

Figure 1. pKa values of ZCONHCI vs. pKa values of ZCOOH in water at 25 °C.

Experimental Section

The N-haloamides were prepared by the sodium hypohalite method (1) except for N-fluorourethane (3).

The potentiometric titrations were carried out on a 0.01 M solution at 25 °C using an Orion-type pH meter Model 801, a Sargent-Welch glass electrode type S-30050-15, and a saturated calomel electrode type S-30080-15. The buret, containing an NaOH 0.01 M solution, had a digital syringe, Dosimat type, Metrohm Herisan Model E 412. Before and after each titration, the electrodes were calibrated using two buffers-lithium oxalate-oxalic acid and lithium succinate-succinic acid (5)---prepared in the same solvent as the titrated compound. The reproducibility was of 0.02 pH unit. The p K_a s of benzoic acid and *p*-nitrophenol determined by this method were found to be 5.68 and 7.86, respectively, in agreement with the literature values (5, 7).

Acknowledgment

Our thanks are due to F. Comtois and M. Paquette for technical assistance.

Literature Cited

- Bachand, C., Driguez, H., Paton, J. M., Touchard, D., Lessard, J., J. Org. Chem., 39, 3136 (1974).
- (2) Bérubé, D., Caza, J., Kimmerle, F. M., Lessard, J., Can. J. Chem., 53, 3060 (1975).
- (3)
- Driguez, H., Paton, J. M., Lessard, J., *Can. J. Chem.*, **55**, 700 (1977). Driguez, H., Lessard, J., *Can. J. Chem.*, **55**, 720 (1977). Gelseman, W. J., De Ligny, C. L., Visserman, G. F., *Recl. Trav. Chim.* (5) Pays-Bas, 84, 1129 (1965)
- Kortüm, G., Vogel, W., Andtrussow, K., "Dissociation Constants of Organic Acids in Aqueous Solution", Butterworth, London, 1961, pp 294–295. (6)Reynaud, R., Bull. Soc. Chim. Fr., 4597 (1967)
- (8) Touchard, D., Lessard, J., Tetrahedron Lett., 4425 (1971); 3827 (1973).

Received for review June 13, 1977. Accepted September 28, 1977. Financial assistance from the "Ministère de l'Education du Québec" and the National Research Council of Canada is gratefully acknowledged.

Densities of Dilute Aqueous Solutions of Selected Ethers[†]

Luciano Lepori*

Laboratorio di Chimica Quantistica ed Energetica Molecolare del C.N.R., 56100 Pisa, Italy

Vincenzo Mollica

Istituto di Chimica Fisica, Università di Pisa, 56100 Pisa, Italy

The densities of dilute aqueous solutions of 11 ethers [oxetane, oxepane, 1,3-dioxane, 1,3-dioxepane, 1,3,5trioxane, 2,4,6-trimethyl-1,3,5-trioxane (paraldehyde), 2,5dimethoxytetrahydrofuran, dimethoxymethane, diethoxymethane, 1,2-dimethoxyethane, 1,2diethoxyethane] have been determined at 25 °C by means of a differential buoyancy technique. The solute apparent molar volumes and excess molar volumes are presented. An empirical equation is proposed to evaluate the limiting partial molar volumes of cyclic ethers with the formula $(CH_{2})_{n}O_{m}.$

The volumetric properties of nonelectrolyte aqueous solutions, in conjunction with other thermodynamic properties, provide useful information about solute-water interactions (3). In continuation of previous studies on the volumetric behavior of ethers in water (1), we have determined the densities at 25 °C of dilute aqueous solutions of some cyclic monoethers (oxetane, oxe-

[†] Partly communicated at the meeting of the Società Chimica Italiana, Pisa, Dec 1975. Chim. Ind. (Milan), 58, 221 (1976).

junction with the known molar volumes of pure liquid compounds, enabled the calculation of excess molar volumes. Experimental Section All chemicals were commercial products of the highest

available purity. Solid 1,3,5-trioxane was sublimed under vacuum on a cold finger in a closed glass apparatus. The liquid compounds were fractionally distilled, at atmospheric pressure, after prolonged reflux over metallic sodium, using a Todd column with 30 theoretical plates. Oxepane was further rectified by a Perkin-Elmer 251 spinning band column. All the samples used in the experiments showed a GLC purity ≥99.8% and a water content less than 0.1%, as measured by a Karl Fischer reagent. In the case of 2,5-dimethoxytetrahydrofuran, the cis-trans

pane), cyclic di- and triethers (1,3-dioxane, 1,3-dioxepane,

1,3,5-trioxane, 2,4,6-trimethyl-1,3,5-trioxane or paraldehyde,

2-5-dimethoxytetrahydrofuran), and open-chain diethers (di-

methoxymethane, diethoxymethane, 1,2-dimethoxyethane,

1,2-diethoxyethane). From density data, the solute apparent

molar volumes have been calculated at each concentration, and

the results have been extrapolated to give the partial molar

volumes at infinite dilution. These limiting quantities, in con-

Table I. Densities an	d Apparent Molar	Volumes of Ethers in ,	Aqueous Solutions at 25 °	'C

