- (28) Knudsen, M., Ann. Phys., 28, 75 (1909).
- (29) Leach, J. W., Chappelear, P. S., Leland, T. W., "Properties of Hydrocarbon and Quantum Gas Mixtures from the Corresponding States Principle", *Proc.* Amer. Pet. Inst., Sect. 3, **46**, 223 (1966). (30) Michels, A., Gibson, R. O., *Proc. R. Soc. London, Ser. A*, **134**, 288
- (1931)
- (31) Michels, A., deGraff, W., Wassenaar, T., Levelt, J. M. H., Louwerse, P., Physica (Utrecht), 25, 25 (1959).
- (32) Michels, A., Schipper, A. C. J., Rintoul, W. H., Physica (Utrecht), 19, 1011 (1953).
- (33) Mueller, W. H., Leland, T. W., Kobayashi, R., *AIChE J.*, 7, 267 (1961).
 (34) Poiseuille, J., *Memories des Savants etangers*, 9, 433 (1846).
- (35) Pope, G. A., Chappelear, P. S., Kobayashi, R., AIChE J., 22, 191
- (1976).
- (36) Rankine, A. O., Proc. R. Soc. London, Ser. A, 84, 181 (1911).
 (37) Rankine, A. O., Proc. R. Soc. London, Ser. A, 83, 265 (1910).

- (38) Ross, J. F., Brown, G. M., Ind. Eng. Chem., 49, 2026 (1957).
- (39) Ruska, W. E. A., Carruth, G. F., Kobayashi, R., Rev. Sci. Instrum. 43, 1331 (1972) (40) Ruska, W., Kao, J., Chuang, S. Y., Kobayashi, R., Rev. Sci. Instrum., 39,
- 1889 (1968)
- (41) Sutherland, B. P., Maass, O., Can. J. Res., 6, 428 (1932)
- Thornton, S. J., Dunlop, P. J., *Chem. Phys. Lett.*, **23**, 203 (1973). Trautz, M., Baumann, P. B., *Ann. Phys.*, **2**, 733 (1929). 1421 (43)
- (44)
- (45)
- Trautz, M., Sorg, K. G., Ann. Phys., **10**, 81 (1931). Trautz, M., Weizel, W., Ann. Phys., **4**, 305 (1925). Vennix, A. J., Leland, T. W., Kobayashi, R., AIChE J, **15**, 926 (1969). (46)
- (47) Weissberg, H. L., Phys. Fluids, 5, 1033 (1962).

Received for review August 18, 1975. Accepted July 10, 1976. Financial support was provided by the National Science Foundation, the Monsanto Company, and Rice University.

Extinction Coefficients of Chlorine Monoxide and Chlorine Heptoxide

Chorng-Lieh Lin

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91103

The ultraviolet and visible extinction coefficients of Cl₂O and Cl₂O₇ were measured from 180 to 800 nm. The results are comparable in shape with literature values, but different in magnitude. The approximate extinction coefficients at the peaks of infrared absorption lines are also given.

Recent laboratory measurements and model atmospheric calculations (8, 10, 13, 15) point to possible adverse effects of chlorine-containing compounds in the stratosphere, particularly the destruction of ozone. As part of our study of chlorine-ozone chemistry (8), we have synthesized various chlorine oxides and have measured their extinction coefficients. Some of these oxides may be products or intermediates in the chlorine-ozone reaction system. We report here the extinction coefficients of Cl₂O and Cl₂O₇ in the ultraviolet, visible, and infrared spectral regions.

The extinction coefficients ϵ were defined as

 $\log I_0/I = \epsilon cI$

where the concentration c is in moles/liter, the optical path length / is in cm, and log I_0/I is the absorbance.

The absorption spectra in the ultraviolet and visible regions were taken with a Cary 15 spectrophotometer (Applied Physics) using a quartz absorption cell of 10-cm path length. Wavelength calibrations were accomplished by using O₂ Shumann-Runge absorption bands (1, 3) near 180 nm, and mercury low pressure lines at longer wavelengths.

