M,	molar mass of compound /	
n,	refractive index of pure compound / for the sodium D-line	e
n ₁₂	refractive index of the binary mixture for the sodium D-line	L
δπ ₁₂	refractive index difference defined by eq 12	
R 12	specific refractivity of binary mixture	
V ^E	excess volume on mixing	
X _i	mole fraction of compound /	
W ₂	mass fraction of compound /	
Greek Le	tters	
ρι	density of pure compound /	
ρ ₁₂	density of binary mixture	
σ	standard deviation	
Φ,	volume fraction of compound /	
$\sigma(a_k), \sigma(b_k)$	standard deviation of the parameters a_k and b_k , respectively	
$\sigma(n_{12}), \sigma(\rho_{12})$	standard deviation of the fit by eqs 10 and 11, re- spectively	
Subscript	°s	
expti	experimentally observed quantity	F
calcd	calculated quantity	8 8
		-

Registry No. Benzene, 71-43-2; cyclohexane, 110-82-7; acetone, 87-64-1

Iterature Cited

- Heller, W. J. Phys. Chem. 1965, 69, 1123.

- (1) Freiter, W. J. Phys. Chem. 1955, 55, 1125.
 (2) Shindo, Y.; Kusano, K. J. Chem. Eng. Data 1979, 24, 106.
 (3) Aminabhavi, T. M. J. Chem. Eng. Data 1964, 29, 54.
 (4) Brown, I.; Foch, W. Aust. J. Chem. 1955, 8, 361.
 (5) TRC Thermodynamic Tables Hydrocarbons; Thermodynamics Reearch Center, The Texas A&M University System: College Station, TX, (a) 1985, a-3290; (b) 1986, a-2050.
- (6) Radojković, N.; Tasić, A.; Djordjević, B.; Grozdanić, D. J. Chem. *Thermodyn.* 1976, *8*, 1111.
 (7) Radojković, N.; Tasić, A.; Grozdanić, D.; Djordjević, B.; Malić, D. J. *Chem. Thermodyn.* 1977, *9*, 349.
 (9) Pathema Hubberg July 2017, *9*, 349.
- Stablinger, H.; Leopold, H.; Kratky, O. Monatsh. Chem. 1967, 98, 463. Lorentz, H. A. Wied. Ann. 1860, 9, 641. Lorenz, L. Ibid. 1880, 11, (9)
- 70.
- (10) Wiener, O. Leipz. Ber. 1910, 62, 256.
 (11) Heller, W. Phys. Rev. 1945, 68, 5.
 (12) Dale, D.; Gladstone, F. Philos. Trans. R. Soc. London 1858, 148, 200 887.
- (13) Arago, D. F. J.; Blot, J. B. Mem. Acad. Fr. 1806, 7.

Received for review September 19, 1991. Accepted March 23, 1992. We are grateful to the Research Fund of Serbla for providing part of the financial support necessary to carry out the present investigation.

Salt Effect on Phase Equilibria by a Recirculating Still

Roger Josef Zemp and Artur Zaghini Francesconi*

Departamento de Engenharia de Sistemas Químicos, Universidade Estadual de Campinas, C.P. 6066, 13081 Campinas, Brazil

A new still to measure the salt effect on the vapor-liquid equilibrium at low pressures was developed. It is of the recirculating type, allowing the recirculation of both phases and the determination of its composition. The still was tested with the system ethanoi-water-potassium acetate at different mole fractions of salt at 101.33 kPa.

Introduction

The most work concerning the experimental determination of the salt effect on the vapor-liquid equilibrium at low pressures uses the well-known Othmer still as standard equipment (1-5). Hala et al. (6) and Malanowski (7) describe one disadvantage of the Othmer still as being the superheating of the gas phase, not allowing the correct determination of the equilibrium temperature. On the other hand, only the vapor phase recirculates.