Concen,	Density, a.cm ⁻³	$\phi_{\rm v}$, cm ³ mol ⁻¹	Concen,	Density,	ϕ_{v} , cm ³ mol ⁻¹
	<u> </u>			<u>g</u> 0	
	Oxetane		0.0647	0.998 386	69.55
0.0213	0.996 982	61.20	0.0893	0.998 897	69.54
0.0285	0.996 956	61.37	0.1033	0.999 189	69.53
0.0367	0.996 929	61.41	0.1324	0.999 789	69.56
0.0493	0.996.896	61.27	0.1735	1.000 638	69.57
0.0604	0 996 861	61.32	0 2084	1 001 360	69.58
0.0004	0.006 718	61.02	0.2144	1 001 484	69 58
0.1007	0.990 7 18	01.27	0.2177	1.002.105	60.00
0.1100	0.996 708	01.30	0.2409	1,002 195	69.60
0.1116	0.996 699	61.37	0.2500	1.002 227	69.56
0.2133	0.996 407	61.25	0.4850	1.007 068	69.62
0.2146	0.996 395	61.29	0.5032	1.007 457	69.59
0.2397	0.996 330	61.24	0.6994	1.011 436	69.71
0.3816	0.995 927	61.19	0.7133	1.011 771	69.64
0.4024	0.995 868	61.19		Paraldahyda	
0.5248	0.995 549	61.11	0.0010	Paraldenyde	100.50
0.6138	0.995 309	61.09	0.0213	0.997 235	123.59
0.6766	0.995 146	61.07	0.0243	0.997 259	123.69
0 7758	0 994 911	61.01	0.0467	0.997 461	123.62
0.8756	0.994.670	60.97	0.0488	0.997 479	123.62
0.0700	0.994 493	60.04	0.0492	0.997 481	123.65
0.9521	0.994 493	60.94	0.0509	0.997 497	123.64
	Oxepane		0.0867	0.997 816	123.63
0.0156	0 006 068	105 40	0.0941	0.997 885	123.59
0.0100	0.990 900	105.40	0 1003	0 997 945	123.55
0.0197	0.996 949	105.36	0.1252	0.009.262	103 53
0.0244	0.996 927	105.30	0.1353	0.998 202	123.53
0.0415	0.996 840	105.40	0.1637	0.998 529	123.46
0.0560	0.996 774	105.31	0.2103	0.998 966	123.39
0.0585	0.996 763	105.29	0.2180	0.999 036	123.30
0.0868	0.996 630	105.25	0.2711	0.999 545	123.30
0.1171	0.996 496	105.16	0.3092	0.999 904	123.27
0.1185	0.996 488	105.17	0.3685	1.000 492	123.17
0 1475	0 996 363	105.09	0.4235	1.001 030	123.11
0 1840	0 996 220	104.96	0.4419	1.001 217	123.08
0.2145	0.000 220	104.00	0.5100	1.001 894	123.01
0.2145	0.990 089	104.52	0.5636	1 002 431	122.97
	1.3-Dioxane		0.6081	1.002 401	100.90
0.0179	0 997 180	80.82	0.0201	1.003.094	100.95
0.0373	0.997.324	80.86	0.0344	1.003 372	122.85
0.0373	0.007 024	80.81	0.7004	1.003 833	122.83
0.0387	0.997 336	00.01	0.7211	1.004 031	122.83
0.0782	0.997 638	80.77	~	5 Dimothevytetrebydrofur	
0.1123	0.997 893	80.80	0.0400		100.00
0.1586	0.998 247	80.77	0.0130	0.997 177	122.32
0.2547	0.998 980	80.75	0.0234	0.997 284	122.33
0.2587	0.999 013	80.74	0.0276	0.997 326	122.33
0.4379	1.000 393	80.70	0.0524	0.997 583	122.27
0.4540	1.000 526	80.68	0.0527	0.997 588	122.22
0.5649	1.001 387	80.66	0.0903	0.997 976	122.22
			0.0983	0.998 064	122.15
	1,3-Dioxepane		0.1433	0.998 538	122.10
0.0235	0.997 197	95.93	0.1594	0.998 704	122.11
0.0258	0.997 212	95.95	0.2122	0.999 273	122.03
0.0265	0,997 219	95.85	0.2838	1 000 041	121.96
0.0506	0.997 375	95,90	0 4259	1 001 614	121 79
0.0622	0 997 444	95 99	0.4233	1.001.014	121.79
0.0917	0 997 574	95.94	0.5539	1.003 038	121.07
0.0017	0.007 760	05.03	0.6937	1.004 666	121.53
0.1110	0.997 709	95.93	0.8193	1.006 122	121.44
0.1325	0.997 911	95.87		Dimethow	
0.1422	0.997 967	95.93	0.0014		00.40
0.1995	0.998 357	95.84	0.0314	0.990 91/	6U.42
0.2400	0.998 628	95.82	0.0385	0.996 888	80.41
0.3055	0.999 076	95.76	0.0838	0.996 706	80.38
0.4118	0.999 805	95.71	0.0850	0.996 699	80.41
0.4772	1.000 267	95.66	0.1784	0.996 328	80.35
0.5839	1.001 018	95.61	0.2130	0.996 191	80.35
0.7495	1.002 197	95.54	0.3510	0.995 659	80.28
0.8673	1.003.040	95.50	0.4069	0.995 437	80.29
0.0010		00.00	0.6219	0.994 643	80.20
	1,3,5-Trioxane		0 7349	0 994 236	80.16
0.0088	0.997 229	69.50	0.1040	0.007 200	80.10
0.0180	0.997 421	69.45	1 0520	0.000 104	20.10
0.0330	0.997 729	69.54	1.0020	0.000 470	80.00
0.0000	0 997 921	69 55	1.2317	0.992 4/8	80.04
0.0722	0.001 021	03.00			

