Isothermal Vapor-Liquid Equilibrium of Binary and Ternary Systems Composed of Heavy Aromatic Compounds

Ajay Gupta, Frank R. Groves, Jr.,* and Edward McLaughlin

Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803

Isothermal vapor-liquid equilibrium (VLE) data for four binary and eight ternary systems composed of polynuclear aromatic compounds have been measured at 170 and 190 °C using a dynamic equilibrium still. Binary VLE data are correlated by two different liquid-phase activity coefficient models, i.e., UNIQUAC and Margules using the maximum likelihood method to determine the binary interaction parameters. The binary interaction parameters obtained from this and our previous studies are used to predict the VLE for ternary mixtures using the same two models. Either of the models can predict the bubble point pressure within 10 mmHg and vapor-phase mole fractions within 0.03 mole fraction. The measured VLE data for the ternary systems are also compared with those predicted using Scatchard-Hildebrand regular solution theory. The regular solution theory predicts the bubble point pressures within an average absolute difference of 6 mmHg and vapor-phase mole fractions within 0.03 mole fraction.

Introduction

Liquid hydrocarbons derived from coal provide an alternative to petroleum as a source of feedstocks for refineries and petrochemical plants. These liquid mixtures contain high molecular weight aromatic compounds, and vapor-liquid equilibrium (VLE) data for such compounds are relatively scarce, especially at high temperatures (1). The purpose of this research is to determine vapor-liquid equilibrium data for ternary systems containing heavy aromatic compounds and to test the ability of various thermodynamic activity coefficient models derived from binary data to predict the ternary results. These data are useful in the design of coal liquefaction processes and also in the processing of heavy crude oil or tar sands.

This work reports isothermal VLE data for four binary and eight ternary systems at 170 and 190 °C. The compounds studied are *cis*-decalin, tetralin, 1-methylnaphthalene, naphthalene, biphenyl, acenaphthene, dibenzofuran, and phenanthrene. VLE for systems containing these compounds are difficult to study since some of the compounds are solid at room temperature (2). This work is a continuation of our studies on the vapor-liquid equilibrium of heavy aromatic compounds (3). We are not aware of any VLE data in the literature for the systems presented in this study.

Experimental Section

All the chemicals used in this study were purchased from Aldrich Chemical Co. The solid and liquid samples were further purified as described in ref 3. The final purities of the compounds as obtained by gas chromatography (GC) (area %) were as follows: 99.72%, *cis*-decalin; 99.69%, tetralin; 99.85%, 1-methylnaphthalene; 99.89%, naphthalene; 99.97%, biphenyl; 99.58%, acenaphthene; 99.78%, dibenzofuran; and 99.13%, phenanthrene.

Vapor-liquid equilibria for binary and ternary systems containing these compounds were measured using a recirculating still supplied by Fisher of FRG. The operation of this still has

Table I.	Vapor 1	Pressure	P°	Data	of	1-Methyln	aphthal	ene
as a Fun	ction of	Tempera	itui	re t		-	_	

$t/^{\circ}C$	P°/mmHg	t/°C	P°/mmHg	t/°C	P°/mmHg
194.6	222	180.1	146	171.7	113
192.0	206	178.0	137	170.1	107
190.0	195	176.4	131	169.5	105
187.3	180	174.5	123	167.6	99
183.6	162	172.8	117	165.3	92
	Ant	oine Con	stants, Equati	on 1	
	A = 12.7585	B =	-2015.13	C = 79	9.706

been described previously (2-4). Vapor and liquid were brought to equilibrium in the still at a measured temperature and pressure. Vapor and liquid samples were analyzed by gas chromatography using a flame ionization detector. The GC column was a 50% phenyl methyl silicone glass capillary column with 0.53-mm i.d., $2-\mu$ m coating, and 10-m length, supplied by Hewlett-Packard.

The accuracies in our temperature and pressure measurements are ± 0.1 °C and ± 1.0 mmHg, respectively. The accuracy in composition analysis is ± 0.0025 mole fraction (3).

Results and Discussion

Table I shows measured vapor pressure data for 1methylnaphthalene. The vapor pressures of other compounds used in this study have already been measured and are reported in our previous study (3). These vapor pressure, P_i° , data were regressed using a three-constant Antoine equation of the type

$$\ln (P_i^{\circ} / \text{mmHg}) = A + B / [(t / {}^{\circ}\text{C}) + C]$$
(1)

where t is the temperature. The three constants for 1methylnaphthalene are also reported in Table I. In the range of temperature studied, experimental vapor pressure data agreed with the literature (5) values within 0.5%.

