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Figure 4. Extrapolation of vapor-pressure data for anthracene at 
near-ambient temperatures to the normal boiling point, by using the 
SWAP method ( f m P  = 216.3 'C; P(sat),, = 33.4 torr: F A  = 1.0; F, 
= F, = 0.0). 

average error in estimating T,,, is 5.2 OC, or 11.1 % in pressure. 
For extrapolation of solid data to the normal boiling point, the 

melting point temperature must be known. However, the SWAP 
method is not highly sensitive to small errors in melting point 
temperatures. For anthracene, if the melting point temperature 
used is in error by f 10 OC, the subsequent error in predicting 
T760 is only f4.7 OC. 

Conclusions 

The experimental technique used here yields reliable va- 
por-pressure data near ambient temperatures. Since the 
experiment is performed at convenient temperatures and 
pressures, it is simple to operate and provides good-quality data 
easily and rapidly. Using the SWAP method, we estimate vapor 
pressures for high-molecular-weight hydrocarbons in the range 

1 O3 torr from experimental data at near-ambient tem- 
perature for both solids and liquids. 
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temperature, OC 
temperature, K 
mole fraction in condensed phase 
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@ fugacity coefficient 
Y activity coefficient 
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mP melting point 
0.01, 

10, 
760 

at pressures of lo-', 10, and 760 torr, respectively 

Superscripts 
C condensed phase 

V vapor phase 
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Use of Rational Functions for Representing Data 

Michael B. King* and Nat M. Queen 
Departments of Chemical Engineering and Mathematical Physics, University of Birmingham, Birmingham, B 15 ZTT, England 

The relative merits of polynomials and rational functions 
for the representation of data are illustrated by means of 
various fits to typical sets of physical data by using these 
two types of parameterization. In  many situations ratlonal 
functions provlde superior fits with the same number of 
adjustable parameters (or flts with fewer parameters for 
the same degree of precision), greater stability of 
extrapolation to points outside the fitted range, and 
greater versatility in approximating dlverse functional 
forms, including those showing slngularltles. A useful 
algorithm for the computation of ratlonal flts is brlefly 

One popular method for representing data is to use a simple 
polynomial. For example Prausnitz (6) represents Henry's 
constants as a function of the variable p = 1000 /T ,  where T 
is the temperature in K, in the form 

In H =  a, + a,P + . . . + aMPM (1 )  

where M,  in some instances, is as high as 5 .  Many other 
examples of this approach can be found in the chemical en- 
gineering literature. 

Polynomial parameterizations have certain serious theoretical 
limitations ( 1 ) .  For example, a power-series expansion for a 

discussed. given function has a radius of convergence which is equal to 
the distance from the point of expansion to the nearest singularity -~ 

'TO whom correspondence should be addressed at the Department of Chemical in the function, SO even the exact power series, if it were known, 
Engineering. would be completely useless beyond that point. These theo- 
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Table 1. Values of x 2  ‘Obtained from Linear Polynomial and 
Rational Fits to  Data om Henry’s Constants (6) for a Number of 
Binary Systemsa 

polynomial fit rational fit 

system order X2 order X 2  

H,-cH4 [ 5 ,  01 2.7 X [2, 11 3.5 X 
H2-C2H4 [ 5 , 0 ]  4.2 X [2, 11 1.9 X 

H,C,H, [ 5 , 0 1  2.3 x 10-3 [2 ,11  4.9 x 10-4 
H,C,H,~  [ 5 ,  01 6.0 x 10 .~  [2 ,  11 1.1 x 
H,-C,H,C [ 7 , 0 1  1.8 x 1 0 - 2  [2 ,11  5.9 x 
H,-~-c,H,, [5 ,01  7.8 x 10-4 [2,  11 1.2 x 10-4 
N,-C,H, [ 4 , 0 1  6.0 x 10-4 [ 2 , 1 1  1.2 x 10 .~  

a The data are quoted to three significant figures and the x 2  val- 
ues obtained with the [2,  11 rational fit are in each case consistent 
with this tabulation accuracy. 160-500 K only. 160-620 K.  

retical weaknesses can be reflected in practice when real data 
are to be fitted since these data may well follow physical laws 
which are consistent with the appearance of singularities not 
far outside the range of interest. 

