$M_{1} \quad$ molar mass of compound $/$
n_{1} refractive index of pure compound / for the sodium D-lline
n_{12} refractive index of the binary mixture for the sodium D-line
δn_{12} refractive index difference defined by eq 12
$R_{12} \quad$ specific refractivity of binary mixture
$V^{E} \quad$ excess volume on mixing
x_{1} mole fraction of compound I
W_{2} mass fraction of compound I
Greek Letters

ρ_{1}	density of pure compound $/$
ρ_{12}	density of binary mixture
σ	standard deviation
ϕ_{1}	volume fraction of compound $/$
$\sigma\left(a_{k}\right)$,	standard deviation of the parameters a_{k} and b_{k}, re-
$\sigma\left(b_{k}\right)$	spectively
$\sigma\left(n_{12}\right)$,	standard deviation of the flt by eqs 10 and 11, re-
$\sigma\left(\rho_{12}\right)$	spectively

Subscripts
exptl experimentally observed quantity
calcd calculated quantity

Regletry No. Benzene, 71-43-2; cyclohexane, 110-82-7; acetone, 67-64-1.

Literature Ched

(1) Heller, W. J. Phys. Chom. 1985, 69, 1123.
(2) Shindo, Y.; Kusano, K. J. Chem. Eng. Data 1979, 24, 106.
(3) Aminabhavi, T. M. J. Chern. Eng. Data 1964, 29, 54
(4) Brown, I.; Foch, W. Aust. J. Chem. 1955, 8, 381.
(5) TRC Thermodynamke Tables -Hydrocarbons; ; Thermodynamics Rosearch Center, The Texas A8M University System: Colloge Station, TX, (a) 1985, a-3290; (b) 1986, a-2050.
(6) Radojkovič, N.; Taste, A.; Dlordjeviß, B.; Grozdanič, D. J. Chem. Thermodyn. 1978, 8, 1111.
(7) Radojkoviz, N.; TasiE, A.; GrozdaniZ, D.; Djordeviľ, B.; Malle, D. J. Chem. Thermodyn. 1977, 9, 349.
(8) Stablnger, H.; Leopold, H.; Kratky, O. Monatsh. Chem. 1967, 98, 463.
(9) Lorentz, H. A. Wied. Ann. 1860, 9, 841. Lorenz, L. Ibld. 1880, 11 70.
(10) Wiener, O. Letpz. Ber. 1910, 62, 256
(11) Heller, W. Phys. Rev. 1845, 68, 5 .
(12) Dale, D.; Gladsione, F. Philos. Trans. R. Soc. London 1858, 148, 887.
(13) Arago, D. F. J.; Blot, J. B. Mem. Acad. Fr. 1808, 7.

Recelved for review September 19, 1991. Accepted March 23, 1992. We are grateful to the Research Fund of Serbla for proviling part of the financlal support necessary to carry out the present investigation.

Salt Effect on Phase Equilibria by a Recirculating Still

Roger Josef Zemp and Artur Zaghinl Francesconi*
Departamento de Engenharla de Sistemas Químicos, Universidade Estadual de Campinas, C.P. 6066, 13081 Campinas, Brazll

Abstract

A now stlll to meacure the salt effoct on the vapor-liquid equillbrium at low pressures was developed. It is of the rectrculating type, allowing the recirculation of both phases and the determination of its compoestion. The atill was testod with the syotem ethanol-water-potaselum acotate at different mole fractions of salt at 101.33 kPa .

Introduction

The most work concerning the experimental determination of the salt effect on the vapor-liquid equilibrium at low pressures uses the well-known Othmer still as standard equipment (1-5). Hala et al. (6) and Malanowskl (7) describe one disadvantage of the Othmer still as being the superheating of the gas phase, not allowing the correct determination of the equllbrium temperature. On the other hand, only the vapor phase recirculates.
The purpose of this work was to develop, construct, and test an equllibrium sthl to ellminate the problems mentioned above. It differs from others which have been used for salt effect studles in the sense that both equllibrium phases recirculate with the ald of a Cottrell pump. To test the proposed apparatus, the system water-ethanol-potassium acetate was chosen. This system has been prevlously studed by Costa Novella and Tarrasö (1), Meranda and Furter (3), and Schmitt (4).

Experimental Section

Apparatres. A dlagram of the apparatus is shown in Flgure 1; it is a modified Naumann sth (8) especially designed for salt effect studles in the range of $300-500 \mathrm{~K}$ and to 150 kPa . It is of the recirculation type, in which both liquid and vapor re-
circuiate continuously, and allows the determination of the equllibrlum composition of both phases. The essential elements are a $400 \mathrm{~cm}^{3}$ Pyrex glass flask, 2 (equipped with a magnetic stirrer, 18, and a heating coll, 1), a Cottrell pump, 3, an equilibrium chamber, 5 (both lsolated from outside by a silvered vacuum jacket, 4), a condenser, 8 , for the vapor phase, a cooler, 13, for the liquid phase, two samplling ports, 10 and 14, fitted with rubber septums, and a magnetic stirred mixing chamber, 16. The volume of $400 \mathrm{~cm}^{3}$ was chosen due to the necessity of removal of about $10 \mathrm{~cm}^{3}$ of the liquid phase for the determination of the amount of salt in solution. Also, a large liquid volume makes possible the maintenance of a constant molar salt composition. The Hquid phase return branch, 12, was built as short as possible, eliminating the occurrence of salt deposits. The equllibrium flask was involved with heating tapes to prevent heat losses.