Analysis of Data for the Binary Mixtures. Table II presents the binary VLE data for four systems at 190 °C. Figure 1 shows data for the tetralin-1-methylnaphthalene system as an illustration.

The binary VLE data were first tested for thermodynamic consistency using the method of Fredenslund (6). A four-parameter Legendre polynomial was used for the excess Gibbs free energy. The measured binary data were considered to be consistent when the absolute difference between calculated and measured mole fractions of component 1 in the vapor phase was less than 0.01. The results of this test are shown in Table III. It is clear from this table that the data of this study are thermodynamically consistent.

The binary systems do not deviate greatly from ideal solution behavior. Raoult's law predicts pressure within 12 mmHg and vapor composition within 0.02 mole fraction. To seek a closer fit, the binary data were regressed using the maximum likelihood procedure of Prausnitz et al. (7) to determine the binary parameters A_{12} and A_{21} , for two different thermodynamic liquid-phase activity coefficient models, i.e., UNIQUAC (8) and Margules. The details of this regression procedure were presented in our previous paper (3). The UNIQUAC equation was used because it has a wide range of applicability. The Margules equation was used because it is a simple empirical model.

^{*} To whom correspondence should be addressed.

Table II. Vapor-Liquid Equilibrium Data for Binary Systems: Pressure P, Temperature T, Liquid-Phase Mole Fraction x_1 , and Vapor-Phase Mole Fraction y_1

D	-		* 1
P/mmHg	t/°C	\boldsymbol{x}_1	<i>y</i> ₁
Tetrali	n (1)-1-Meth	vlnaphthalene	e (2)
495	190.0	0.9862	0.9921
468	190.0	0.9029	0.9612
435	190.0	0.7847	0.9067
408	190.0	0.6916	0.8520
375	190.0	0.5849	0.7816
336	190.0	0.4539	0.6768
300	190.0	0.3402	0.5670
269	190.1	0.2371	0.4455
250	190.0	0.1739	0.3562
225	190.0	0.0900	0.2097
203	190.0	0.0261	0.0554
1-Methyl	naphthalene	(1)-Naphthale	ene (2)
199	190.0	0.9851	0.9657
226	189.9	0.8811	0.7633
240	190.0	0.8224	0.6790
259	190.0	0.7486	0.5669
200	190.0	0.6599	0.4690
201	190.0	0.5978	0.4028
201	100.0	0.0010	0.9150
220	100.1	0.3610	0.9100
347	190.0	0.3010	0.2410
047	130.1	0.2004	0.1704
1-Meth	ylnaphthalen	e (1)-Bipheny	71 (2)
194	190.0	0.9670	0.9730
191	190.0	0.8814	0.9004
188	190.0	0.7968	0.8297
186	190.0	0.7182	0.7632
182	190.0	0.6282	0.6886
179	190.0	0.5416	0.6145
173	190.0	0.4227	0.5013
168	190.0	0.3321	0.4125
161	190.0	0.2268	0.2956
156	190.0	0.1714	0.2222
1-Methyln	aphthalene (1)-Acenaphth	ene (3)
193	190.0	0.9795	0.9857
184	190.0	0.9058	0.9539
177	190.0	0.8334	0.9183
168	190.0	0.7480	0.8779
157	190.0	0.6403	0.8101
148	190.0	0.5518	0.7490
138	190.0	0.4601	0.6789
125	190.0	0.3410	0.5655
110	1 9 0.0	0.2261	0.4093
101	190.0	0.1677	0.3001
0.0300		<u> </u>	
0.0250 -			
0.0200			
EXPI			
- 0.0150 - E		/	

To determine binary parameters using the maximum likelihood method, vapor-phase nonidealities were obtained by using second virial coefficients as given by Hayden and O'Connell (9). Liquid molar volumes were calculated using the modified Rackett equation, as described in ref 7. Critical constants were

Table III. Results of Thermodynamic Consistency Test for Systems Involving 1-Methylnaphthalene at 190 $^{\circ}\mathrm{C}$

system	RMSD(P) ^a / mmHg	$RMSD(\gamma_1)^{\alpha}$
tetralin (1)-1-methylnaphthalene (2)	0.66	0.0062
1-methylnaphthalene (1)- naphthalene (2)	0.50	0.0070
1-methylnaphthalene (1)- biphenyl (2)	0.26	0.0068
1-methylnaphthalene (1)- acenaphthene (2)	0.28	0.0098

