377$ psia $=10$ bar.				

K by means of a commercial temperature controller. The absolute accuracy of the temperature measurement is believed to be within $\pm 0.015 \mathrm{~K}$. Pressures were measured by referencing the system pressure to oil pressures derived from an oil dead weight gauge. The estimated accuracy of the pressure measurement was on the order of 0.01% at the highest pressures, increasing to 0.05% at the lowest pressures investigated.

The experimental procedure consisted of charging the ethane to the system and determining the differential mass. After the system reached temperature equilibrium, the temperature and pressure of the sample were recorded. The temperature of the system was then changed and a second pressure was recorded. In this manner, a series of pressure-temperature determinations was made on a constant mass sample. Usually, the temperature

Figure 1. Schematic representation of the $P-T$ surface of ethane and the region of the surface covered by this and previous investigations. Note that this work (the shaded region) constitutes the first investigation of the low temperature, high density fluid.

Figure 2. This figure presents a percentage deviation plot of the experimental ethane vapor pressures. The reference values, $P_{\text {ref }}$, were calculated using a correlation proposed by Goodwin (5). Symbol key: $\square(3), \Delta(4)$, and O this work.

Flgure 3. Percentage deviation plot of experimental saturated liquid densities. The reference values were calculated using a correlation proposed by Goodwin (5). Note the qualitative agreement in the systematic trends of the data sets. Symbol key: \square (3), Δ (4), and - this work.
of the system was initially set at the highest temperature of interest and then lowered to generate the pseudo-isochoric data. This procedure was adopted so that when the two-phase boundary was reached, measurements could be continued along the vapor pressure curve. For further information as to the experimental apparatus and technique, the reader is referred to ref 11.

The ethane used in this investigation was Phillips Research Grade whose purity was shown to be 99.95% (w/w) by GLC analysis.

Results and Discussion

Due to the temperature and pressure changes in the volume of the isochoric cell, the density of the constant mass sample

Table II. Vapor Pressures of Ethane

, K	p, MPa		
214.302	0.3973	282.247	2.9540
221.101	0.5153	284.635	3.1174
224.102	0.5712	287.653	3.3365
229.756	0.6948	288.263	3.3833
234.558	0.8140	290.040	3.5147
239.844	0.9622	292.236	3.6927
240.514	0.9824	293.098	3.7573
243.359	1.0716	296.347	4.0287
246.814	1.1869	299.665	4.3220
247.816	1.2210	300.205	4.3737
249.741	1.2931	300.443	4.3881
250.146	1.3070	303.451	4.4693
251.587	1.3621	303.477	4.6815
252.544	1.3989	304.049	4.6893
254.290	1.4682	304.360	4.7390
257.543	1.6035	304.446	4.7846
263.380	1.8699	304.519	4.7828
267.536	2.0792	304.734	4.8059
271.749	2.3068	304.796	4.8148
275.922	2.5492	304.924	4.8316
276.363	2.5793	304.980	4.8345
276.385	2.5786	305.121	4.8484
276.514	2.5886	305.135	4.8459
277.813	2.6667	305.153	4.8515
280.041	2.8071		

Table III. Saturated Liquld Densities of Ethane

$T, \mathrm{~K}$	$\rho, \mathrm{~g} \mathrm{~cm}^{-3}$	$T, \mathrm{~K}$	$\rho, \mathrm{~g} \mathrm{~cm}^{-3}$
215.775	0.50375	256.493	0.43763
223.500	0.49383	268.412	0.41241
230.486	0.48214	277.858	0.39056
241.202	0.46469	292.736	0.34208
248.479	0.45251	301.727	0.29134
		304.038	0.26493

was not constant. Thus, after correcting the raw experimental data for volume changes, one actually has measured pseudo rather than true isochoric data. In order to obtain results along a true isochore, the pseudo-isochoric data were fit to an equation of state of the form proposed by Vennix and Kobayashi (10) with appropriate modifications for the temperature and density range covered in this investigation. To minimize the possibility of serious systematic errors in the equation of state, the highly precise data of Douslin and Harrison (3) were included (with equal weight) in the regression analysis. The resulting equation was then used to calculate a Δp for a $\Delta \rho$ where

$$
\Delta \rho=\rho \text { (true isochore) }-\rho \text { (pseudo-isochore })
$$

at the experimental temperature. Table l ists the isochoric experimental data that have been obtained in this manner. It should be pointed out that the constant densities listed in Table I differ by only a few tenths of one percent from the experimentally observed densities. In other words the amount of correction being done by the equation of state is very small and should be regarded as a correction for the temperature and pressure distortion of the system. The original unsmoothed experimental data are available upon request. (In addition to the 22 isochores listed in Table I, two additional isochores have been studied, and data are available. These isochores were not included in Table I due to the fact that they are very close to the critical isochore and did not smooth well.)

Table II lists the vapor pressure measurements and Figure 2 compares these measurements to those of Douslin and Harrison
(3) and those reported by Eubank (4). The reference values in Figure 2 are those calculated by Goodwin (5) and have been chosen only as a convenient reference point without regard to their overall accuracy.

Table III lists selected saturated liquid densities which were obtained by calculating the intersection of the smoothed isochores and the vapor pressure curve. Data were not obtained above 304 K due to the difficulties encountered with the smoothing equation in the critical region. Figure 3 graphically compares these densities to those of ref 3 and 4.

Acknowledgments

The substantial contributions of the late Mr. Walter Ruska and Dr. James F. Ely, as well as those of Mrs. Patsy S. Chappelear and Mr. Ray Martin, members of our permanent staff, are acknowledged.