The purpose of this work was to develop, construct, and test an equilibrium still to eliminate the problems mentioned above. It differs from others which have been used for salt effect studies in the sense that both equilibrium phases recirculate with the aid of a Cottrell pump. To test the proposed apparatus, the system water-ethanol-potassium acetate was chosen. This system has been previously studied by Costa Novella and Tarrasó (1), Meranda and Furter (3), and Schmitt (4).

Experimental Section

Apparatus. A diagram of the apparatus is shown in Figure 1; It is a modified Naumann still (8) especially designed for salt effect studies in the range of 300-500 K and to 150 kPa. It is of the recirculation type, in which both liquid and vapor recirculate continuously, and allows the determination of the equilibrium composition of both phases. The essential elements are a 400 cm³ Pyrex glass flask, 2 (equipped with a magnetic stirrer, 18, and a heating coil, 1), a Cottrell pump, 3, an equilibrium chamber, 5 (both isolated from outside by a silvered vacuum jacket, 4), a condenser, 8, for the vapor phase, a cooler, 13, for the liquid phase, two sampling ports, 10 and 14, fitted with rubber septums, and a magnetic stirred mixing chamber, 16. The volume of 400 cm³ was chosen due to the necessity of removal of about 10 cm³ of the liquid phase for the determination of the amount of salt in solution. Also, a large liquid volume makes possible the maintenance of a constant molar salt composition. The liquid phase return branch, 12, was built as short as possible, eliminating the occurrence of salt deposits. The equilibrium flask was involved with heating tapes to prevent heat losses.

In its operation, 350 cm³ of solution is introduced into the still through the feed system, 20, which allows feeding also at pressures other than atmospheric. The solution is then brought partially to boil by an internal electric heater, 1. The Cottrell pump, 3, carries the mixture of liquid and vapor upward to the equilibrium chamber, 5, where the two phases, after striking directly against the thermometer stem, separate into a liquid and a vapor stream. The vapor is condensated in 8 and passed through the sampling port to the mixing chamber, 16. The liquid is cooled in 13 and passed through the sampling port, 14, to 16, where it mixes with the condensate, returning to flask 2 for recirculation.

The still can be operated at constant temperature or pressure. The steady state was usually reached after 30 min of operation. Samples of both phases are taken using syringes. Changes in composition are made by purging a known amount of solution, and replacing it by an amount of one component,

Figure 1. Diagram of the equilibrium cell: 1, heating coil; 2, Pyrex glass flask; 3, Cottrell pump; 4, vacuum jacket; 5, equilibrium chamber; 6, Pt-100 thermometer; 7, 12, return tubes for the vapor and liquid streams, respectively; 8, condenser; 9, 21, pressure equalizing tubes; 10, 14, sampling ports; 11, return tube for the condensate; 13, cooler; 15, return tube for the cooled liquid; 16, mixing chamber; 17, return tube for the mixture; 18, magnetic stirrer; 19, drain; 20, filler; 22, stopcock; 23, funnel; 24, to pressure measuring instrument, vacuum pump, and nitrogen tank.

without interruption of the operation.

The apparatus is attached with the ald of a ground-glass joint, 24, to a vacuum pump, a U-tube mercury manometer, a compressed nitrogen gas bottle, and a 200-L surge tank with nitrogen to stabilize the gas pressure in the still.

The temperature in the equilibrium chamber is measured using a platinum resistence thermometer, 6, in conjunction with a Fischer Model DT digital instrument. Pressure is determined by measuring the difference in column height of the mercury in the arms of a mercury U-tube manometer using a cathetometer. The compositions of the vapor-phase condensate samples are determined from measurements of their refractive indexes at 293.15 K with an Abbe-type refractometer. For the salt solutions a method consisting of refractometry and gravimetry was used (9).

The uncertainty in the pressure measurement is about ± 0.02 kPa, in temperature about ± 0.05 K, in refractive index about ± 0.0001 , and in mass about ± 0.00005 g.