^aRoot mean square deviations: RMSD(P) = $[(1/N)\sum_{i=1}^{N}(P_{calc} - P_{expl})^2]^{1/2}$; RMSD(y₁) = $[(1/N)\sum_{i=1}^{N}(y_{1,calc} - y_{1,expl})^2]^{1/2}$.

taken from the literature whenever available; otherwise they were calculated from empirical correlations (*10*). These thermodynamic properties are reported in our previous paper (*3*) for all the compounds used in this study except for 1-methylnaphthalene. The properties for 1-methylnaphthalene used in the VLE data analysis were critical temperature $t_c = 498.15$ °C (*12*), critical pressure $P_c = 36.0$ bar (*12*), critical volume $V_c = 462.0$ cm³ mol⁻¹ (*12*), Rackett parameter ZRA = 0.2634 (*14*), radius of gyration $R_d = 4.346$ Å, dipole moment $D_p = 0.5$ D (*12*), UNIQUAC area structure parameter q = 4.001 (*15*), and UNIQUAC volume structure parameter r = 5.716 (*15*).

Table IV reports the binary parameters and the mean deviations between calculated and experimental temperature, pressure, and liquid- and vapor-phase mole fractions for the four systems studied at 190 °C using the maximum likelihood method and the two different models. Each model gives a good fit of the binary data. Absolute average difference (AAD) values obtained for pressure, temperature, and liquid-phase mole fractions are generally within the experimental error, although for one system, i.e., 1-methylnaphthalene–acenaphthene, the AAD in the pressure is greater than expected (1.5 mmHg). The AAD in vapor-phase mole fractions for all four systems were found to be larger than the accuracy of the gas chromatographic analysis. We suspect the error associated with the vapor samples to be higher than for liquid samples because of condensation of the heavy component in the condenser.

Ternary Data. Table V reports ternary VLE data for five compounds, i.e., naphthalene, biphenyl, acenaphthene, dibenzofuran, and phenanthrene with *cis*-decalin and tetralin at 170 °C. Table VI reports ternary VLE data for three compounds, i.e., naphthalene, biphenyl, and acenaphthene with tetralin and 1-methylnaphthalene at 190 °C.

Many researchers in the past have shown that multicomponent vapor-liquid equilibrium data can be predicted using a suitable model for the activity coefficients of the components and binary interaction parameters obtained from the regression of binary data. To test this for our ternary systems containing coal liquid compounds, we used the binary interaction parameters obtained from this study and our previous work (3) to predict the bubble point pressure and vapor-phase mole fractions of components of our ternary systems. The equations used to determine the activity coefficients for any component of the ternary mixtures using the UNIQUAC and Margules models were taken from ref 11.

Table VII lists the average absolute deviations (AADs) between experimental and calculated pressures and vapor-phase mole fractions of components of the ternary mixtures for all eight systems using the UNIQUAC and Margules models for the excess Gibbs free energy. The predictions of bubble point pressure and vapor-phase mole fraction generally agree with experiment within 10 mmHg and 0.03 mole fraction, respectively.

Figure 2 is a comparison of experimental vapor-phase mole fractions of naphthalene with those calculated using parameters from binary data and the UNIQUAC model for the system

Table IV.	Binary	Parameters and	Absolute Average	e Deviations ((AAD) from	Regression	of Binary	VLE Data at 19	0°C
-----------	--------	----------------	------------------	----------------	------------	------------	-----------	----------------	-----

				AA	D		
model	$A_{12}{}^{a}$	$A_{21}{}^{a}$	P/mmHg	t/°C	<i>x</i> ₁	y_1	
		Tetralin (1)-1-	Methylnaphthalene	(2)			
UNIQUAC	976.17	-835.16	0.45	0.01	0.0005	0.0037	
Margules	0.02858	0.04665	0.46	0.01	0.0005	0.0037	
		1-Methylnaphth	alene (1)–Naphthale	ne (2)			
UNIQUAC	48.88	201.01	0.58	0.02	0.0007	0.0044	
Margules	0.25005	0.19759	0.62	0.02	0.0007	0.0048	
		1-Methylnapht	halene (1)-Biphenyl	l (2)			
UNIQUAC	643.84	-470.80	0.53	0.01	0.0003	0.0021	
Margules	0.12582	0.15292	0.59	0.01	0.0003	0.0021	
		1-Methylnaphtha	lene (1)-Acenaphthe	ene (2)			
UNIQUAC	3128.06	-2199.88	1.44	0.02	0.0006	0.0042	
Margules	-0.07796	0.14641	1.38	0.02	0.0006	0.0051	

^a Parameter listed is dimensionless for the Margules model and in joules per mole for the UNIQUAC model.