The ir absorption spectrum was recorded with a Perkin-Elmer Model 21 double beam spectrophotometer from 650 to 5000 cm⁻¹ with resolution set at 927. At this setting, the spectral band-passes at different wavelengths are known and supplied by the manufacturer. The absorption cell was made of Pyrex glass with NaCl windows.

A fused quartz precision pressure gauge (Texas Instruments) was used for pressure measurements. The accuracy of the pressure measurements was better than 1%.

(A) Cl₂O

The chlorine monoxide was prepared (11) by slowly passing Cl₂ (Matheson research grade) through a reaction tube packed

with mercuric oxide (Allied Chemical) which had been previously heated under vacuum to about 250 °C. Chlorine monoxide was condensed in a U-tube surrounded by a solid-liquid slurry of ethanol at ca. - 117 °C. Trap-to-trap purification was performed at -117 °C to ensure purity. Since Cl₂O absorption extends into the visible region, special caution was taken to guard against possible photodecomposition resulting from exposure of the purified sample to room light. The purity of chlorine monoxide used in the extinction coefficient measurements was estimated from its stoichiometric ratio determination using pressure measurements before and after complete decomposition into Cl₂ and O₂. This ratio is 2:0.986 compared to the theoretical value of 2:1, indicating that Cl₂O purity is better than 98.5%. Cl₂O was readily decomposed into Cl₂ and O₂ by low pressure mercury lamp irradiation. The amount of Cl₂ produced after decomposition could also be calculated from its peak absorption near 330 nm, with known extinction coefficient (12), and the amount of O2 could be roughly measured from the Shumann-Runge absorption bands. These absorption measurements confirmed the correctness of the aforementioned purity estimate. The absence of absorption characteristic of other chlorine oxides attested further to the purity of the Cl_2O .

Six samples of Cl₂O with pressures ranging from 1 to 165 Torr were used for extinction coefficient measurements. No absorption was recorded for wavelengths greater than 650 nm when the samples were scanned from 800 to 180 nm. Little effect was observed when Cl₂O samples were pressurized to 760 Torr with N₂ gas. These results in the uv and visible are summarized in Table I and plotted in Figure 1 along with the values of Goodeve and Wallace (6) and of Finkelnburg, Schumacher, and Stieger (4) for comparison. Although all three data sets are of the same shape, the differences in value at various wavelengths are apparent. The accuracy of the uv extinction coefficients measured in the present work is estimated to be about 5% in the region of main interest, between 180 and 330 nm. In the region between 330 and 470 nm it is 10% and at wavelengths greater than 470 nm, the uncertainty is probably greater than 10% because of weak absorption.

The ir approximate extinction coefficients at the peaks (9) of absorption lines along with their spectral band-passes are given in Table II. Again, little effect on extinction coefficient was observed when the Cl₂O sample was pressurized to 760 Torr with N₂ gas.

Table I. Extinction Coefficients (I. mol - ' cm '	') of Cl ₂ O Uv and Visib	le Absorption
---	--------------------------------------	---------------

