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Phase Compositions, Viscositles, and Densities for Aqueous
Two-Phase Systems Composed of Polyethyiene Glycoi and Various

Salts at 25 °C

Steven M. Snyder, Kenneth D. Cole,* and David C. Szlag

National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80303

Phase diagrams of aqueous two-phase systems composed
of polyethylene glycol and various salt soiutions were
measured. The densities and viscosities of these phase
systoms were also measured. Polyethylene giycol was
used with three average molecular masses of 1000, 3350,
and 8000. The salts used were magnesium sulfate,
sodium sulfate, sodlum carbonate, ammonium sulfate, and
potassium phosphate. Phase dlagram data, as well as the
don:mn and viscosities of the phases, were measured at
25 °C.

Introduction

Liquid-liquid extraction utilizing aqueous two-phase systems
(ATPS) has been used to separate and purity biological products

from the complex mixtures in which they are produced (7, 2).
Data on the composition and properties of phase systems are
necessary for the design of ATPS extraction processes.
Phase-dlagram data are also necessary for the development
of models that predict phase partitioning (3-6).

In this work, a comprehensive set of densities, viscosltles,
and phase compositions of ATPS composed of various poly-
ethylene glycol (PEG) masses and salts were measured at 25
°C. A previous technique has been used to determine com-
positions of polymer—polymer systems utilizing measurements
of optical rotation and refractive index (7, 2, 7, 8). However
the PEG-salt systems have littie or no optlical activity. Potas-
sium phosphate—PEG systems can be determined by titration
(7); however, this method does not apply to the other salts
used. Therefore, the gravimetric method of determining phase
composltion described by Stewart and Todd (9) was used and

This article not subject to U.S. Copyright. Published 1992 by the American Chemical Society
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Figure 1. Phase diagrams of magnesium sulfate systems with PEG
systems (A-M) are given in Table I.

compared with analysis via high-performance liquid chroma-

tography (HPLC)-gel permeation chromatography.

Experimental Section

Materials. Three lots of PEG were obtained commerciaily.
The number-average molecular mass (M) and the weight-av-
meation chromatography by American Polymer Standards Corp.
{(Mentor, OH). The columns used were an ultrahydrogel 250 A

and an ultrahydrogel 120 A in tandem. The mobile phase was
water at 1.0 mL/min at 30 °C. The salts used In the phase

systems were reagent grade and anhydrous.

erage molecular mass (M,) were determined using gel per-
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Figure 2. Phase diagrams of potassium phosphate, pH 8.0, systems with PEG 1000 (a) and PEG 8000 (b). The composttions of these systems

(A-J) are given in Table II.
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Figure 3. Phase diagrams of sodium carbonate systems with PEG 1000 (a), PEG 3350 (b), and PEG 8000 (c). The compositions of these phase

gystems (A-L) are given in Table III.

Apparasius and Procedures. ATPS (45 g) were constructed
by weighing stock polymer solutions and dry salts into a 50-mL
centrifuge tube. For the potassium phosphate systems, the
Henderson-Hasselbach equation was used to determine the
ratio of mono- and dibasic salts necessary to bring the pH to
8.0. ATPS were brought to 25 & 0.1 °C in a water bath. The
systems were mixed for 2 min each with a vortexer, and then
separated at 25 + 0.5 °C in a centrifuge at 5000g for 10 min,
where g is the acceleration due to gravity.

The phase compositions of some of the systems were de-
termined using a gravimetric method. Approximately 100 mg
of phase was weighed into a glass tube using an analytical
balance reading = 0.1 mg. Two volumes of water were added,
and the solutions were shell frozen in a mixture of dry ice and

acetone. A lyophilizer was used to subiimate the water under
a vacuum of <13.3 Pa for 24 h, after which the tubes were
again weighed. The sample tubes were placed on the surface
of a hot plate at approximately 450 °C for 5 days. The PEG
was oxidized and volatilized while the salt remained as a white
ash. The tubes were repeatedly welghed until the mass was
constant. The estimated reproducibiiity of the phase compo-
sitions was +£0.4% w/w.

The concentrations of sailt and PEG in the upper and iower
phases of some systems were measured using HPLC—gel
permeation chromatography. The column used was a TSK
G1000 PW (300 X 7.5 mm) with a mobiie phase of 6.3 mM
Na HPO, and a fiow rate of 0.7 mL/min. The PEG and salt
were detected using a refractive index detector. Samples were
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Figure 5. Phase dlagrams of sodium sulfate systems with PEG 1000 (a), PEG 3350 (b), and PEG 8000 (c). The compositions of these phase

systemns (A-N) are given in Tabie V.

diluted with water so that the integrated area of their peaks fell
into the linear range of standard curves generated using PEG
1000, PEG 8000, (NH,)»,S0,, Mg§0,, and Na,SO,. The phase
compositions were reproducible within £0.4% w/w.

The densities were datermined using a vibrating u-tube den-
sitometer with a temperature of 25+ 0.1 °C. The reproduc-
ibliity of the denslties of the phases was estimated to be £0.8
kg/m®. The viscosities were determined using a cone and plate
viscometer with a temperature bath of 25 £ 0.1 °C. The
viscosities of the separated phases were reproducible within
+0.0003 Pa-s.