Table V. Ternary Vapor-Liquid Equilibrium Data: Pressure P, Temperature t, Liquid-Phase Mole Fraction x_i , and Vapor-Phase Mole Fraction y_i with cis-Decalin (1) and Tetralin (2)

P/mmHg	t/°C	x_2	${\mathcal Y}_2$	x_3	${\mathcal Y}_3$	P/mmHg	$t/^{\circ}\mathrm{C}$	x_2	\mathcal{Y}_2	x_3	y_3
					Napht	halene (3)					
397	170.0	0.0375	0.0333	0.0203	0.0183	319	170.0	0.6480	0.5747	0 1 2 3 0	0.0909
393	170.0	0.0966	0.0767	0.0093	0.0063	316	170.0	0 2844	0 2642	0.4233	0.3065
390	170.0	0.0896	0 0704	0.0543	0.0383	306	170.0	0.8142	0.7812	0.4200	0.0000
374	170.0	0.1706	0.1340	0.0040	0.0851	301	160.0	0.0142	0.7012	0.0714	0.0020
362	170.0	0.2067	0.1675	0.1038	0 1337	987	170.0	0.4007	0.00155	0.4000	0.3021
250	170.0	0.2007	0.1075	0.1938	0.1337	201	160.0	0.0972	0.9100	0.0962	0.0764
220	160.0	0.3027	0.2017	0.1920	0.1549	201	109.9	0.3107	0.3327	0.0330	0.4069
000	160.0	0.3002	0.3360	0.2107	0.1001	277	109.0	0.2310	0.2006	0.6410	0.5118
330	109.9	0.4031	0.3979	0.1783	0.1263	271	170.0	0.2918	0.3235	0.6100	0.5007
325	170.0	0.3244	0.2913	0.3475	0.2415	244	170.0	0.1626	0.2154	0.8117	0.7232
321	170.0	0.7242	0.6624	0.0617	0.0490						
					Binh	envl (3)					
399	170.0	0.0436	0.0360	0.0064	0.0026	285	170.0	0.0782	0.0808	0.3899	0 1166
395	170.0	0.0196	0.0165	0.0255	0.0095	275	170.0	0.8235	0.8752	0.0000	0.1100
375	170.1	0.0543	0.0468	0.0200	0.0000	210	170.0	0.0200	0.0102	0.1241	0.0000
267	170.1	0.0040	0.0408	0.0000	0.0200	200	170.1	0.0000	0.1130	0.2200	0.0090
307	170.1	0.0720	0.0000	0.1000	0.0299	209	170.1	0.1000	0.1007	0.4402	0.1380
000	170.0	0.0621	0.0724	0.1472	0.0403	207	170.1	0.0007	0.1015	0.4807	0.1001
300	170.1	0.0702	0.0651	0.1125	0.0243	234	170.1	0.5025	0.6286	0.3789	0.1288
352	170.1	0.1457	0.1273	0.1408	0.0401	221	170.0	0.0676	0.0886	0.6037	0.2190
323	170.1	0.1023	0.0974	0.2561	0.0680	176	170.1	0.4004	0.6678	0.5714	0.2499
298	170.1	0.9435	0.9214	0.0128	0.0104	149	170.0	0.0422	0.0834	0.8154	0.4231
290	170.1	0.2114	0.2169	0.3273	0.0956						
					Acenan	hthene (3)					
396	170.0	0.0215	0.0183	0.0141	0.0018	291	170 1	0 7657	0 7703	0 0989	0.0153
373	170.0	0.0849	0.0761	0.0674	0.0079	201	170.0	0.8956	0.1100	0.0000	0.0105
354	170.0	0 1774	0.1493	0.0014	0.0010	250	170.0	0.0000	0.2003	0.0300	0.0140
204	170.0	0.1774	0.1726	0.0001	0.0100	200	170.0	0.3242	0.3600	0.3733	0.0070
320	170.0	0.2012	0.1720	0.1701	0.0290	200	170.0	0.2904	0.3097	0.4200	0.0811
314	170.0	0.3147	0.2701	0.1900	0.0302	104	170.0	0.3000	0.5039	0.4180	0.0823
304	170.0	0.7040	0.0001	0.0001	0.0133	194	170.0	0.3043	0.5500	0.5032	0.1128
301	170.0	0.4634	0.4000	0.1823	0.0283	100	170.0	0.2044	0.4505	0.6182	0.1610
301	170.0	0.6345	0.6182	0.1201	0.0182	145	170.0	0.2875	0.5840	0.6501	0.1915
295	170.0	0.3552	0.3342	0.2060	0.0383	110	170.0	0.1853	0.5022	0.7748	0.3008
					Dibenz	ofuran (3)					
399	170.0	0.0226	0.0160	0.0108	0.0044	287	170.0	0.6419	0.6587	0.1799	0.0363
385	170.0	0.0460	0.0385	0.0458	0.0121	279	170.0	0 4243	0 4398	0 2963	0.0643
362	170.0	0.0631	0.0545	0.1264	0.0286	272	170.0	0.0999	0 1083	0 4582	0 1008
344	170.0	0.0871	0.0734	0 1844	0.0403	266	170.9	0.8353	0.1000	0.1360	0.1000
343	170.0	0 2305	0.2012	0 1458	0.0307	259	170.0	0.0000	0.04853	0.1300	0.0312
241	170.0	0.2500	0.2012	0.1400	0.0001	200	170.0	0.3000	0.4000	0.5175	0.0070
331	170.3	0.5206	0.4503	0.1100	0.0204	211	170.1	0.0207	0.4770	0.6264	0.1518
202	170.0	0.0200	0.4000	0.1000	0.0228	179	170.1	0.2007	0.3491	0.0204	0.1004
202	170.0	0.5300	0.4200	0.2000	0.0010	116	170.0	0.2104	0.4425	0.0005	0.2004
201	170.0	0.0500	0.0403	0.2280	0.0303	110	170.1	0.1720	0.5601	0.0077	0.3403
					Phenan	threne (3)					
382	170.0	0.0414	0.0343	0.0445	0.0017	277	170.0	0.6521	0.6843	0.1947	0.0068
364	170.0	0.0549	0.0494	0.0970	0.0037	266	170.0	0.8133	0.9236	0.1366	0.0044
340	169.9	0.0641	0.0772	0.1604	0.0057	255	169.9	0.0782	0.1012	0.4281	0.0164
337	170.1	0.3233	0.2944	0.1093	0.0031	255	170.0	0.4292	0.5258	0.2989	0.0102
335	169.9	0.2068	0.1947	0.1463	0.0049	236	170.0	0.3692	0.5124	0.3734	0.0155
297	170.0	0.9039	0.9096	0.0366	0.0011	1 72	169.9	0.1796	0.3592	0.6001	0.0291
282	169.9	0.3519	0.3896	0.2607	0.0089	83	170.0	0.1190	0.7334	0.8529	0.0807
280	170.0	0.4608	0.4943	0.2236	0.0077						

