- κ vaporization equilibrium ratio, y/x
- k binary interaction parameter
- п number of moles
- P pressure
- R universal gas constant
- Τ temperature
- ν total volume
- molar volume v
- v partial moiar volume
- mole fraction in the liquid phase X
- mole fraction in the vapor phase y
- mole fraction (liquid or vapor phase) z

Greek Letters

- Φ fugacity coefficient
- acentric factor ŵ

Superscripts

- L liquid phase
- s saturated property
- œ infinite dilution

Subscripts

- component 1 (solvent) 1
- 2 component 2 (solute)

- С critical property
- ij components / and /
- reduced property ٢

Registry No. CO2, 124-38-9; phenol, 108-95-2; catechol, 120-80-9.

Literature Cited

of this work.

- Tsai, F. N.; Yau, J. S. J. Chem. Eng. Data 1990, 35, 43.
 Yau, J. S.; Tsai, F. N. J. Chem. Eng. Data, in press.
 Krichevsky, I. R.; Ilinskaya, A. A. Zh., Fiz. Khim., 1945, 19, 621.
- (4) Huang, S. H.; Lin, H. M.; Tsai, F. N.; Chao, K. C. Ind. Eng. Chem. Res. 1988, 27, 162.
- (5) Graboski, M. S.; Daubert, T. E. Ind. Eng. Chem. Process Des. Dev.
- 1978, 17, 443. (6) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids, 4th ed.; McGraw-Hill: New York, 1988.
- (7) Ambrose, D. Correlation and Estimation of Vapor-Liquid Critical Prop-Critical Temperatures of Organic Compounds; NPL Rep. erties. I. Chem. 92; National Physical Laboratory: Tedington, Sept 1978; corrected March 1980.
- (8) Ambrose, D. Correlation and Estimation of Vapor-Liquid Critical Prop-(6) Antorose, D. Correlation and Estimation of Vapor - Equid Order Properties. II. Critical Pressures and Volumes of Organic Compounds; NPL Rep. Chem. 98; National Physical Laboratory: Teddington, 1979.
 (9) Lee, B. I.; Kesler, M. G. AIChE J. 1975, 21, 510.
 (10) Bender, E.; Klein, U.; Schmitt, W.; Prausnitz, J. M. Fluid Phase Equilib.
- 1984, 15, 241.

Received for review February 10, 1991. Revised June 13, 1991. Accepted February 5, 1992. Acknowledgment is made to the National Science Council of the Republic of China (Grant NSC 79-0402-E006-17) for financial support

Isobaric Vapor–Liquid Equilibria for the Binary Systems CH₃SiHCl₂ with $(CH_3)_3SiCI$, $(CH_3)_2SiCI_2$, CH_3SiCI_3 , or $SiCI_4$

Trandafir Rugină and Liviu Săcărescu*

Institute of Macromolecular Chemistry "P. Poni", Aleea Grigore Ghica Vodă 41A, 6600 Iași, Romania

This paper reports isobaric vapor-liquid equilibrium (VLE) data for four binary systems containing dichloromethyisilane, CH₃SiHCl₂, and chlorotrimethyi-, dichlorodimethyl-, trichloromethyl-, or tetrachlorosllane, $(CH_3)_{4-n}$ SICI_n (n = 1-4). The VLE data were determined ebuillometrically at atmospheric pressure, and the experimental temperatures were corrected for 760 mmHg. The pure component vapor pressures were calculated using literature Antoine constants. The VLE data were then correlated by means of the Wilson, nonrandom two-liquid (NRTL), and Gothard equations.

Introduction

Vapor-liquid equilibrium (VLE) data for binary methylchlorosilane systems are scarce. In view of the importance of these data for the design of rectification columns in manufacturing silicon derivatives, we developed a data base for this class of substances. All the VLE data published until now on methylchlorosilanes were tested using a rectification process computer simulator and were verified on an industrial pilot plant.

Experimental Section

Meterials. The methylchlorosilanes were Fluka products with 98% stated purity. They were purified by distillation on a laboratory column until no impurities were chromatographically detectable.

The physicochemical constants of the purified substances are compared with literature data in Table I.

Apparatus and Procedure. The experimental apparatus was a Swietoslawski-type ebullometer (1).

