Volumetric Properties of Hydrated Salts: Mixtures of the Hexahydrate of Nickel Nitrate with Cadmium Nitrate Tetrahydrate

Surender K. Jain

Hindu College, University of Delhi, Delhi-110007, India

Densities of molten mixtures of $Cd(NO_3)_2 \cdot 4H_2O-Ni(NO_3)_2 \cdot 6H_2O$ were measured as a function of temperature and composition. The density and equivalent volumes varied linearly with temperature. Equivalent volume-composition plots are significant in view of the negative deviations from additive values and "breaks" around 30 and 80 mol % of nickel nitrate hexahydrate.

Growing interests in the use of molten hydrated salt systems, possessing supercooling and glass-forming tendencies, for certain specialized fields of research (7) and the observations that the volumes in such systems are nearly additive (1, 3-5) prompted this study regarding the measurement of densities of the mixed hydrated melts consisting of Ni(NO₃)₂·6H₂O and Cd(NO₃)₂·4H₂O.

Experimental Section

The tetrahydrate of cadmium nitrate obtained from Reanal (Hungary) was of analaR grade. Hexahydrate of nickel nitrate was of LR (BDH, England) grade. An analytical cross check was made for water content of hydrate of cadmium nitrate by measuring the loss in the weight of a certain known weight of hydrate, on complete dehydration. Nickel content of Ni(NO₃)₂·6H₂O was determined by precipitating it as dimethylglyoxime. The analysis established the composition with maximum departure of ± 0.01 for cadmium and ± 0.02 for nickel salt. Mixtures of varying

compositions were prepared separately by melting the requisite amounts of the components in Pyrex glass flasks with air-tight ground glass joints and digesting them at 60-70 °C for about 2–3 h.

The manometric densitometer originally designed by Husband (2) was modified so as to permit a direct measurement of the volume of a known amount of solution. The details regarding the densitometer, its calibration, and the measuring techniques, etc., were similar to those reported earlier (3). Temperatures were controlled and measured with a precision of ± 0.1 °C.

Results and Discussion

The density and equivalent volume (V_e) data for all the mixtures studied are presented in Table I. The temperature dependence of density and equivalent volumes could be described by linear equations of the type

$$\rho(\text{g cm}^{-3}) = \alpha - \beta t$$
$$V_{\text{e}}(\text{cm}^{3} \text{ equiv}^{-1}) = A + B$$

The constants α , β and A, B are the characteristic of the composition. These coefficients, recorded in Table II, were employed in computing the density/equivalent volume at certain temperatures of interest. The equivalent volume, of 69.45 cm³ equiv⁻¹, for molten CD(NO₃)₂·4H₂O at 75 °C obtained in this study is slightly higher than the value 68.22 cm³ equiv⁻¹ reported earlier (*3*) and 68.51 cm³ equiv⁻¹ obtained by Moynihan et al. (*6*). This

Table I. Density a	and Equivalent	Volume Data for	Cd(NO ₂) ₂ ·4H ₂	O-Ni(NO ₂) _{2*6H₂O Mixture}
--------------------	----------------	-----------------	--	---

Mol/equiv % Ni(NO ₃) ₂ •6H ₂ O	Temp, °C	Density, g cm ⁻³	Equiv vol, cm ³ equiv ⁻¹	Mol/equiv, % Ni(NO₃)₂•6H₂O	Temp, °C	Density, g cm ⁻³	Equiv vol, cm ³ equiv ⁻¹
0.0	41.4	2.2579	68.29	29.1	38.0	2.1420	70.77
	45.5	2.2546	68.39		44 0	2,1356	70.99
	50.0	2.2493	68,55		50.0	2 1293	71.20
	55.0	2.2433	68.74		56.0	2.1237	71.38
	60.0	2.2380	68.90		62.0	2,1165	71.63
	65.0	2.2314	69.10		67.0	2.1115	71.80
	70.0	2.2255	69.29		73.0	2,1053	72.01
	76.3	2.2184	69.51		81.0	2 0958	72.33
	80.7	2.2132	69.67	40.0	30.0	2 0943	71.96
9.8	45.5	2,2380	68.52		31.0	2 0926	72.01
	50.0	2.2313	68.73		36.0	2 0874	72 19
	55.0	2.2247	68.93		410	2.0014	72.39
	60.0	2.2187	69.12		46.0	2.0018	72.56
	65.0	2.2127	69.31		510	2.0700	72.73
	70.0	2,2062	69.51		56.0	2.0710	72.91
	76.3	2,1991	69.74		61.0	2.0070	73 10
	80.7	2,1938	69.91		66.0	2.0010	73.29
19.4	28.0	2.2162	68.81		76.0	2.0001	73.66
	30.5	2.2136	68.89		81.0	2 0399	73.88
	33.8	2 2096	69.02		01.0	2.0000	10.00
	38.7	2 2037	69.20				
	43.5	2 1985	69.36				
	49.0	2.1926	69.55				
	53.1	2.1874	69.72				
	58.5	2.1816	69.90				
	64.3	2.1752	70.11				
	70.0	2.1688	70.31				
	76.0	2.1625	70.52				