Wavelength (nm)	This work	Goodeve and Wallace	Finkelnburg, Schumacher, and Stieger	Wavelength (nm)	This work	Goodeve and Wallace	FinkeInburg, Schumacher, and Stieger
180	2030			375	1.41		
185	904			380	1 43	2 4 2	0.84
190	444			385	1.56		0.01
195	278			390	1.74		
200	175			395	2.02		
205	110			400	2.29	2.97	4.65
210	60.9			405	2.61		
215	35.0			410	2.84	3.72	5.95
220	24.2		29.7	415	3.04		
225	33.3			420	3.15	4.27	4.65
230	74.0	48.3	59.5	425	3.10		
235	146			430	3.04		
240	257	150	223	435	2.85		
245	381			440	2.77	3.35	2.42
250	476	223	372	445	2.41		
255	506			450	2.13		
260	478	223	372	460	1.62	2.23	1.17
265	423			470	1.18		
270	372			480	0.80	1.23	0.74
275	338			490	0.60		•
280	316	186	297	500	0.54	0.56	0.60
285	287			510	0.55		
290	256			520	0.56	0.47	0.65
295	218			530	0.62		
300	176	130	186	540	0.67	0.43	0.65
305	135			550	0.67		
310	100			560	0.58	0.41	0.41
315	70.6			570	0.53		
320	48.5	50.2	74.3	580	0.46	0.10	0.13
325	33.6			590	0.39		
330	23.5			600	0.32	0.04	0.07
335	17.4			610	0.25		
340	10.8	14.9	10.4	620	0.18		
345	7.50			630	0.09		0.09
350	5.23			640	0.04		
355	3.96			650	0.0		0.02
360	2.61	5.76	1.49	670	0.0		0.0
365	1.85						
370	1.46	3.72	0.60				

Figure 1. The extinction coefficient of chlorine oxide: —, this work; X, Goodeve and Wallace; O, Finkelnburg et al.

(B) Cl₂O₇

The chlorine heptoxide was made by a method similar to that of Goodeve and Powney (5). Briefly a 70% A.C.S. reagent perchloric acid (Matheson, Coleman and Bell) solution was first concentrated by pumping off the excess water. The concentrated acid was then surrounded with a dry ice trap and P_2O_5 slowly added through a side arm. The pressure was then lowered by pumping and the mixture allowed to warm up slowly. The HClO₄

Table II. Approximate Extinction Coefficients (I. $mol^{-1} cm^{-1}$) at the Peak Ir Absorption Lines (9) of Cl₂O

Peak freq (cm ⁻¹)	Approx spectral slit width (cm ⁻¹)	ŧ
972	2.8	0.6 ± 0.1
692	4.8	2.8 ± 0.5
686	4.8	3.2 ± 0.5
677	4.9	3.0 ± 0.6

was thus dehydrated and Cl₂O₇ freely evolved, which was further dried by passing through a tube filled with P₂O₅ and condensed in a trap at dry ice temperature. The Cl₂O₇ produced was further purified by vacuum fractionation until a pure colorless sample was obtained. The Cl₂O₇ sample was found to be better than 99% pure by methods similar to those used in estimating the purity of Cl₂O. The main impurity of the sample was ClO₂, which was estimated to be less than 0.1% by its absorption centered at 351.5 nm. The ClO₂ extinction coefficient at 351.5 nm = 3090I. mol⁻¹ cm⁻¹ was given by Basco and Dogra (2). Cl₂O₇ was easily decomposed into Cl₂ and O₂ thermally. An explosive decomposition with a bright flash occurred when the sample in a quartz cell was warmed by a heat gun (to about 250 °C). The pressure ratio before and after thermal decomposition is 1:4.53, close to the pure sample theoretical ratio of 1:4.5 ($Cl_2O_7 \rightarrow Cl_2$) + 3.50₂). This, coupled with a quantitative Cl₂ concentration determination by its absorption near 330 nm (12), further confirmed its purity.

Table III. Extinction Coefficients (I. mol⁻¹ cm⁻¹) of Cl₂O₇ Uv Absorption

Wavelength (nm)	€ Wavelength (nm)		E	
180	3100	250	45.6	
185	2370	255	31.2	
190	1760	260	20.2	
195	1240	265	14.0	
200	840	270	9.84	
205	604	275	6.69	
210	442	280	4.43	
215	344	285	3.13	
220	266	290	1.84	
225	208	295	1.36	
230	159	300	0.96	
235	119	305	0.53	
240	90.2	310	0.27	
245	64.5			