The experimental boiling temperatures, t^* , were measured to within 5.10⁻² °C with a Beckmann thermometer calibrated in our laboratory with benzene for high boiling points and CH₃HSiCl₂ for low boiling points. The atmospheric pressure, P*, was read on a Hg barometer to within 0.1 mmHg. The liquid, x_i , and vapor, y_i , mole fraction compositions of the two phases at equilibrium were determined by means of a gas chromatograph (2) packed with a mixture of 70% FS 1265 + 30% SE-30 on AW/DHCS Chromosorb P, 60-80 mesh. The overall uncertainty in the equilibrium mole fractions is estimated to be $(0.1-1) \times 10^{-2}$. The t* values at pressure P* were corrected for normal pressure, $P^{\circ} = 760$ mmHg, using the following equation (3):

$$t = t^* + ((dt_1/dP)x_1 + (dt_2/dP)x_2)(P^\circ - P^*)$$
(1)

where t_i is the boiling temperature of pure component i calculated with the Antoine equation from

$$t_i/^{\circ}C = B_i/[A_i - \log (P^{\circ}/\text{mmHg})] - C_i$$
(2)

The experimental data are shown in Tables II-V.

Results

The liquid-phase activity coefficients, γ_i , were calculated from the experimental P-x-y data at each temperature. The

Table I. Densities, Normal Boiling Points t, and Antoine Coefficients A, B, and C, Equation 2 (3), for Methylchlorosilanes

	ρ(20 ° ($ ho(20 \ ^{\circ}C)/(g \ cm^{-3})$		t∕°C				
component	exptl	lit. (8, 9)	exptl	lit. (8, 9)	A	В	С	
 CH ₃ SiHCl ₂	1.110	1.1069	41.60	41.0	7.0484	1179	242.00	
SiCl	1.479	1.483	56.63	57.2	6.9728	1200	235.96	
(CH ₃) ₃ SiCl	0.859	0.858	57.14	57.2	6.9505	1191	235.05	
CH ₃ SiCl ₃	1.273	1.276	65.38	65.34	6.8721	1167	226.00	
(CH ₃) ₂ SiCl ₂	1.069	1.0663	69.37	70.00	7.1435	1328	241.05	

Table II. Experimental Boiling Temperature t^* at Pressure P^* , Corrected Boiling Temperature t at Normal Pressure (P = 760 mmHg), Equation 1, Activity Coefficients γ_i , Liquid-Phase Mole Fraction x_1 , and Vapor-Phase Mole Fraction y_1 for the Binary System CH₃SiHCl₂ (1)-SiCl₄ (2)

			-									
$P^*/mmHg$	t/°C	x ₁	y_1	${oldsymbol{\gamma}}_1$	γ_2	t*∕°C	$P^*/mmHg$	t/°C	\boldsymbol{x}_1	y_1	γ_1	γ_2
745.5	55.03	0.0204	0.0461	1.4687	1.0445	46.13	745.5	46.71	0.4103	0.5583	1.1321	1.0531
745.5	54.89	0.0253	0.0567	1.4612	1.0427	44.72	745.5	45.30	0.5082	0.6369	1.0892	1.0890
745.5	54.43	0.0426	0.0923	1.4311	1.0364	44.29	745.5	44.87	0.5431	0.6634	1.0761	1.1026
745.5	53. 9 3	0.0618	0.1294	1.4038	1.0305	43.77	745.5	44.34	0.5898	0.6981	1.0603	1.1217
745.5	53.06	0.0962	0.1917	1.3701	1.0211	42.54	745.5	43.11	0.7274	0.7923	1.0144	1.2121
745.5	51.99	0.1402	0.2611	1.3215	1.0154	41.78	745.5	42.35	0.7697	0.8244	1.0220	1.2454
745.5	51.45	0.1637	0.2944	1.2966	1.0144	41.33	745.5	41.90	0.8680	0.9001	1.0038	1.2565
745.5	50.94	0.1868	0.3259	1.2766	1.0134	41.30	744.8	41.89	0.8695	0.9015	1.0040	1.2536
745.5	48.87	0.2867	0.4416	1.1995	1.0241	40.70	744.8	41.29	0.9385	0.9539	1.0035	1.2719
745.5	48.01	0.3335	0.4894	1.1732	1.0315							
	<i>P</i> [★] /mmHg 745.5 745.5 745.5 745.5 745.5 745.5 745.5 745.5 745.5 745.5	P*/mmHg t/°C 745.5 55.03 745.5 54.89 745.5 54.43 745.5 53.93 745.5 53.06 745.5 51.45 745.5 51.45 745.5 51.45 745.5 50.94 745.5 48.87 745.5 48.01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							