Mol/equiv % Ni(NO ₃)2•6H ₂ O	fol/equiv % Temp, Density, Equiv $(NO_3)_2$ -6H ₂ O °C g cm ⁻³ cm ³ ec		Equiv vol, cm ³ equiv ⁻¹	Mol/equiv, % Ni(NO ₃)₂•6H₂O	Temp, °C	Density, g cm ⁻³	Equiv vol, cm ³ equiv ⁻¹	
58.8	35.5	2.0265	73.52	77.2	44.0	1.9353	76.16	
	40.0	2.0215	73.71		50.0	1.9290	76.41	
	45.0	2.0160	73.91		56.0	1.9227	76.66	
	50.0	2.0105	74.11		62.0	1.9164	76.91	
	55.0	2.0050	74.31		67.0	1.9112	77.12	
	61.0	1.9984	74.56		73.0	1.9053	77.36	
	67.0	1.9919	74.80		81.0	1.8969	77.70	
	73.9	1.9844	75.08	79.5	33.5	1.9103	77.05	
	78.8	1.9791	75.29		37.5	1.9063	77.22	
	84.7	1.9727	75.53		41.6	1.9023	77.38	
69.5	33.5	1.9892	74.45		46.5	1.8978	77.56	
	37.5	1.9859	74.57		51.2	1.8933	77.75	
	41.6	1.9816	74.74		54.7	1.8905	77.86	
	46.5	1.9762	74.94		59.5	1.8860	78.05	
	51.2	1.9708	75.15		67.0	1.8794	78.32	
	54.7	1.9670	75.29		75.5	1.8701	78,71	
	59.5	1.9628	75.45		81.5	1.8635	78.99	
	67.0	1.9549	75.76					
	75.5	1.9454	76.13					
	81.5	1,9392	76.37					

Table II. Density-Temperature and Equivalent Volume-Temperature Equations for Cd(NO₃)₂·4H₂O-Ni(NO₃)₂·6H₂O Mixtures

Equiv %	Temp range,	Data	ρ (g cm ⁻³)	$= \alpha - \beta t$		V _e (cm ³ equiv	(-1) = A + Bt		V _e (75 °C),
Ni(NO ₃) ₂ •6H ₂ O	°C	points	α	$10^3 \beta$	SE.	A	10 ² B	SE.	cm ³ equiv ⁻¹
0.00	41-80	9	2.3068	1.159	0.0005	66.77	3.58	0.02	69.45
9.8	45-80	8	2.2936	1.242	0.0005	66.77	3.90	0.01	69.69
19.4	28-76	11	2.2475	1.123	0.0003	67.81	3.58	0.01	70.50
29.1	38-81	8	2.1827	1.065	0.0004	69.40	3.59	0.02	72.83
40.0	30-81	11	2.1252	1.048	0.0003	70.85	3.70	0.01	73.62
58.8	35-85	10	2.0652	1.093	0.0001	72.07	4.08	0.004	75.13
69.5	33-81	10	2.0249	1.051	0.0004	73.07	4.04	0.02	76.10
77.2	44-81	7	1.9808	1.037	0.0001	74.33	4.15	0.003	77.45
79.5	33-81	10	1.9424	0.957	0.0006	75.72	3.96	0.03	78.69
100.0	_			_		_		_	82.79ª

Table I (continued)

Figure 1. Variation of equivalent volume (75 °C) with mole fraction of $Ni(NO_3)_2 \cdot 6H_2O$ for the Cd(NO_3)₂ \cdot 4H_2O - Ni(NO_3)₂ \cdot 6H_2O system.

could have resulted from small differences in the water content of the salts used.

The equivalent volume-equivalent fraction plots were drawn with the aid of previously reported (4) values for the equivalent volumes of Ni(NO₃)₂•6H₂O. These appear to be significant in view of the observed negative deviations from the additive values. Small negative deviations (0.2–0.3% at $x'_{Cd^{2+}} = 0.5$) in the equivalent volumes of Ca(NO₃)₂·4.09H₂O + Cd(NO₃)₂·4.07H₂O mixtures have also been reported by Moynihan et al. (6). It is of interest that the V_{e} -composition (mole fraction Ni(NO₃)₂·6H₂O) plot (shown for 75 °C in Figure 1) shows "breaks" around 30 and 80 mol % of nickel nitrate hexahydrate. Near additive values at 30 and 80 mol % might be a reflection of the changes in the geometrical arrangement (tetrahedral \rightleftharpoons octahedral) of the water molecules present in the first coordination of the two cations. However, further investigation of these systems is needed to obtain additional, direct evidences, for describing these pecularities in terms of structural transformations or hydration/dehydration equilbria existing in such mixed hydrated melts.

Acknowledgment

The author wish to thank Mr. Ranjit Kumar for his help during experimentation.

Literature Cited

- (1) Braunstein, J., Orr, L., McDonald, W., J. Chem. Eng. Data, 12, 415
- (1967). Husband, L. J. B., J. Sci. Instrum., 35, 300 (1958). (2)
- Jain, S. K., J. Chem. Eng. Data, 18, 397 (1973). (3)
- (4)
- Jain, S. K., *J. Chem. Eng. Data*, in press. Jain, S. K., Jindal, H. L., Kulshrestha, N. P., *J. Chem. Eng. Data*, in press. Moynihan, C. T., Smalley, C. R., Angell, C. A., Sare, E. J., *J. Phys. Chem.*, (5) (6)73, 2287 (1969)
- (7) Sare, E. J., Angell, C. A., J. Soln. Chem., 2, 53 (1973).

Received for review March 11, 1977. Accepted July 22, 1977.