The uncertainty in the final molar fraction values caused by the above uncertainties is estimated to ± 0.005 .

Materials. Ethanoi (p.a. grade, 99.0 mol % Merck), cyclohexane (p.a. grade, 99.5 mol %, Grupo Química, Brazil), tolu-

Table I. Experimental Vapor Pressures P^{\vee} of Ethanol as a Function of Temperature T^a

T/K	P ^v /kPa	T/K	P ^v /kPa	T/K	P ^v /kPa
306.15	12.40	332.05	45.14	350.25	99.00
307.65	13.68	333.15	47.68	350.75	99.83
309.75	15.18	335.45	52.5 9	350.95	100.89
310.95	16.03	337.75	58.10	351.15	101.82
312.15	17.22	339.95	63.8 9	352.35	106.73
313.35	18.18	341.05	66.28	353.35	108.72
314.45	19.28	342.75	71.60	354.05	112.50
315.55	20.48	342.95	72.46	354.65	112.60
316.95	22.01	344.45	78.48	355.75	119.21
318.25	23.54	346.85	85.32	356.55	122.90
320.65	26.52	347.85	89.01	357.95	129.60
323.75	31.34	349.05	93.44	358.55	133.01
327.95	37.17	349.75	96.19	359.95	139.52

^a The Antoine constants are A = 16.17126, B = 3375.151304 K, and C = -59.341321 K.

Table II. Experimental Vapor-Liquid Equilibrium Data for Cyclohexane(1)-Toluene (2) at 323.15 K

P/kPa	\boldsymbol{x}_1	y_1	P/kPa	\boldsymbol{x}_1	y_1	
12.35	0.000	0.000	24.44	0.392	0.665	
14.67	0.058	0.191	25.91	0.459	0.711	
15.26	0.066	0.230	27.13	0.525	0.749	
15.68	0.087	0.274	28.07	0.564	0.783	
16.24	0.108	0.322	29.21	0.610	0.808	
17.18	0.141	0.370	29.73	0.647	0.827	
17.77	0.157	0.391	30.20	0.679	0.839	
18.61	0.185	0.437	31.06	0.720	0.867	
1 9 .35	0.206	0.479	32.84	0.805	0.909	
20.33	0.246	0.516	34.08	0.875	0.939	
21.66	0.293	0.574	34.64	0.904	0.954	
22.69	0.329	0.615	35.36	0.949	0.975	
23.12	0.339	0.631	36.38	1.000	1.000	

Table III. Deviations between Calculated and Measured y_1 Values for Cyclohexane (1)-Toluene (2) at 323.15 K and Ethanol (1)-Water (2) at 101.33 kPa

 $\Delta Y = \frac{1}{N} \sum_{i=1}^{N} |y_{i,\text{calcd}} - y_{i,\text{exptl}}|$

system	no. of data points	ΔY
cyclohexane-toluene ($T = 323.15$ K)	26	0.0071
ethanol-water ($P = 101.33$ kPa)	26	0.0097

ene (p.a. grade, 99.5 mol %, Grupo QuÍmica, Brazil), and potassium acetate (p.a. grade, 99.9 mol %, Reagen, Brazil) were used without further purification. The water used was laboratory-distilled, and its normal boiling point was 373.15 K.

Results and Discussion

Performance of the New Apparatus. The performance of the apparatus was evaluated by measuring vapor pressure values for ethanol and vapor-liquid equilibrium data for the systems toluene-cyclohexane, and water-ethanol.

Vapor pressure data of pure ethanol were measured over the range 306-360 K, and the results were fitted to the Antoine equation:

$$\ln (P^{v}/kPa) = A - B/((T/K) + C)$$

The results appear in Table I. The normal boiling temperature obtained from this equation is 351.49 K, while the literature value (10) is 351.43 K. The average relative deviation between experimental and calculated pressures was 0.042%. The average deviation between the experimental vapor pressures and the values of Ambrose and Sprake (11) was 0.02 kPa.