Table III. Experimental Boiling Temperature t^* at Pressure P^* , Corrected Boiling Temperature t at Normal Pressure (P = 760 mmHg), Equation 1, Activity Coefficients γ_i , Liquid-Phase Mole Fraction x_1 , and Vapor-Phase Mole Fraction y_1 for the Binary System CH₃SiHCl₂ (1)-(CH₃)₃SiCl (2)

<i>t</i> */°C	$P^*/mmHg$	t/°C	x ₁	<i>y</i> ₁	γ_1	${oldsymbol{\gamma}}_2$	<i>t</i> */°C	$P^*/mmHg$	t∕°C	x 1	<i>y</i> ₁	${oldsymbol{\gamma}}_1$	γ_2
77.20	750.6	57.58	0.0522	0.0751	0.8212	0.9796	47.73	751.6	48.03	0.6537	0.7737	0.9445	0.8882
56 .30	750.6	56.68	0.0997	0.1366	0.8482	0.9866	46.40	751.6	46.73	0.7419	0.8424	0.9432	0.8670
55. 9 0	750.6	56.28	0.1490	0.2045	0.8590	0.9737	45.30	751.6	45.63	0.7876	0.8749	0.9550	0.8679
55.30	750.7	55.68	0.2029	0.2777	0.8711	0.9618	44.00	751.6	44.33	0.8624	0.9235	0.9591	0.8563
54.50	750.7	54.88	0.2616	0.3551	0.8838	0.9506	43.50	751.6	43.83	0.8990	0.9454	0.9569	0.8471
53.90	751.2	54.30	0.3167	0.4248	0.8879	0.9333	42.85	751.6	43.18	0.9323	0.9643	0.9609	0.8450
52.70	751.2	53.05	0.4055	0.5301	0.8973	0.9120	42.50	751.5	42.83	0.9345	0.9655	0.9706	0.8542
51.90	751.2	52.25	0.4720	0.6027	0.8972	0.8910	42.30	751.5	42.63	0.9463	0.9720	0.9712	0.8515
50.80	751.6	51.14	0.5139	0.6458	0.9127	0.8943	41.85	751.5	42.18	0.9822	0.9910	0.9679	0.8388
48.90	751.6	49.23	0.6065	0.7331	0.9299	0.8861							

Table IV. Experimental Boiling Temperature t^* at Pressure P^* , Corrected Boiling Temperature t at Normal Pressure (P = 760 mmHg), Equation 1, Activity Coefficients γ_i , Liquid-Phase Mole Fraction x_1 , and Vapor-Phase Mole Fraction y_1 for the Binary System CH₃SiHCl₂ (1)-CH₃SiCl₃ (2)

<i>t</i> */°C	P*/mmHg	t/°C	x ₁	y ₁	γ_1	γ_2	<i>t</i> */°C	$P^*/mmHg$	t∕°C	x ₁	У1	γ_1	γ_2
66.04	753.0	66.33	0.0102	0.0188	0.8734	0.9930	53.35	754.1	53.5 9	0.5227	0.7119	0.9193	0.9070
65.52	753.0	65.81	0.0263	0.0481	0.8786	0.9948	48.78	753.8	49.03	0.6953	0.8444	0.9397	0.8962
64.45	753.6	65.72	0.0337	0.0615	0.8787	0.9910	46.80	753.4	74.06	0.7712	0.8912	0.9501	0.8939
64.67	753.6	64.87	0.0629	0.1135	0.8870	0.9907	44.95	753.4	45.21	0.8438	0.9305	0.9605	0.8930
63.79	754.1	64.04	0.0952	0.1689	0.8932	0.9865	44.16	753.4	44.42	0.8795	0.9481	0.9627	0.8892
61.40	754.1	61.64	0.1801	0.3055	0.9113	0.9801	43.02	745.7	43.58	0.9150	0.9645	0.9668	0.8887
59.80	754.1	60.04	0.2492	0.4057	0.9139	0.9635	42.32	746.1	42.86	0.9393	0.9753	0.9743	0.8917
5 6.4 0	754.1	56.64	0.3787	0.5679	0.9265	0.9446	41.80	746.5	42.33	0.9608	0.9843	0.9780	0.8917
55.40	754.1	55.64	0.441 9	0.6351	0.9138	0.9178			-	1			