Table VI. Ternary Vapor-Liquid Equilibrium Data: Pressure P, Temperature t, Liquid-Phase Mole Fraction x_i , and Vapor-Phase Mole Fraction y_i with Tetralin (1) and 1-Methylnaphthalene (2)

P	/mmHg	t/°C	x ₂	<i>y</i> ₂	x3	y 3
			Naphtha	lene (3)		
	489	190.0	0.0287	0.0115	0.0148	0.0112
	481	190.0	0.0471	0.0196	0.0492	0.0421
	466	190.0	0.0892	0.0391	0.0940	0.0802
	456	190.0	0.1100	0.0443	0.1677	0.1501
	437	190.0	0.1697	0.0709	0.1757	0.1668
	434	189.9	0.1116	0.0497	0.3791	0.3517
	403	190.0	0.2962	0.1468	0.1320	0.1389
	370	1 9 0.1	0.2385	0.1387	0.5957	0.6548
	365	189.9	0.2272	0.1385	0.6487	0.7097
	348	1 9 0.0	0.4456	0.2473	0.2362	0.3018
	355	189.9	0.3564	0.1981	0.4749	0.5556
	341	190.1	0.4214	0.2419	0.3737	0.4630
	333	190.0	0.4700	0.2784	0.3147	0.3870
	246	190.0	0.8140	0.6462	0.1222	0.2425
	237	190.0	0.8542	0.7202	0.0304	0.0662
			Biphen	yl (3)		
	461	189.9	0.0484	0.0199	0.0703	0.0219
	439	190.0	0.1104	0.0435	0.0904	0.0308
	423	190.0	0.1248	0.0571	0.1161	0.0398
	387	190.0	0.1785	0.1085	0.1699	0.0594
	367	190.0	0.2958	0.1582	0.1251	0.0495
	343	189.9	0.1199	0.0748	0.3549	0.1358
	312	190.0	0.3047	0.2017	0.2836	0.1163
	283	190.0	0.5005	0.3115	0.1695	0.1157
	274	189.9	0.4308	0.3070	0.2607	0.1372
	260	190.0	0.6362	0.4723	0.1479	0.0856
	259	190.0	0.3889	0.3029	0.3482	0.1831
	238	190.0	0.3136	0.2751	0.4602	0.2648
	206	190.1	0.8256	0.7950	0.1247	0.0965
	196	189.9	0.8346	0.8493	0.1511	0.1124
	166	190.1	0.1342	0.1871	0.8120	0.6716
	100	10011		(0)	0.0120	
		100.0	Acenapht.	hene (3)	0.01.00	0 0000
	486	190.0	0.0258	0.0092	0.0133	0.0023
	464	190.0	0.0669	0.0275	0.0380	0.0065
	430	190.0	0.1273	0.0529	0.0763	0.0140
	408	190.1	0.1366	0.0639	0.1205	0.0236
	380	190.0	0.1685	0.0940	0.1533	0.0339
	364	190.0	0.2774	0.1438	0.1452	0.0279
	299	190.0	0.3304	0.2187	0.2305	0.0627
	272	190.0	0.4639	0.3256	0.2021	0.0626
	252	190.0	0.6238	0.4741	0.1383	0.0455
	233	189.9	0.4156	0.3555	0.3241	0.1103
	228	189.9	0.2924	0.2649	0.4227	0.1434
	211	189.9	0.3140	0.3072	0.4422	0.1661
	199	189.9	0.8051	0.8020	0.1221	0.0547
	171	189.9	0.2194	0.2600	0.5882	0.2638
	166	190.0	0.2360	0.3106	0.5899	0.2892
	0.80			 	1	
	0.70				0	
					°	
	0.80				8	
ہے	0.50			2		4
S. E.	0.40		~	R.		-
Ϋ́	0.30 -		2			-
	0.20	~				
		ROR				
	0.10					-
	0.00	0.10 0.20	0.30 (0.40 0.50	0.60 0.	70 0.80
			Y 3.	CALC.		