Results and Discussion

The lot of PEG 1000 used in these experiments had an M,
of 1075 and a M, of 1125 (M /M, = 1.05). The PEG 3350
used had an M, of 3200 and an M, of 3400 (M,/M, = 1.08).
The PEG 8000 used had an M, of 8070 and an M, of 9700
(M,/M, = 1.20). The densities and viscosities of the phase
systems are compiied in Tables I-V. The viscosities generally
increase with the increase of PEG molecular mass. The phase
densities approach that of water, due to the high water content.
In each phase system, both properties tend to increase with
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longer tie-line length, with exceptions occurring in the region
ciose to the critical point.

The phase-composltion data from Tables I-V are plotted in
phase dlagrams in Figures 1-5, respectively. The tle lines are
determined by connecting each corresponding set of total,
bottom, and top phase points. The binodial curve is drawn
through the top and bottom phase points, and is estimated near
the critical point on the basis of the locations and trends of the
top and bottom phase compositions and, in some cases, single
phase points.

The phase diagrams with (NH,),SO,, MgSO,, or Na,SO,
combined with PEG 1000 or PEG 8000 were determined using
the HPLC method. The remainder of the diagrams were de-
termined gravimetrically. Points from the HPLC data sets were
repeated using the gravimetric method. While both methods
had virtually the same reproducibility and resulted in values
identical within their uncertainty, the gravimetric technique was
simpler and less iabor intensive.
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Anion Exchange in Amberlite IRA-400 and Amberlite IRA-410 Ion

Exchange Resins

Modesto Lopez, José Coca, and Herminio Sastre*

Department of Chemical Engineering, University of Oviedo, 33071 Oviledo, Spain

Equllibrium for the binary exchange of anions on Amberiite
IRA-400 and Amberiite IRA-410 was measured.
Standard methods were used to determine operating
characteristics of both resins. Equiiibrium data were
obtained by the batch method. The fitting of binary lon
exchange isotherm equations Is an important aspect of
data analysis. The Langmulr, Freundiich, Slips, and
Koble-Corrigan Isotherms were transformed to a linear
form and their adjustable parameters estimated by linear
regression. The Langmuir isotherm Is the most sultable
for both correlation of equilibrium data and prediction and
interpretation of breakthrough curves.

Introduction

The three factors that can affect the behavior of an ion
exchange column are equlibrium, kinetics, and mechanics .
The degree of column efficlency depends primarily on equilib-
rium (7, 2).

Various methods have been used to obtain binary lon-ex-
change equilibrium data. The simplest is the batch method,
proposed by Gregor and Bergman (3).

The dimenslonless equivalent lonic fraction, x and y, for fluid
and solid, respectively, are defined by

=C/Co y=Q/Q

where C, = concentration of the lon species in the solution, C,
= total concentration of the solution phase, Q, = concentration
of the lon species in the solution phase, and Q = total ex-
change capacity of the resin.

* To whom correspondance shouid be addressed.
0021-9568/92/1737-0274$03.00/0

This paper focuses on the study of the anion equiibrium data
of the Amberiite IRA-400 and IRA-410 resins fitted to linear
transformations of different Isotherm equations. The regression
coefficlents for each resin were determined.

Experimental Section

The resin phase consisted of Amberiite IRA-400 (type I) and
Amberiite IRA-410 (type 1I) gel strong-base anlon exchange
resins (supplied by Rohm and Haas Co.) in the X-form (X =
CO4H, Cl, OH, SO,). Solution phases were mixtures made up
using sodium salts of both the X-anion and fiuoride anion re-
quired to obtain a total concentration of 0.05 N.

The resing were washed with distilled deionized water and
regenerated or eluted with 4% sodium sulfate, except in elu-
tions of sulfate ion where 1 N sodium nitrate was used (4).

The resins were conditioned by alternate conversions to the
hydroxide and chloride forms and washed untii no further
chioride could be detected in the effluent. Part of this material
was converted into the bicarbonate, chioride, hydroxide, and
sulfate forms.

To determine the water content of the wet resin, resin sam-
ples were put in a Biichner funnel which was connected to a
water vacuum pump to remove the interstitial water. After
weighing, the resin samples were dried in a desiccator over
phosphorus pentoxide to constant welght. The resin density
was determined in water by a standard-type picnometer. The
total capachy for weighed amqunts (approximately 5 g) of the
lonic form of the resin was determined by adding an excess of
sadium salt of X-anions, washing until no further X-anion couid
be detacted in the effluent, regenerating the resin with exacﬂy
1 L each af 4% sodium sulfate {(or 1 N sodium nitrate), col-
lecting this effiuent in a volumetric flask, and finally determining
the X-anion (§-8). Table I shows the physicochemical char-
acteristics of the used resins.

In the batch equiiibrium studies , weighed amounts (2-3 g)
of moist resin were equilibrated with 100 mL of mixtures of
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