Table V. Experimental Boiling Temperature t^* at Pressure P^* , Corrected Boiling Temperature t at Normal Pressure (P = 760 mmHg), Equation 1, Activity Coefficients γ_i , Liquid-Phase Mole Fraction x_1 , and Vapor-Phase Mole Fraction y_1 for the Binary System CH₃SiHCl₂ (1)-(CH₃)₂SiCl₂ (2)

<i>t</i> */°C	P*/mmHg	t/°C	x ₁	<i>y</i> ₁	γ_1	$\boldsymbol{\gamma}_2$	<i>t</i> */°C	P*/mmHg	t/°C	x ₁	<i>y</i> ₁	γ_1	γ_2
69.51	751.1	69.88	0.0284	0.0546	0.8293	0.9911	52.85	753.4	53.1 2	0.5048	0.7232	0.8902	0.8762
69.14	750. 9	69.52	0.0384	0.0736	0.8344	0.9921	50.72	755.9	50.88	0.6098	0.8075	0.9060	0.8652
68.70	750.9	69.08	0.0552	0.1052	0.8390	0.9885	48.41	756.2	48.56	0.6920	0.8616	0.9108	0.8518
67.06	751.2	67.42	0.1118	0.2081	0.8554	0.9793	46.47	756.3	46.62	0.7756	0.9078	0.9187	0.8452
66.37	751.7	66.71	0.1354	0.2491	0.8613	0.9752	45.39	756.9	45.51	0.8383	0.9382	0.9327	0.8427
64.61	752.2	64.93	0.1988	0.3531	0.8716	0.9587	44.52	757.3	44.63	0.8744	0.9538	0.9412	0.8443
64.61	752.2	64.93	0.2019	0.357 9	0.8699	0.9553	43.71	757.7	43.80	0.9116	0.9687	0.9427	0.8392
60.47	753.4	60.74	0.2239	0.3916	0.8724	0.9490	43.21	757.7	43.30	0.9369	0.9783	0.9510	0.8403
59.66	753.4	59.93	0.3489	0.5609	0.8842	0.9161	42.80	757.5	42.90	0. 9 511	0.9834	0.9568	0.8448
58.11	753.4	58.38	0.3751	0.5918	0.8875	0.9112	42.10	757.5	42.30	0.9668	0.9889	0.9588	0.8445
56.15	753.4	56.42	0.4269	0.6485	0.8926	0.9004							

nonideality of the vapor phase and the Poynting factor were taken into account in terms of the second virlal coefficients of the pure components estimated from critical data (4) (Table VI). The excess virial coefficients and the excess molar volumes

Table VI. Critical Temperature, T^c , Pressure, P^c , and Molar Volume, V^c, of the Pure Components (9)

component	T ^c /K	P ^c /atm	$V^{c}/(\text{cm}^3 \text{ mol}^{-1})$
CH ₃ SiHCl ₂	475	38.5	290
SiCl	507	37.0	330
CH ₃ SiCl	498	31.6	363
(CH ₂) ₂ SiCl ₂	518	54.9	339
(CH ₃) ₂ SiCl ₂	520	34.4	350

Table VII. Root Mean Square Deviations of g^{E}/RT , $\sigma^{2}(g^{E})$, and y, $\sigma^2(y)$, Obtained from the Correlations

model		CH ₃ SiHCl ₂ +							
parameter	SiCl ₄	(CH ₃) ₃ SiCl	CH ₃ SiCl ₃	(CH ₃) ₂ SiCl ₂					
Wilson, Equation 3									
$(\lambda_{12} - \lambda_{11})/(J \text{ mol}^{-1})$	-709.563	614.5	304.5	332.0					
$(\lambda_{21} - \lambda_{22})/(J \text{ mol}^{-1})$	1427.938	739.5	947	918.875					
$\sigma^2(g^E)/10^2$	2.0	1.5	2.3	2.0					
$\sigma^2(\mathbf{y})/10^2$	1.7	3.4	3.3	4.8					
NRTL, Equation 6									
α_{ii}	0.3	0.3	0.3	0.3					
$(g_{12} - g_{11})/(J \text{ mol}^{-1})$	169.578	-149.563	-97.688	-183.625					
$(g_{21} - g_{22})/(J \text{ mol}^{-1})$	62.469	-94.875	-93.625	79.563					
$\sigma^2(g^E)/10^2$	1.9	1.3	2.3	1.9					
$\sigma^2(\mathbf{y})/10^2$	0.46	2.4	2.5	3. 9					
	Gothar	d, Equation 8							
n ₁	0.903	0.805	1.05						
n ₂	1.175	0.766	0.65						
$\sigma^{2}(g^{E})/10^{2}$	1.9	1.5	2.1	1.3					
$\sigma^2(\bar{y})/10^2$	0.96	2.2	2.0	1.9					

of the mixtures were assumed to be zero.