Literature Cited

(1) Burnett, E. S., J. Appl. Mech., 58A, 136 (1936)
(2) Com. Int. Poids Mes., Metrolgia, 5, 35 (1969)
(3) Douslin, D. R., Harrison, R. H., J. Chem. Thermodyn. 5, 491 (1973)
(4) Eubank, P. T., Adv. Cryog. Eng., 17, 270 (1971).
(5) Goodwin, R. D., Natl. Bur. Stand. Internal Rep., NBSIR No. 74-398.
(6) Michels, A., van Straaten, W., Dawson, J., Physica (Utrecht), 20, 19 (1954).
(7) Reamer, H. H., Olds, R. H., Sage, B. H., Lacey, W. N., Ind. Eng. Chem., 36, ' 956 (1944).
(8) Roarck, R. J., "Formulas for Stress and Strain", McGraw-Hill, New York N.Y., 1954.
(9) Vennix, A. J., Ph.D. Thesis, Rice University, Houston, Texas, 1966.
(10) Vennix, A. J., Kobayashi, R., AlChE. J., 15, 926 (1969)
(11) Vennix, A. J., Leland, T. W., Kobayashi, R., Adv. Cryog. Eng. 12, 700 (1966).

Received for review December 20, 1974. Accepted June 28, 1976. The authors acknowledge generous financial support from the National Science Foundation, under whose auspices the work was begun, the Columbia Gas Corporation, and the American Gas Association. The research grade ethane and the cryostat bath fluids were supplied gratis by the Phillips Petroleum Company.

Vapor Pressures and Enthalpies of Vaporization of Benzyl Halides

Stanley J. Ashcroft
Department of Chemical Engineering, University of Exeter, Exeter, England

Abstract

Vapor pressures over a range of temperatures have been measured for the benzyl halides using an isoteniscope. The calculated enthalpies of vaporization at $25{ }^{\circ} \mathrm{C}$ are $44.5 \pm$ $0.4,50.1 \pm 0.5,50.5 \pm 0.5$, and $50.6 \pm 1.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively, for the fluoride, chloride, bromide, and lodide. The enthalples of fusion of benzyl bromide and iodide, measured by differential scanning calorimetry, are $13.7 \pm$ $0.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $\mathbf{- 1 . 4}{ }^{\circ} \mathrm{C}$ and $13.2 \pm 0.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 26.3 ${ }^{\circ} \mathrm{C}$, respectively.

During thermochemical measurements on benzyl halides (2) a literature search revealed that values of the enthalpies of vaporization were available only for the chloride and bromide members of the series, and that these were based on old work (7). Accordingly, a study of the temperature dependence of vapor pressures of all four benzyl halides was undertaken.

Experimental Section

Materials. Benzyl chloride, benzyl bromide, and n-heptane (all from British Drug Houses) and benzyl fluoride (P.C.R. Chemicals, Gainesville, Fla.) were dried and fractionally distilled before use. Benzyl iodide was prepared by the method of Coleman and Hauser (5) and purified by fractional crystallization. The purities of these materials, as determined by GLC, are reported in Table I which also includes melting temperatures and enthalpies of fusion. Analyses were by a Philips PV4000 gasliquid chromatograph, equipped with a $3 \mathrm{~m} \times 2 \mathrm{~mm}$ column (10 mass \% squalane on diatomite ' C ') and a flame ionization detector. Nitrogen was used as a carrier gas. It is considered that this equipment could detect impurities with the exception of water, down to 0.01 mass \% or better. Enthalpies of fusion were found by differential scanning calorimetry (Perkin-Elmer DSC-1) only for the bromide and iodide.

Vapor Pressures. Vapor pressures were measured directly by means of an isoteniscope and a vacuum system using standard techniques (11). A closed-ended mercury manometer was
used to record the pressure, the mercury height being read with a cathetometer. Pressures were corrected to $0^{\circ} \mathrm{C}$ and standard gravity. The isoteniscope was immersed in a stirred, thermostated oil bath of which the temperature close to the bulb was read by a series of short-range mercury thermometers (British Standards 593) calibrated on the IPTS 68 scale.

Results

Between three and six readings of vapor pressure were taken at each temperature, the mean values of each group being reported in Table II. The scatter of the values about these means was about $0.1^{\circ} \mathrm{C}$ and 0.1 mmHg , respectively, although the thermometers could be read to the nearest $0.02^{\circ} \mathrm{C}$ and the cathetometer to the nearest 0.01 mm .

The original, unaveraged results were fitted to the Antoine equations

$$
\left.\log p(\mathrm{mmHg})=A-B /\left(t^{\circ} \mathrm{C}\right)+C\right)
$$

by a least-squares procedure with t as the independent variable, the value of the constant C being first calculated from the correlation given by Kreglewski and Zwolinski (8)

$$
C=273.2-0.04 T_{\mathrm{b}}-3 \times 10^{-4} T_{\mathrm{b}}^{2}
$$

where $T_{\mathrm{b}}(\mathrm{K})$ is the boiling temperature (Table III). The calculated Antoine constants are presented in Table III together with their

Table I. Purities (GLC), Melting Temperatures, and Enthalpies of Fusion of Benzyl Halides

Compound	Purity, mass $\%$	Melting temp, ${ }^{\circ} \mathrm{C}$	$\Delta_{\mathrm{s}}^{1} \mathrm{H}$ at melting temp, kJ mol
Benzyl fluoride	99.50		
Benzyl chloride	99.85		
Benzyl bromide	99.80	-1.4	13.7 ± 0.2
Benzyl iodide	99.87	26.3	13.2 ± 0.4

[^0]: † Present address: Department of General Physics, I.A.C.S., Jadarpur, Cal-cutta-32, Indía.
 \# Present address: Shell Development Co., Houston, Texas 77001.
 § Present address: Department of Chemical Engineering, Tohoku University Sendai, Japan.