Vapor-liquid equilibrium data have been measured for the system cyclohexane-toluene at 323.15 K and for the system water-ethanol at 101.33 kPa. The results are given in Tables

Fable IV. Experimental Results for Ethanol	(1)-Water (2	2)–Potassium A	Acetate at 101.33 kPa
---	--------------	----------------	-----------------------

ABOICIT. DAL	you into neal								
<i>x</i> ₁	<i>y</i> ₁	T/K	γ_1	γ_2	<i>x</i> ₁	<i>y</i> ₁	T/K	γ1	γ_2
				s =	0.000				
0.000	0.000	373.15			0.536	0.669	352.95	1.184	1.529
0.023	0.200	366.55	5.094	1.036	0.611	0.710	352.35	1.126	1.639
0.049	0.289	364 15	4.373	1.026	0.718	0.761	351 75	1.050	1.912
0.072	0.200	360 45	3 950	1.031	0.779	0 799	351 65	1 097	2010
0.070 A 199	0.000	959 AE	9 210	1 097	0.110	0.100	961.00 961 EE	1 010	2.013
0.138	0.493	000.00	2.012	1.02/	0.010	0.031	001.00	1.010	4.030
0.147	0.009	307.00	2.115	1.020	0.869	0.682	JD1.40	1.016	2.009
0.164	0.521	357.05	2.593	1.041	0.897	0.897	351.25	1.009	2.317
0.209	0.566	356.25	2.274	1.029	0.924	0.921	351.35	1.002	2.402
0.238	0.562	355.75	2.020	1.099	0.936	0.930	351.35	0.998	2.528
0.295	0.587	354.95	1.753	1.157	0.951	0.943	351.35	0.996	2.691
0.377	0.614	354.15	1.478	1.264	0.975	0.972	351.45	0.998	2.584
0 437	0.627	353 65	1.326	1.379	0.992	0.984	351 45	0.993	4,618
001.0	0.640	353.05	1 995	1 402	1 000	1 000	351 45	5.000	
0.200	0.020	000.20	1,220	1.130	1.000	1.000	001.20		
0 000	0.000	077 07		s =	0.025	0.501	950.05	1 000	1 500
0.000	0.000	375.35			0.539	0.704	353.05	1.233	1.530
0.009	0.145	370.25	8.769	1.007	0.572	0.715	352.85	1.189	1.604
0.018	0.213	366.55	6.902	1.068	0.602	0.746	352.65	1.188	1.564
0.039	0.328	364.15	5.329	1.018	0.645	0.764	352.45	1.144	1.669
0.049	0.388	362.55	5.355	0.995	0.697	0.799	352.25	1.114	1.727
0.084	0.465	360.05	4,069	0.998	0.725	0.820	351.95	1.112	1.756
0 195	0.504	358 65	3 109	1.023	0 771	0.845	351 75	1 086	1.929
0.140	0.004	257 25	9 204	1 040	V 8V6	0.040	351.55	1 049	9 1 20
0.140	0.020	001.00	2.000	1.020	0.000	0.000	001.00 951 45	1.000	0.100
0.198	0.000	300.70	2.313	1.002	0.658	0.912	001.40	1.000	4.070
0.243	0.578	306.05	2.012	1.124	0.863	0.923	301.00	1.068	1.900
0.275	0.606	355.65	1.892	1.120	0.873	0.924	351.55	1.056	2.176
0.309	0.602	354.95	1.717	1.221	0.913	0.962	351.55	1.051	2.181
0.416	0.655	353.95	1.440	1.327	0.931	0.975	351.55	1.045	2.621
0.471	0.676	353.55	1.331	1.412	0.940	0.983	351.55	1.043	2.930
0.500	0.689	353 35	1.286	1.450	0.975	1.000	351.55		
0.000	0.000	555.00	1.200		0.010	2.000	551.00		
		0-· -		s =	0.050	A =	0=0		
0.000	0.000	374.25	. . –	.	0.505	0.718	353.25	1.333	1.496