Figure 2.

tetralin (1)-1-methylnaphthalene (2)-naphthalene (3) at 190 °C. Figure 3 compares phenanthrene vapor-phase mole fractions using the Margules model for the system *cis*-decalin (1)-tetralin (2)-phenanthrene (3).

 Table VII.
 Comparison of Ternary Data with Those

 Calculated Using Binary Data and Different Models

		AAD(P)ª/			
t/°C	model	mmHg	$AAD(y_1)_a$	$AAD(y_2)^a$	AAD(y ₃)
	cis-Decalir	1 (1)-Tetr	alin (2)–Napi	hthalene (3))
170.0	UNIQUAC	1.5	0.0076	0.0067	0.0095
	Margules	1.1	0.0081	0.0061	0.0099
	Regu. Sol.	3.5	0.0084	0.0064	0.0096
	Ideal Sol.	11.4	0.0181	0.0116	0.0113
	cis-Deca	lin (1)–Te	tralin (2)–Bij	phenyl (3)	
170.0	UNIQUAC	1.5	0.0027	0.0020	0.0031
	Margules	1.8	0.0031	0.0029	0.0032
	Regu. Sol.	2.1	0.0031	0.0016	0.0032
	Ideal Sol.	10.0	0.0014	0.0094	0.0067
	cis-Decalin	(1)-Tetra	lin (2)-Acen	aphthene (3	s)
170.0	UNIQUAC	2.6	0.0058	0.0050	0.0030
	Margules	3.0	0.0072	0.0050	0.0032
	Regu. Sol.	3.0	0.0091	0.0052	0.0032
	Ideal Sol.	9.7	0.0233	0.0216	0.0040
	cis-Decalin	(1)-Tetra	alin (2)–Dibe	nzofuran (3)
170.0	UNIQUAC	8.9	0.0151	0.0049	0.0067
	Margules	7.3	0.0165	0.0180	0.0059
	Regu. Sol.	4.6	0.0147	0.0156	0.0052
	Ideal Sol.	21.5	0.0270	0.0234	0.0136
	cis-Decalin	(1)-Tetra	lin (2)–Phen	anthrene (3)
170.0	UNIQUAC	4.5	0.0028	0.0299	0.0021
	Margules	4.5	0.0270	0.0289	0.0022
	Regu. Sol.	4.0	0.0263	0.0283	0.0021
	Ideal Sol.	16.0	0.0125	0.0150	0.0042
J	Petralin (1)-1-N	Methylnap	hthalene (2)-	-Naphthale	ne (3)
190.0	UNIQUAC	2.3	0.0099	0.0071	0.0076
	Margules	2.4	0.0098	0.0074	0.0077
	Regu. Sol.	5.5	0.0101	0.0069	0.0106
	Ideal Sol.	8.6	0.0106	0.0071	0.0124
	Tetralin (1)-1	-Methylna	aphthalene (2	2)–Biphenyl	(3)
190.0	UNIQUAC	3.4	0.0114	0.0101	0.0099
	Margules	3.3	0.0112	0.0101	0.0101
	Regu. Sol.	4.1	0.0092	0.0107	0.0096
	Ideal Sol.	3.8	0.0075	0.0106	0.0081
Т	etralin (1)–1-M	lethylnapl	hthalene (2)-	Acenaphthe	ene (3)
1 9 0.0	UNIQUAC	10.2	0.0133	0.0208	0.0114
	Margules	6.0	0.0178	0.0151	0.0034
	Regu. Sol.	5.2	0.0167	0.0154	0.0039
	Ideal Sol.	4.9	0.0174	0.0150	0.0035
• AA (1/N)	$D = avera\sum_{i=1}^{N} (P_{calc} - P_{calc}) $	age abso _{expt})); AAl	lute deviat $D(y_i) = (1/N)$	$(\sum_{i=1}^{N} (y_{i,cal}) $	
50					7
	— Margules				
40	0-		~	~ _	