The experimental data were correlated using the following equations (5).

(a) Wilson (4):

(

$$g^{E}/RT)_{calc} = -\sum_{i} x_{i} \ln \left(\sum_{j} x_{i} \Lambda_{ij}\right)$$
(3)

$$g^{\mathsf{E}}/RT = \sum_{i} x_{i} \ln \gamma_{i} \tag{4}$$

$$\Lambda_{ij} = v_j / v_i \exp[(\lambda_{ij} - \lambda_{ij}) / RT]$$
(5)

(b) NRTL (6):

$$g^{\mathsf{E}}/RT = \sum_{i} x_{i} (\sum_{j} \zeta_{ij} G_{ij} x_{j} / \sum_{k} G_{ki} x_{k})$$
(6)

$$G_{ij} = \exp(-\alpha_{ij}\zeta_{ij}) \qquad \zeta_{ij} = (g_{ij} - g_{ij})/RT$$
 (7)

(c) Gothard (7):

$$(g^{E}/RT)_{calc} = (1/K) \ln [n(n-1)/2]$$
 (8)

$$2/n = \sum_{i} x_i / \sum_{j} n_{ij} x_j \tag{9}$$

K = 4 for systems without miscibility gaps

The optimal parameters were obtained by minimization of the objective function:

$$Q = \sum_{N} \left[(g^{E}/RT)_{expti} - (g^{E}/RT)_{calc} \right]^{2}$$
(10)

Table VII presents the root mean square deviations, $\sigma^2(g^{\rm E})$ and $\sigma^2(y)$, of $g^{\rm E}/RT$ and y for the studied binary systems. From this table one can see that the three models reproduce the binary systems equally well.

The results presented in Tables II-V show that the deviations from ideality are small. The system MeHSICI2-SICI4 has a slight positive deviation; for all the other systems the deviations are negative.

Glossary

g^{E}	experimental boiling temperature at pressure P*, °C
g _{ij} , g _{ii}	corrected boiling temperature at normal pressure P°
	= 760 mmHg
n	liquid-phase mole fraction
R	vapor-phase mole fraction
t*	molar gas constant, 4.187 J mol ⁻¹ K ⁻¹
t	molar volume, cm ³ mol ⁻¹
V,	molar excess Gibbs energy, J mol ⁻¹
X	NRTL model parameters, J mol-1
У	Gothard model parameters
A	

Greek Letters

α_{ij} third	l parameter	in NRTL	equation
---------------------	-------------	---------	----------

activity coefficient in liquid phase γ_i

Wilson parameters, J mol-1 λ", λ"

Subscripts

i, j components

Registry No. CH₃SiHCl₂, 75-54-7; (CH₃)₃SiCl, 75-77-4; (CH₃)₂SiCl₂, 75-78-5; CH3SiCl3, 75-79-6; SiCl4, 10026-04-7.

Literature Cited

- (1) Hala, E.; Pick, J.; Vilim, O. Vapor-Liquid Equilibrium; Pergamon Press: Oxford, 1967.
- Smith, A. L. Analysis of Silicones. *Chemical Analysis*; John Wiley & Sons: New York, 1974; Vol. 41, Chapter 9.
 Yoshikawa, Y.; Tagaki, A.; Kato, M. J. Chem. Eng. Data 1980, 25,
- (4) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases & Liquids; McGraw-Hill Book Co.: New York, 1987. (5) Wilson, G. M. J. Am. Chem. Soc. 1984, 86, 127. (6) Renon, H.; Prausnitz, J. M. AIChE J. 1975, 14, 135.

- (7)
- Gothard, F. Ind. Eng. Chem. Funders. 1985, 24, 330.
 Jenkins, A. C.; Chambers, G. F. Ind. Eng. Chem. 1954, 46, 2367.
 Molokanov, I. K.; Korabilna, T. P.; Kleinovskaya, M. A. Separation of (9)
- Mixtures of Organosilicon Compounds (In Russian); Khimiya: Moscow, 1974.

Received for review September 5, 1990. Revised June 17, 1991. Accepted December 3, 1991.