0.014	0.242	369.35	9.473	0.974	0.541	0.744	353.15	1.294	1.508
0.024	0.345	366.95	8.143	0.932	0.618	0.795	352.65	1.232	1.558
0.041	0.451	362.35	7.340	0.947	0.672	0.817	352.45	1.173	1.731
0.103	0.503	360.15	3.563	1.002	0.728	0.852	352.35	1.133	1.833
0 145	0.549	358.25	2.948	1.033	0.771	0.887	352.25	1.118	1.877
0.050	0.598	356 55	2.160	1.119	0 803	0.917	352 15	1,114	1.890
0.200 A 007	0.000	955 75	1 944	1 1 97	0.000 A 950	0.050	359 15	1 094	2.005
0.207	0.020	000.10	1.044	1.10/	0.003	0.500	002.10 950 15	1.000	2.000 0 050
0.326	0.037	004.00	1.739	1.204	0.895	0.990	002.10	1.018	2.200
0.404	0.669	304.15	1.503	1.300	0.950	1.000	392.15		
0.478	0.705	353.55	1.368	1.454					
				s =	0.066				
0.034	0.427	367.55	7.029	0.833	0.489	0.740	353. 9 5	1.382	1.405
0.048	0.495	365.75	6.141	0.798	0.533	0.762	353.55	1.323	1.466
0 103	0.541	362.25	3.534	0.894	0.540	0.768	353.45	1.323	1.461
0 1 9 0	0 557	361 25	3 940	0.912	0.595	0 781	353 35	1 946	1,603
0.120	0.001 A 820	001.00 920 25	3 069	0.012	0.000	0.101	352 95	1 909	1 619
0.132	0.000	000.00	0.000	0.044	0.042	0.024	000.20	1.202	1 450
0.178	0.593	309.45	2.494	0.909	0.697	0.881	002.95	1.190	1.400
0.193	0.607	358.65	2.420	0.985	0.744	0.895	352.75	1.147	1.758
0.273	0.658	355.65	2.070	1.101	0.777	0.924	352.75	1.133	1.677
0.289	0.659	355.35	1.978	1.138	0.788	0.929	352.65	1.129	1.7 6 0
0.337	0.671	355.15	1.740	1.027	0.818	0.953	352.55	1.120	1.824
0.381	0.693	355.05	1.592	1.234	0.846	0.987	352.45	1.124	1.031
0.001	0 694	354 75	1 569	1.276	0.010	1.000	352 35		
0.004	0.004	354 45	1 594	1 909	0.704	1.000	002.00		
0.410	0.702	004.40	1.004	1.430					
		_		s =	0.085				
0.000	0.000	375.15		-	0.436	0.743	353. 9 5	1.555	1.309
0.019	0.377	372.25	9.332	0.782	0.506	0.782	353.65	1.426	1.353
0.055	0.521	366.35	5.562	0.778	0.565	0.806	353.45	1.325	1.473
0.140	0.592	360.85	3.008	0.915	0.617	0.844	353.25	1.280	1.472
0 1 89	0.622	358 45	2.649	0.984	0.705	0.909	352.95	1.220	1.425
A 970	0.022	956 65	9 094	1 079	0.740	0 025	359 75	1 204	1 281
0.212	0.000	956 AF	1 054	1 000	0.140	0.000	9502.10 950 25	1 1 2 1	1 994
0.296	0.000	000.00	1.904	1.092	0.780	0.903	302.00	1.101	1.200
0.360	0.714	355.05	1.737	1.169	0.915	1.000	352.65		
0.385	0.728	354.55	1.689	1.200					
				s =	0.150				
0.000	0.000	379.45		0 -	0.271	0.735	356.65	2.238	1.048
0.094	0 479	373 95	9.230	0.734	0 411	0.799	355 15	1.694	1.199
0.02m	0.409	367 45	3 000	0 741	0.400	0 911	354 05	1 700	1 263
0.000	0.000	001.40 960 or	0.000	0.141	0.400	0.011	004.00	1 504	1 41 4
0.120	0.000	002.20	J.492	0.049	0.011	0.044	000.00	1.524	1.414
0.206	0.704	308.30	2.652	0.962					