I t  is the purpose of this paper to point out that in many 
situations rational functions (Le., a ratio of two polynomials) can 
provide a better fit to data than is given by a simple polynomial 
with the same number of adjustable coefficients. For a fit of 
specified accuracy, it is rare for a rational function to require 
more adjustable coefficients than the corresponding simple 
polynomial; usually it is superior in this regard. This economy 
in coefficients can be useful from the point of view of data 
storage. Another advantage in the use of rational functions is 
that extrapolations tend to be more reliable; this probably arises 
from the greater versatility of rational functions in approximating 
the behavior of diverse functional forms without resort to the 
use of high powers in the independent variable. The properties 
of certain special forms of rational function, called Pad6 ap- 
proximants, are well established and have recently been widely 
utilized in theoretical and experimental physics (I). Pad6 
approximants are rational functions which either (I) give an exact 
fit to the value of a rnathematical function and to its derivatives 
up to a specified order at a single point or (11) give an exact 
fit to the values of such a function at a specified set of points. 
Convenient algorithms have been developed which can be used 
to obtain the coefficients in the Pad6 functions from the values 
of the function andlor its derivatives in these two cases. 

I t  has been found that Pad6 approximants have remarkable 
convergence properties and are, to a great extent, free from 
the limitations characteristic of polynomial approximations. 
These properties have been utilized in many situations, just one 
example being in the evaluation of the critical temperature and 
exponent from the k ing model for ferromagnets (8). 

The situation considered in the present paper differs from that 
in standard Pad6 approximant theory in that real data, rather 
than the values of a mathematical function, are to be fitted. The 
data points are subject to experimental uncertainties so, instead 
of seeking an exact fit to specified points, a least-squares 
technique (3) has been used to obtain a best overall fit. In 
contrast to the Pad6 approximant case, the number of fitted 

parameters is normally much less than the number of data 
points. 

Adopting the standard terminology used in the theory of Pad6 
approximants, we say that the rational function 

a,, + a , x +  ... + a & ’  

1 + b , x +  ... + b,x” 
F ( x )  = (2) 

is of order [ M, N]. The special case [ M, 01 corresponds to 
a polynomial of degree M. By convention, the constant term 
in the denominator is taken to be equal to unity without loss of 
generality. There is no strict rule for selecting the optimum 
values of Mand Nfor a fit with a specified number of coeffi- 
cients, but in practice the best results are usually achieved with 
M E  N.  

In  order to illustrate the relative merits of linear polynomials 
(N = 0) and rational functions (M N N) for fitting data, we have 
fitted various typical sets of physical data by using these two 
types of parameterization. In both cases the number of free 
parameters was increased until the fit was generally within the 
level of accuracy of the experimental data. The problem of 
finding the coefficients in a linear polynomial which give a best 
fit to a given set of data is straightforward, and the solution is 
necessarily unique. However, greater care is required in de- 
termining the least-squares coefficients for rational functions, 
since functional forms which are nonlinear in the parameters 
can lead to more than one minimum in parameter space. This 
difficulty can readily be overcome by inserting a reasonably 
accurate first approximation for the coefficients into the min- 
imization program. The first approximation values may then be 
improved upon to give a best fit to the data by using one of 
several standard techniques which are available. The procedure 
described in ref 3 was used in the present work. I t  was found 
convenient to obtain the first approximation values for the 
coefficients by using the u algorithm ( 4 ) ,  which is described in 
the Appendix. This algorithm, which is sufficiently simple for 
computations on a hand-held calculator, generates the rational 
function which exactly fits a specified number of data points. 
I f  L such points are chosen, the algorithm generates a rational 
function of order [ ( L / 2 ) ,  (L/2) - I] for even Land [ ( L  - 1)/2, 
( L  - 1)/2] for odd L .  I f  these selected points are reasonably 
accurate and span the entire range of the independent variable 
under consideration, the set of coefficients obtained in this way 
is very useful as first approximation values for insertion in the 
minimization program. (Where checks were made, it was found 
that different sets of starting points always led to the same 
least-squares solution.) 