Concen, mol L ⁻¹	Density, g cm ⁻³	ϕ_{v} , cm ³ mol ⁻¹	Concen, mol L ⁻¹	Density, g cm ⁻³	$\phi_{ m v},$. cm ³ mol ⁻¹
	Diethoxymethane		0.2723	0.995 665	95.47
0.0099	0.996 955	113.60	0.2728	0.995 653	95.51
0.0127	0.996 923	114.05	0.3279	0.995 401	95.42
0.0222	0.996 840	113.69	0.3754	0.995 158	95.43
0.0288	0.996 772	113.97	0.4263	0.994 950	95.32
0.0292	0.996 773	113.79	0.5309	0.994 454	95.28
0.0554	0.996 526	113.85	0.5937	0.994 235	95.13
0.0604	0.996 487	113.72	0.7191	0.993 708	95.04
0.1013	0.996 104	113.78	0.8306	0.993 312	94.90
0.1126	0.996 000	113,77	0.8481	0.993 235	94.89
0.1354	0.995 800	113.67	0.8579	0.993 213	94.87
0.2093	0.995 125	113.66	1.0868	0.992 388	94.68
0.2377	0.994 869	113.64			
0.2668	0.994 633	113.52		1,2-Diethoxyethane	
0.3514	0.993 893	113.45	0.0202	0.996 871	127.17
0.3841	0.993 625	113.39	0.0315	0.996 771	127.25
0.4048	0.993 466	113.33	0.0353	0.996 738	127.24
			0.0598	0.996 532	127.12
	1,2-Dimethoxyethane		0.0862	0.996 309	127.09
0.0343	0.996 862	95.73	0.1349	0.995 916	126.93
0.0434	0.996 806	95.91	0.1529	0.995 769	126.90
0.0752	0.996 640	95.78	0.2107	0.995 316	126.76
0.1072	0.996 478	95.70	0.2634	0.994 925	126.60
0.1148	0.996 439	95.68	0.3423	0.994 349	126.42
0.1230	0.996 390	95.73	0.3888	0.994 029	126.31
0.1711	0.996 143	95.67	0.4625	0.993 527	126.15
0.1791	0.996 095	95.71	0.6615	0.992 252	125.79

Table II. Volumetric Properties of Selected Ethers in Water at 25 °C^a

Table I (continued)