Table V. Critical Temperature (T_c) , Critical Pressure (P_c) , Critical Compressibility Factor (Z_{*}) , Rackett's Parameter (Z_R) , Acentric Factor (ω), Tsonopoulos Constants (a, b), and Parameters of the Antoine Equation (A, B, C)

		-		
	ethanol	water	cyclohexane	toluene
$\overline{T_c^{a}/\mathrm{K}}$	516.2	647.3	557.4	591.7
$P_{a}^{a}/(kPa \times 10^{-2})$	63.8	220.5	40.7	41.1
Za	0.248	0.229	0.273	0.264
ω ^ă	0.635	0.344	0.218	0.257
$Z_{\mathbf{R}}^{b}$	0.2520	0.2380	0.2729	0.2646
ac	0.0878	0.0279	0	0
b^{c}	0.0560	0.0229	0	0
A ^d	18.9119	18.3036	15.7527	16.0137
B^d/K	3803.98	3816.44	2766.63	3906.52
$C^{d'}/\mathbf{K}$	-41.68	-46.13	-50.50	-53.67

^a Reference 21.	^b Reference 19.	^c Reference 18.	^d Reference 20.
IVELELENCE AL.	INCICICITUS IS.	INSIGICITO IO.	IVELET CHICE 20

Figure 2. Temperature-mole fraction of ethanol diagram for the system water-ethanol-potassium acetate at 101.33 kPa and s =0.025.

II and IV. Comparisons with data measured by Sieg (12), Myers (13), and Riveng (14) for the system cyclohexane-toluene and with data measured by Bloom (15) and Jones (16) for the system water-ethanol show good agreement. The thermodynamic consistency of the data was tested by the Fredenslund test (17). The results appear in Table III. Thermodynamic quantities used in the calculations are given in Table V. The data sets were considered consistent using the criteria given in the literature.

Salt Effect Data. The effect of potassium acetate on the vapor-liquid equilibrium of ethanol-water was studied at 101.33 kPa at five different mole fractions of acetate (0.025, 0.050, 0.066, 0.085, and 0.150). The results are given in Table IV. Experimental activity coefficients for water and ethanol on a three-component basis were obtained from the equation

$$\ln \gamma_i = \ln \left(\frac{y_i P}{x_i P_i^{v}}\right) + \frac{(B_y - V_i)(P - P_i^{v})}{RT} + \frac{(1 - y_i)^2 P \sigma}{RT} \delta$$

where $\delta = 2B_{\mu} - B_{\mu} - B_{\mu}$. Second virial coefficients B_{μ} , B_{μ} , and B_a were estimated using correlations suggested by Tsonopoulos (18). The pure liquid molar volumes V_i were obtained by the modified Rackett equation (19). For the vapor pressure P_i^v , literature values (20) were used. Pure component thermodynamic quantities used in these calculations are given in Table V. Figure 2 shows a typical curve at 101.33 kPa for the studied

system at a salt mole fraction of 0.025. The azeotropic point disappears at a sait mole fraction larger than 0.066. Vaporliquid equilibrium of the studied system have been also measured by Schmitt (4), Meranda and Furter (3), and Costa Novella and Tarrasó (1). All these measurements have been performed using an Othmer-type still. A comparison with Schmitt's data is possible. The data of the present work show a slight negative deviation in the vapor composition (between 0.005 and 0.02) and a negative temperature deviation between 1 and 4 K. These differences may be attributed to the Cottrell pump in the proposed still, which allows a temperature measurement without superheating.