The resutts of fitting some typical sets of physical data by using 
both linear polynomials and rational functions are summarized 
in Tables I-IV, Table I being for Henry’s constant as a function 
of temperature for a number of systems (6). In  each case In 
His parameterized as a function of the temperature-dependent 
variable @, as in eq 1, and the minimum is found for 

x 2  = (In y,(fa) - In /jii(ex~t’))2 

I 

where Hics and Hii(exptl) are the fitted and experimental values 

Table 11. Values of )i:’ and Also Extrapolated Values of the Critical Density Obtained from Linear Polynomial and Rational Fits to  Density 
Data ( 7 )  for a Number of mhlkanes“ - ___- 

[4 ,01 12.11 -~ ____ --___--- [33 01 
critical 

density,b critical 
substance iemu range. “ C  d m L 3  temu.b “ C  densityC X2 densityC X 2  densityC X 2  -. 1 I _ I  .- 

n-hexane -80 to  t 1 3 0  0.23 234.2 0.40 7.5 X 10.’ 0.36 6.4 X 0.26 6.7 X 10.’ 
n-heptane -80 to  +150 0.23 267.0 0.41 8.0 x lo-’ 0.39 1.6 x 10.’ 0.24 9.1 x 1 0 ~ ’  
n-octane -50 to  +150 0.23 295.6 0.42 9.0 X lo-* 0.41 4.1 X lo-* 0.28 9.4 X 
n-decane -20 to +220 0.24 344.4 0.40 5.8 x 0.37 3.6 x 0.29 2.8 x 10.’ 
ndodecane -10 to  1-250 0.24 384.55 0.40 7.4 x 10.’ 0.37 4.1 x lo-* 0.29 3.1 X 

a The data are given with a tabulation precision corresponding to x2 - 5 x lo-*. Reference 7 .  Extrapolated critical density, &/mL3 
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Table 111. Values of xz Obtained from Linear Polynomial and 
Rational Fits for Compressibility Factor Data as a Function of 
Density for Ethane at a Series of Temperature6 

values of x2 
x lo8 

[ 4 , 0 ]  [2 ,21 
valuesofX2 x IO8 

t ,  "C 14, 01 fit 1 2 . 2 1 f i t  t . " C  fit fit 

50  1.2 x 105 
75 3.1 x 104 

100 9.7 x 103 
125 4.5 x 103 
150 1.20X 10' 
175 572 
200 147 
225 79 

0.5 X 10' 250 47 14 
0.9 X l o4  275 30 13  
1.2 X 10' 300 26 17 
0.4 X l o 3  325 25 21 
0.09 X l o3  350 28 25 
41 
17 
16 

a Reference 2. At temperatures of 175 "C  and upward the x2 
values obtained from the [2,  21 rational fit are consistent with the 
accuracy claimed for the data. The rational function gives a closer 
fit over the entire range than does the linear polynomial with the 
Same number of coefficients, its superiority being particularly mark- 
ed between 100 and 225 "C.  

Table IV. Parameters in the Equation 0 s  = (a,, + a ,X  t a , X 2 ) / ( l  t 
b , X )  ( X  = ((T, - T ) / l O O O ) f i )  for the Saturated Gas and Liquid 
Densities of Ethanea 

parameters liquid gas 

a0 6.801 6.801 

0 2  -2.174 34.028 

P 0.33574 0.3700 

a ,  13.733 -30.154 

bl  -0.5763 -1.2004 

TC 
p c  

305.35 
6.801 

a T i s  expressed in K and p s  in mol Data from ref 2 were 
fitted in the range 248-305.25 K. In constructing this table T, and 
4 were adjusted until a best fit was obtained to both the liquid and 
vapor density curves with a common value for p , .  The critical con- 
stants obtained are very close to, though not exactly equal to,  
those recorded in ref 2. 

of Hat  the ith data point. I t  can be seen from the table that 
the value of x2 for the [2, 13 rational fit (with four adjustable 
parameters) is comparable with, and often smaller than, the 
value of x2  for a polynomial fit with a larger number of pa- 
rameters, leading to a more economical, and often more ac- 
curate, representation of the data. The superiority of the rational 
fit is particularly striking in the case of the H2/C3H8 system. 