	\overline{V}_2° .	h. ^b	V2,	V [∞] E,
Substance	cm ³ mol ⁻²	cm ³ L mol ⁻²	cm ³ mol ⁻¹	cm ³ mol ⁻¹
Oxetane	61.35 ± 0.01	-0.43 ± 0.02	65.0	-3.7
Oxepane	105.46 ± 0.02	-2.55 ± 0.17	113	-7.6
1,3-Dioxane	80.82 ± 0.02	-0.30 ± 0.06	85.9	-5.1
1,3-Dioxepane	95.98 ± 0.02	-0.66 ± 0.10	102.1	-6.1
1,3,5-Trioxane	69.51 ± 0.04	0.22 ± 0.10	74	-4.5
Paraldehyde	123.71 ± 0.02	-1.50 ± 0.13	134.0	-10.3
2,5-Dimethoxytetrahydrofuran	122.34 ± 0.04	-1.50 ± 0.32	130	—7 .7
Dimethoxymethane	80.42 ± 0.02	-0.36 ± 0.03	89.2	-8.8
Diethoxymethane	113.88 ± 0.03	-1.27 ± 0.10	126.3	-12.4
1,2-Dimethoxyethane	95.88 ± 0.03	-1.37 ± 0.10	104.7	-8.8
1,2-Diethoxyethane	127.29 ± 0.03	-2.55 ± 0.12	139.9	-12.6
Tetrahydrofuran ^c	76.85	-1.08	81.7	-4.9
Tetrahydropyran ^c	91.73	-1.70	98.2	-6.5
1,3-Dioxolane ^c	65.37	0.17	70.3	-5.0
1,4-Dioxane ^c	80.96	-0.17	85.8	-4.8

^a The ϕ_v data were fitted to eq 3 by means of a weighted least-squares adjustment. The reported uncertainties are standard deviations. ^b In the case of the following ethers: 1,3-dioxepane (0.4), paraldehyde (0.3), 2,5-dimethoxytetrahydrofuran (0.2), dimethoxymetane (0.2), 1,2-dimethoxyethane (0.4), 1,2-diethoxyethane (0.4); the plot of ϕ_v vs. *C* was found to be linear up to the concentration value indicated in parentheses. ^c Reference 1.

equimolar mixture was employed. Water used as solvent was deionized and then distilled from alkaline KMnO₄ solution.

Results

The hydrostatic differential balance used for density measurements (with a precision of 1 ppm) and details of the apparatus and its method of operation have been described elsewhere (1). The solutions to be studied were prepared directly in the measuring vessel by successive additions of a weighed quantity of ether to a known quantity of water. Temperature oscillations inside the measuring vessel were within ± 0.001 °C.

The density values, d, were calculated from the buoyancy value, W, expressed as a mass difference, by means of the following equation

$$\mathbf{e} d = d_0 + W/V \tag{1}$$

where V is the exactly known volume of the float and d_0 the density of pure water at 25 °C ($d_0 = 0.9970449 \text{ g cm}^{-3}$) (4).

Densities and apparent molar volumes, ϕ_v , of the ethers are presented in Table I. The ϕ_v values were calculated from the experimental densities by use of the relation

$$\phi_{\rm v} = \frac{M}{d_0} - \left(\frac{d}{d_0} - 1\right) \frac{1000}{C} \tag{2}$$

where M is the solute molecular weight and C is its molar concentration. At least two series of determinations were carried out for each compound.

In Table II are collected data on the limiting partial molar volumes, V_2° , and the slope, *h*, of the straight line

$$\phi_{\rm v} = V_2^{\,\rm o} + hC \tag{3}$$

that represents the concentration dependence of ϕ_v in dilute solution. To facilitate comparison, data of related compounds

have been included in the table. Also reported are values of the excess partial molar volume at infinite dilution, \overline{V}^{oE} , calculated bv

$$\overline{V}^{\mathsf{o}\mathsf{E}} = \overline{V}_2^{\,\mathsf{o}} - V_2 \tag{4}$$

The molar volumes, V_2 , of the pure liquids were evaluated from the average of density values available in the literature.

As far as we know, with the exception of $\overline{V_2}^{\circ}$ (25 °C) = 95.6 mL mol⁻¹ (5) for 1,2-dimethoxyethane, no density data are available with which the results presented here can be directly compared. The agreement between the \overline{V}_2° value of Terasawa et al. (5) determined dilatometrically and that obtained in this study by density measurements is reasonable.

Discussion

Partial Molar Volumes. From Table II, the effect on \overline{V}_2° of the chain lengthening appears evident. The $\overline{V_2}^{\circ}$ increment per methylene unit in homologous series, although dependent to a certain extent on molecular size, has the following average values: $\overline{V_2}^{\circ}(CH_2) = 14.7 \text{ cm}^3 \text{ mol}^{-1}$ for cyclic monoethers, $\overline{V_2}^{\circ}(CH_2) = 15.3 \text{ cm}^3 \text{ mol}^{-1}$ for cyclic diethers, $\overline{V_2}^{\circ}(CH_2) = 16.2$ $cm^3 mol^{-1}$ for open-chain diethers.