For practical applications, the regular solution theory equations provide a simple way of predicting VLE data for mixtures of nonpolar compounds. Therefore, we used these equations (11) to predict bubble point pressures and vapor-phase mole

Table VIII. Solubility Parameters $((J/cm^3)^{1/2})$ and Liquid Molar Volumes (cm³/mol) of the Compounds at the Melting Point of the Solids

		sol	ids	cis-de	ecalin	tetr	alin	1-me napht	ethyl- halene
	$t_{\rm m}/{ m ^{o}C}$	δ_2	v_2^l	δ_1	\mathbf{v}_1^l	δ_1	\mathbf{v}_1^l	δ_1	\mathbf{v}_1^l
naphthalene biphenyl acenaphthene dibenzofuran phenanthrene	79.65 69.45 93.15 82.55 99.65	19.67° 19.30° 18.93° 20.41 ^f 19.77°	130.9^{g} 155.2^{d} 149.8^{h} 152.5^{i} 168.1^{j}	16.36^{a} 16.59^{a} 16.24^{a} 16.37^{a} 16.00^{a}	165.6^{e} 163.9^{e} 167.7^{e} 166.2^{e} 169.5^{e}	18.15 ^a 18.37 ^a 17.87 ^a 18.10 ^a 17.74 ^a	$143.0^d \\ 141.9^d \\ 144.7^d \\ 143.4^d \\ 145.4^d$	18.51 ^b 18.70 ^b 18.30 ^b	153.1° 151.9° 154.7°

^a Enthalpy of vaporization was calculated using the Clausius-Clapeyron equation with Antoine constants given by Reid et al. (13). ^b Enthalpy of vaporization was calculated using the Clausius-Clapeyron equation with Antoine constants given in Table I and our previous work (3). ^cAntoine constant given by Dean (16). ^dTimmermans (17). ^eCalculated using the modified Rackett (7) equation. ^fCarruth and Kobayashi (18). ^gWeast (19), Reid et al. (13), and Dean (16). ^hLange and Forker (20). ⁱTsonopoulos et al. (21). ^jInternational Critical Tables (22). Extrapolated by using equation 12-3.2 of Reid et al. (13).

fractions for our ternary mixtures. Table VIII lists the values of solubility parameters and liquid molar volumes for the compounds used in this study. In accordance with a suggestion by Coon et al. (2), these parameters were evaluated at the melting points of the compounds in the first column. These components are solids at ambient temperature. Table VII reports the average absolute deviations between experimental and calculated pressures and vapor-phase mole fractions using regular solution theory. The regular solution theory predicted the bubble point pressures within 6 mmHg and vapor-phase mole fractions of the components of the ternary mixtures within 0.03 mole fraction for all the systems. This theory is attractive because of its simplicity. It does not require any experimental data on mixture vapor-liquid equilibria.

Table VII also shows the results of predictions by Raoult's law. Two of the systems, tetralin (1)-1-methylnaphthalene (2)-biphenyl (3) and tetralin (1)-1-methylnaphthalene (2)acenaphthene (3), were adequately described by Raoult's law. For the other systems, agreement with experiment was improved significantly by using the various activity coefficient models.

Conclusion

Vapor-liquid equilibria for four binary systems have been measured and found to be thermodynamically consistent. These data are used to determine binary interaction parameters using the UNIQUAC and Margules models. Both models represent the data guite well.