Other examples of cases in which an economy in the number 
of coefficients can be achieved by the use of a rational function 
are provided in Table 11, where saturated liquid density is fitted 
as a function of temperature, and in Table 111, where the 
compressibility factor of ethane is fitted as a function of fluid 
density at a series of temperatures. The liquid densities in Table 
I1 were fitted over the bottom two-thirds of the full temperature 
range for which data were available (7).  Usually this gave a 
fitted range of about 200 OC. I t  may be seen that the [2, 11 
fit represents the data over this range to within the four-figure 
accuracy to which it was given. The [4, 01 fit (which involves 
the use of an extra coefficient) is required to achieve comparable 
precision by using a linear polynomial. The result of calculating 
a density at the critical temperature by using both the rational 
and linear parameterizations with coefficients obtained by fitting 
the data at the lower temperatures is also shown. The ex- 
trapolated density obtained from the [2, 11 fit is in every case 
substantially more accurate than that obtained from either of 
the linear polynomial fits tested. I t  should be pointed out that 
neither the rational function nor the linear polynomial in the forms 
given can provide an exact representation of density behavior 
at the critical point, since neither can exactly reproduce the 

Table V. Array for Use with the u Algorithm (See Appendix) 

" . ( I )  

critical condition ((dT/dpS)T,Tc = 0 for finite ps (cf. Table IV)). 
Nevertheless the degree of approximation attainable by using 
a rational function is much closer. This is in accord with ex- 
perience with Pad6 approximants; it is well-known that these 
can approximate the effects of various types of singularity by 
means of poles ( 1).  I n  the cases analyzed in Table I1 a pole 
always occurred just above the critical temperature, with a zero 
close by. A fit with the correct analytical structure at the critical 
point can be obtained by representing ps  either as a rational 
function or as a linear polynomial in the variable (Tc  - (Table 
IV). However, this procedure is advantageous only when 
accurate data exist close to the critical point. 

Table I11 shows the results of fitting the compressibility factor 
Z for ethane as a function of density (2) at each of a set of 
temperatures. I t  is apparent that the [2, 21 rational function 

1 + a l p  + a2p2 

1 + b l p  + b*p2 
Z =  

gives a better fit for these data than does the linear [4, 01 
polynomial with the same number of coefficients. In this context 
it is of interest to note that equations of state of the 
"Redlich-Kwong" type are of the [2, 21 form, though with 
restrictions on the coefficients. The familiar virial series in the 
density is a linear polynomial. 

In conclusion, it can be claimed that some of the advantages 
which can result from the use of rational functions rather than 
linear polynomials for fitting data are apparent in the above 
examples. Principally these advantages are (1) the possibility 
of fitting data to a given degree of precision by using a smaller 
number of coefficients (2) greater stability of extrapolation, and 
(3) greater versatility in approximating diverse functional forms, 
including those showing singularities. Although there are some 
drawbacks in the use of rational functions, for example, inte- 
gration and differentiation are not so straightforward, the ad- 
vantages listed above suggest that the possibility of using a 
rational function as a possible alternative to the linear polynomial 
should always be considered when fitting data. 

Appendix 

Suppose that a function F(x) takes the values Fk = F ( X k )  at 
some set of n points x k  ( k  = 1, ..., n) .  The Y algorithm for 
constructing a rational function R(x) which takes each of the 
values R ( X k )  = Fk is as follows. 

We first define the quantities Y k " )  = Fk and list them as column 
1 of an array (see Table V). In general, column m of the array 
consists of the entries urn(") to u ~ ( ~ ) ,  which are determined in 
terms of the entries of the preceding column by the recursion 
formula 

U k ( m )  = X k  - Xm-1 

u k ( m - l )  - um- , (m- l )  

Having constructed this array, and in particular having obtained 
the diagonal entries u,(') to u,("), we give the required rational 
function R(x) by the continued fraction 

x - X I  
R(x) = u ,  ( I  ) 
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Surface Tensions of Binary Liquid Mixtures of Some Polar and 
Nonpolar Liquids with Dimethyl Sulfoxide (Me,SO) 

D. K. Agarwal," Ram Gopal, and Sushma Agarwal 

Chemistry Department, Luckno w University, Lucknow, India 

The surface tensions of binary liquid mixtures of dimethyl 
sulfoxide with chloroform, carbon tetrachloride, benzene, 
toluene, Chlorobenzene, bromobenrene, and nitrobenzene 
have been measured at 30, 40, and 50 OC with an 
improved capillary-rise method. The excess surface 
tensions at different concentrations of these mixtures 
were calculated at equimolar concentrations, from surface 
tension data. Except for the dimethyl sulfoxide + 
nitrobenzene system, ail other mixtures have negative 
excess surface tensions which indicate a strong attractive 
interaction in these systems. For the dimethyl sulfoxide + 
nitrobenzene system, excess surface tensions are 
positive. 