In our opinion stills with recirculation of both phases containing a Cottrell pump seem to be an improvement of ebulliometric techniques for the measurement of the salt effect on liquid-vapor equilibria.

Nomenciature

- A,B,C = parameters of the Antoine equation
- a,b = Tsonopoulos constants
- $B_{\mu}, B_{\mu}, B_{\mu} = \text{virial coefficients, cm}^3 \text{ mol}^{-1}$
- N = number of data points
- P^{v} = vapor pressure, kPa
- P = pressure, kPa
- R = universal gas constant, cm³ kPa K⁻¹ mol⁻¹
- s = mole fraction of salt
- T = absolute temperature, K
- V_i = molar volume of component *i*, cm³ mol⁻¹
- x = mole fraction in the liquid phase
- y = mole fraction in the vapor phase
- z = compressibility factor
- $Z_{\rm B}$ = Rackett's parameter

Greek Letters

- $\gamma_1, \gamma_2 = \text{activity coefficients}$
- ω = acentric factor

Subscripts

- calcd = calculated
- expti = experimental
- c = critical

Literature Cited

- Costa Novella, E.; Tarrasó, J. M. An. Fis. Quim. 1952, 6B, 441.
 Johnson, A. I.; Furter, W. F. Can. J. Technol. 1957, 34, 413.
 Meranda, D.; Furter, W. F. Can. J. Chem. Eng. 1966, 44, 298.
 Schmitt, D. Ph.D. Thesis, University of Karisruhe, FRG, 1979.

- (5)
- Galan, M. A.; Labrador, M. D.; Alvarez, J. R. J. Chem. Eng. Data 1980, 25, 7. Hala, E.; Pick, J.; Friend, V.; Vilim, O. Vapor-Liquid Equilibrium; Perga-(6)
- mon: Oxford, 1967.
- Malanowski, S. Fluid Phase Equilib. 1982, 8, 197. Naumann, D.; Scheunemann, U.; Wagner, H. G. Z. Phys. Chem. (8)
- Neue Folge 1981, 127, 129. (9) Zemp, R. J. M.Sc. Thesis, State University Campinas, Brazil, 1989. (10) Timmermans, J. Physico Chemical Constants of Pure Organic Com-
- pounds; Elsevier: Amsterdam, 1965; Vol. 2. (11)
- Ambrose, D.; Sprake, C. H. S. J. Chem. Thermodyn. 1970, 2, 631. (11) Ambrose, D.; Sprake, C. H. S. J. Chem. Intermogn. 1970, 2, 631.
 (12) Sieg, L. Chem.-Ing.-Tech. 1950, 15, 322.
 (13) Myers, H. S. Ind. Eng. Chem. 1958, 48, 1104.
 (14) Rivenq, F. Bull. Soc. Chim. 1989, 9, 3034.
 (15) Bloom, C. H.; Clump, C. W.; Koeckert, A. H. Ind. Eng. Chem. 1961, 6200.

- 53, 829.
- (16) Jones, C. A.; Schoenborn, E. M.; Colburn, A. P. Ind. Eng. Chem. 1943, 35, 666.
- Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor-Llquid Equilibria Using UNIFAC; Elsevier: Amsterdam, 1977.
 Tsonopoulos, C. AIChE J. 1974, 20, 263.
- Prausnitz, J. M.; Anderson, T. F.; Grens, E. A.; Eckert, C. A.; Hsleh, R.; O'Connell, J. P. Computer Calculations for Multicomponent Vapor-Liq-uid and Liquid-Liquid Equilibria; Prentice-Hall: Englewood Cliffs, NJ, (19)1980
- (20) Gmehling, J.; Onken, U.; Vapor-Liquid Equilibrium Data Collection; DECHEMA Chemistry Data Series; DECHEMA: Frankfurt, 1977; Vol. , pp 1–10.
- (21) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids; McGraw-Hill: New York, 1987.

Received for review September 23, 1991. Revised manuscript received February 19, 1992. Accepted February 25, 1992.