The binary parameters obtained in this study and in our previous work are used to predict ternary vapor-liquid equilibrium curves using the same models and also regular solution theory. For these slightly nonideal systems, all of these models can be used to predict the ternary vapor-liquid equilibrium diagram.

Glossary

- Antoine parameter in eq 1 Α
- A_{ij} optimized parameters in UNIQUAC and Margules models
- В Antoine parameter in eq 1
- С Antoine parameter in eq 1
- Ν total number of data points
- Р pressure, mmHg
- P° vapor pressure, mmHg
- t temperature, °C
- melting point temperature, °C
- t_m v' molar volume of liquid, cm³ mol⁻¹
- mole fraction in the liquid phase x
- mole fraction in the vapor phase y

Greek Letters

- δ solubility parameter
- ω acentric factor

Subscripts

- i component /
- i.calc calculated value of component i
- *i*,expt experimental value of component i
- mixture of components / and / li

Registry No. Tetralin, 119-64-2; 1-methylnaphthalene, 90-12-0; naphthalene, 91-20-3; biphenyl, 92-52-4; acenaphthalene, 208-96-8; clsdecalin, 493-01-6; dibenzofuran, 132-64-9; phenanthrene, 85-01-8.

Literature Cited

- (1) Krevor, D. H.; Lam, F. W.; Prausnitz, J. M. J. Chem. Eng. Data 1986, 31, 353.
- (2) Coon, J. E. Ph.D. Dissertation, Louisiana State University, Baton Rouge, LA, 1988.
- Gupta, A.; Gupta, S.; Groves, F. R., Jr.; McLaughlin, E. Fluid Phase Equilib. 1991, 65, 305. (3)
- (4) Coon, J. E.; Auwaerter, J. E.; McLaughlin, E. Fluid Phase Equilib . 1966, 44.305.
- Camin, D. L.; Rossini, R. J. Phys. Chem. 1955, 59, 1173.
- (d) Carlin, D. L., Rossin, R. J. Phys. Chem. 1995, 59, 1173.
 (e) Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor-Liquid Equilibria Using UNIFAC; Elsevier: Amsterdam, 1977.
 (7) Prausnitz, J. M.; Anderson, T. F.; Grens, E. A., II; Eckert, C. A.; Hsleh, R.; O'Connell, J. P. Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibrium; Prentice Hall: Englewood Cliffs, NJ, 1980.
- Abrams, D. S.; Prausnitz, J. M. AIChE J. 1975, 21 (1), 116.
- Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Fundam. 1975, 14, (9) 209. (10) Roman, C. E.; Luther, J. E.; Wetzel, D. M. Energy Prog. 1986, 6, 235.
- (11)Prausnitz, J. M.; Lichtenthaler, R. N.; de Azevedo, E. G. Molecular Thermodynamics of Fluid -Phase Equilibria : Prentice-Hall: Englewood Cliffs, NJ, 1986.
- (12) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids, 4th ed.; McGraw-Hill: New York, 1986.
- Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. *The Properties of Gases and Liquids*, 3rd ed.; McGraw-Hill: New York, 1977.
 Yamada, T.; Gunn, R. D. *J. Chem. Eng. Data* 1973, *18*, 234.
 Gmehling, J.; Onken, V.; Ault, W. Vapor-Liquid Equilibrium Data Collection; DECHEMA: Dortmund, Germany, 1980; Vol. I, Part 7.

- (16) Dean, J. A. Handbook of Organic Chemistry, 12th ed.; McGraw-Hill: New York, 1979.
- (17) Timmermans, J. Physico-Chemical Constants of Pure Organic Compounds, Vols. I and II; Elsevier: New York, 1950/65.
- (18) Carruth, G. F.; Kobayashi, R. Ind. Eng. Chem. Fundam. 1972, 11, 509.
- (19) Weast, R. C. CRC Handbook of Chemistry and Physics; CRC Press:
- Weast, R. C. CHC Handbook of Chemistry and Physics; CHC Press: Boca Raton, FL, 1979.
 Lange, N. A.; Forker, G. M. Handbook of Chemistry, 10th ed.; McGraw-Hill: New York, 1961.
 Tsonopoulos, C.; Heidman, J.; Hwang, S. C. Thermodynamic and Transport Properties of Coal Liquids; Wiley: New York, 1986.
 Interpretional Critical Toola Liquids; Wiley: New York, 1986. International Critical Tables; National Academy of Science, McGraw-(22)
- Hill: New York, 1926.

Received for review January 9, 1991. Accepted September 3, 1991. We would like to thank the Louisiana Center for Energy Studies for their financial support (Grant No. 135-15-0153).