Introduction 

Molecular interactions in binary liquid mixtures have been 
studied by many workers using surface tension data ( 4 ,  6, 8). 
Me2S0 is a solvent of recent interest because it is highly polar 
(p  = 4.3 D) (2) which should promote strong dipole-dipole 
interaction. I t  is a solvent of medium dielectric constant oc 

48.9) (2) and has no significant hydrogen bonding ( 5 ) .  I t  is 
therefore a little surprising that only a few studies on surface 
tensions of binary liquid mixtures involving the Me,SO as one 
of the two components have been reported ( 7 ,  9). Clever and 
Sneed ( 7 )  studied the surface tensions of the mixtures of 
acetone and Me,SO. These studies appear to be sketchy and 
a detailed investigation appears very desirable. I t  seems, 
therefore, fruitful to measure surface tensions of mixtures of 
some polar and nonpolar liquids such as chloroform, carbon 
tetrachloride, benzene, toluene, chlorobenzene, bromobenzene, 
and nitrobenzene with Me2S0 at 30, 40, and 50 OC. 

Experimental Section 

Me2S0 (Fluka purum) was dried over freshly ignited quicklime 
and was repeatedly distilled at reduced pressure until the 
electrical conductivity of the purified samples was reduced to 

a-'. The purified sample was kept in a drybox until used. 
Chloroform, carbon tetrachloride, benzene, toluene, chlo- 

robenzene, bromobenzene and nitrobenzene were purified as 
per standard procedures ( 7 7). The purity of the purified samples 
was checked by measuring densities, which were found to agree 
closely with the corresponding values given in the literature ( 70). 

The solutions were made on a weight-to-weight ratio. Surface 
tensions of binary mixtures were measured with the help of an 
improved differential capillary-rise instrument shown in Figure 
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Table I. Density and Surface Tensions of Me2S0 at 
Various Temperatures - 

density, g/mL surface tension, dyn/cm 
temp, 

'C exptl lit. ( I )  exptl lit. (I) 
30 1.0914 1.0913 42.41 42.41 
40 1.0816 1.0816 41.17 41.17 
50 1.0723 1.0721 40.05 40.05 

1. Two uniform-bore Pyrex glass capillaries of considerable 
different radii were fixed in a standard joint, Pyrex glass cell 
(specially designed for this purpose), which held the binary 
mixture. Uniformity of the bore of the capillary was checked 
by measuring the length and weight of the mercury thread in 
different parts of the capillary. The glass cell was filled with the 
binary mixture and calibrated capillaries were fixed at its mouth 
and the whole setup was placed in a thermostat running at the 
desired temperature. The variation in the temperature of the 
thermostat was fO.O1 in the lower and f0.02 in the higher 
temperature range. The rise in the height of the liquid column 
in the capillaries was measured with a cathetometer (least count 
= 0.001 cm). The angle of contact of binary mixture and glass 
was taken as zero. Densities of the mixtures were measured 
using a calibrated dilatometer. A precaution taken to keep the 
solutions and solvent free from moisture as much as possible 
was to pass purified dry nitrogen through the empty part of the 
cell from time to time. The difference in the height of the liquids 
in two capillaries was noted and the surface tensions were 
calculated using the formula 

Y'/Y = (AhYAh)(P'/P) 

where y' is the surface tension of the binary mixtures of density 
p' and giving difference in height Ah';  y, p,  and Ah are the 
corresponding values for the Me2S0 (used as a reference liquid). 

Results 

Accuracy of the measurements was checked by determining 
densities and surface tensions of Me,SO at different temper- 
atures. These values are compared with the literature values 
in Table I and are found to be in good agreement. 

The surface tensions of binary liquid mixtures at 30, 40, and 
50 OC are given in Table 11. 

Dlscussion 

( i )  Variation of Suriace Tensions wifh Mole Fraction. From 
the data given in Table 11, y' vs. x A  curves were drawn. Those 
plots only for the dimethyl sulfoxide + carbon tetrachloride and 
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