As far as the effect of the number of oxygen atoms on $\overline{V_2}^{\circ}$ is concerned, the progressive introduction of oxygen atoms in cyclic ethers with a fixed number of carbon atoms (e.g., the changes oxetane \rightarrow 1,3-dioxolane \rightarrow 1,3,5-trioxane) is accompanied by a nearly constant increment in V_2° (4.1 cm³ mol⁻¹). This quantity, which appears surprisingly independent of both molecular size and relative positions of oxygen atoms in the molecule, can be identified with $\overline{V}_2^{\circ}(O)$ —the ethereal oxygen contribution to partial molar volume.

Hence, there is some evidence that for cyclic ethers of the type $(CH_2)_n O_m$ there is a certain volume associated with each group in the molecule, so that $\overline{V_2}^{\circ}$ can be calculated by summing these volumes in a manner similar to that of Traube (6). A least-squares method led to the following empirical equation

$$\overline{V}_{2}^{*} = A + n \overline{V}_{2}^{\circ} (CH_{2}) + m \overline{V}_{2}^{\circ} (O)$$
 (5)

where $\overline{V_2}^{\bullet}$ is the calculated value of the limiting partial molar volume, $A = 12.7 \text{ cm}^3 \text{ mol}^{-1}$ is a constant term, $\overline{V}_2^{\circ}(CH_2) =$ 14.9 cm³ mol⁻¹, and $\overline{V}_2^{\circ}(O) = 4.1 \text{ cm}^3 \text{ mol}^{-1}$. The \overline{V}_2° values

calculated from eq 5 agree with the experimental \overline{V}_2° values of the nine $(CH_2)_n O_m$ ethers in Table II, with a standard deviation of ± 0.4 cm³ mol⁻¹.

Finally, one can observe that the open-chain diethers have always a greater \overline{V}_2° with respect to the corresponding cyclic diethers. The $\overline{V_2}^{\circ}$ increment in going from cyclic to open-chain compounds increases with increasing molecular dimensions.

Concentration Dependence of the ϕ_{v} . For all substances examined, the $\phi_{\rm v}$ values show, in sufficiently dilute solution (C < 0.2 mol L⁻¹), a linear dependence on the concentration. The value of the slope, h, is always negative, except for the 1,3,5trioxane. and increases numerically within an homologous series, when the number of carbon atoms is increased.

The *h* slopes and the \overline{V}_2° values are correlated with each other, and the correlation curve of monoethers is different from that of diethers and triethers. This different behavior between mono- and polyethers is analogous to that already observed for other classes of mono- and polyfunctional solutes (2).

Excess Partial Molar Volumes. The transfer from the liquid state to the aqueous dilute solution produces always a volume contraction ($\overline{V}^{oE} < 0$), which, in an homologous series, increases with chain lengthening. Moreover, for compounds with the same molecular size, the volume contraction diminishes as the oxygen number in the molecule increases (e.g., the \overline{V}^{oE} trends in the series tetrahydropyran \rightarrow 1,3-dioxane \rightarrow 1,3,5trioxane) and in going from open-chain to cyclic compounds.

Note Added during the Revision. Shortly after this manuscript had been submitted, Edward et al. (Edward, J. T., Farrell, P. G., Shahidi, F., J. Chem. Soc., Faraday Trans. 1, 73, 705 (1977)), published \overline{V}_2° values for seven of the ethers here considered. In general, their data agree within $0.2 \text{ cm}^3 \text{ mol}^{-1}$ with ours.

Literature Cited

- Cabani, S., Conti, G., Lepori, L., *J. Phys. Chem.*, **76**, 1338 (1972).
 Cabani, S., Conti, G., Lepori, L., *J. Phys. Chem.*, **78**, 1030 (1974).
 Franks, F., Reid, D. S., "Water. A Comprehensive Treatise", Vol. II, F. Franks,
- Ed., Plenum Press, New York, N.Y., 1973, p 323.
 (4) Kell, G. S., *J. Chem. Eng. Data*, **20**, 97 (1975).
 (5) Terasawa, S., Itsuki, H., Arakawa, S., *J. Phys. Chem.*, **79**, 2345 (1975).
- (6) Traube, J., Samml. Chem. Vortr., 4, 255 (1899).

Received for review April 25, 1977. Accepted September 19, 1977. We are indebted to the Consiglio Nazionale delle Ricerche (Rome) for support of this work.