Tables III and IV list the uv and ir extinction coefficients, respectively, which were determined using six Cl₂O₇ samples with pressures ranging from 1 to 56 Torr. No absorption was observed for wavelengths greater than 320 nm when the samples were scanned from 800 to 180 nm. The accuracy for the extinction coefficients in Table III is better than 6% between 180 and 255 nm where the absorption is strong. In the region between 255 and 295 nm the uncertainty is larger, being about 11%, and at wavelengths greater than 295 nm the uncertainty is greater than 11%. A comparison with results of Goodeve and Windsor (7) was attempted as shown in Figure 2. Although there is agreement near 290 nm, the deviation at the lower wavelengths is more pronounced. At 225 nm, our value was lower by a factor of more than 4. The reason for this large discrepancy is not known; however, Goodeve and Windsor's results were only approximate, especially in the regions of high and low absorption.

Acknowledgment

The author is indebted to Dr. W. B. DeMore for supervising this study, and to Dr. P. Perkins for supplying us the spectral band-pass curve of the Perkin-Elmer Model 21 ir spectrophotometer.

Literature Cited

- (1) Ackerman, M., Biaumé, F., Kockarts, G., Planet. Space Sci., 18, 1639 (1970).
- (2) Basco, N., Dogra, S. K., Proc. R. Soc. London, Ser. A, 323, 29 (1971).
- Bethke, G. W., J. Chem. Phys., 31, 669 (1959).
- (4) Finkelnburg, W., Schumacher, H. J., Stieger, G., Z. Phys. Chem., Abt. B, 15, 127 (1931).
- Goodeve, C. F., Powney, J., *J. Chem Soc.*, 2078 (1932).
 Goodeve, C. F., Wallace, J. I., *Trans. Faraday Soc.*, 26, 254 (1930).

Table IV. Approximate Extinction Coefficients (I. mol⁻¹ cm⁻¹) at the Peak ir Absorption Lines (14) of Cl₂O₇

Peak freq (cm ⁻¹) Approx spectral slit width (cm ⁻¹)	£
1300	4.7	1090 ± 130
1057	3.1	24 ± 3.0
1025	3.0	282 ± 17
876	2.8	7.3 ± 0.9
798	3.2	12 ± 1.5
698	4.7	65 ± 16
4 3 0 0 0 0 0 0 0 1	GOO DEVE AND WINDSOR THIS WORK	
-1L 1	80 200 220 240 260 280 300 320 WAVELENGTH (nm)	340

Figure 2. The extinction coefficient of chlorine heptoxide.

- (7) Goodeve, C. F., Windsor, B. A. M., Trans. Faraday Soc., 32, 1518 (1936).
- Lin, C.-L., Jaffe, S., DeMore, W. B., "Photochemistry of Chlorine-Ozone (8) Mixtures", presented at the Symposium on Chlorine Reactions and Strat-ospheric Ozone, 169th National Meeting of the American Chemical Society, Philadelphia, Pa., April 6-11, 1975.
- Philadelphia, Pa., April 6–11, 1975.
 (9) Rochkind, M. M., Pimentel, G. C., J. Chem. Phys., 42, 1361 (1965).
 (10) Rowland, F. S., Molina, M. J., Rev. Geophys. Space Phys., 13, 1 (1975).
 (11) Schack, C. J., Lindahl, C. B., Inorg. Nucl. Chem. Lett., 3, 387 (1967).
 (12) Seery, D. J., Britton, D., J. Phys. Chem., 66, 2263 (1964).
 (13) Stoiarski, R. S., Cicerone, R. J., Can. J. Chem., 52, 1610 (1974).
 (14) Witt, J. D., Hammaker, R. M., J. Chem., 179, 303 (1973).
 (15) Wofsy, S. C., McElroy, M. B., Can. J. Chem., 52, 1582 (1974).

Received for review September 28, 1975. Accepted June 14, 1976. This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS7-100, sponsored by the National Aeronautics and Space Administration.