In lis operation, $350 \mathrm{~cm}^{3}$ of solution is introduced into the stlll through the feed system, 20, which allows feeding also at pressures other than atmospheric. The solution is then brought partially to boil by an internal electric heater, 1. The Cottrell pump, 3, carries the mixture of liquid and vapor upward to the equillbrium chamber, 5 , where the two phases, after striking drectly against the thermometer stem, separate into a llquid and a vapor stream. The vapor is condensated in 8 and passed through the sampling port to the mixing chamber, 16. The llquid is cooled in 13 and passed through the sampling port, 14, to 16, where It mixes with the condensate, returning to flask 2 for recirculation.

The still can be operated at constant temperature or pressure. The steady state was usually reached after 30 min of operation. Samples of both phases are taken using syringes. Changes in composition are made by purging a known amount of solution, and replacing it by an amount of one component,

Figure 1. Dlagram of the equilibrium cell: 1, heating coil; 2, Pyrex glass flask; 3, Cottrell pump; 4, vacuum Jacket; 5 , equllibrium chamber; $6, \mathrm{Pt}-100$ thermometer; 7, 12, return tubes for the vapor and liquld streams, respectively; 8 , condenser; 9, 21, pressure equallzing tubes; 10, 14, samplling ports; 11 , return tube for the condensate; 13, cooler; 15, return tube for the cooled liquid; 16, mixing chamber; 17, return tube for the mixture; 18, magnetic stirrer; 19, drain; 20, flller; 22, stopcock; 23, funnel; 24, to pressure measuring instrument, vacuum pump, and nitrogen tank.
whout interruption of the operation.
The apparatus is attached with the ald of a ground-glass joint, 24, to a vacuum pump, a U-tube mercury manometer, a compressed nitrogen gas bottie, and a 200-L surge tank with nitrogen to stabilize the gas pressure in the still.

The temperature in the equilibrium chamber is measured using a platinum resistence thermometer, 6 , in conjunction with a Fischer Model DT digital instrument. Pressure is determined by measuring the difference in column height of the mercury in the arms of a mercury U-tube manometer using a cathetometer. The compositions of the vapor-phase condensate samples are determined from measurements of thelr refractive indexes at 293.15 K whth an Abbe-type refractometer. For the salt solutions a method consisting of refractometry and gravimetry was used (9).

The uncertainty in the pressure measurement is about ± 0.02 kPa , in temperature about $\pm 0.05 \mathrm{~K}$, in refractlve index about ± 0.0001, and in mass about $\pm 0.00005 \mathrm{~g}$.

The uncertainty in the final molar fraction values caused by the above uncertainties is estimated to ± 0.005.

Materlals. Ethanol (p.a. grade, 99.0 mol \% Merck), cyclohexane (p.a. grade, 99.5 mol \%, Grupo Química, Brazil), tolu-

Table I. Experimental Vapor Pressures P^{v} of Ethanol as a Function of Temperature T^{a}

T / K	$P^{\mathrm{v}} / \mathrm{kPa}$	T / K	$P^{\mathrm{v}} / \mathrm{kPa}$	T / K	$P^{\mathrm{v}} / \mathrm{kPa}$
306.15	12.40	332.05	45.14	350.25	99.00
307.65	13.68	333.15	47.68	350.75	99.83
309.75	15.18	335.45	52.59	350.95	100.89
310.95	16.03	337.75	58.10	351.15	101.82
312.15	17.22	339.95	63.89	352.35	106.73
313.35	18.18	341.05	66.28	353.35	108.72
314.45	19.28	342.75	71.60	354.05	112.50
315.55	20.48	342.95	72.46	354.65	112.60
316.95	22.01	344.45	78.48	355.75	119.21
318.25	23.54	346.85	85.32	356.55	122.90
320.65	26.52	347.85	89.01	357.95	129.60
323.75	31.34	349.05	93.44	358.55	133.01
327.95	37.17	349.75	96.19	359.95	139.52

${ }^{a}$ The Antoine constants are $A=16.17126, B=3375.151304 \mathrm{~K}$, and $C=-59.341321 \mathrm{~K}$.

Table II. Experimental Vapor-Liquid Equilibrium Data for Cyclohezane(1)-Toluene (2) at 323.15 K

P / kPa	x_{1}	y_{1}	P / kPa	x_{1}	y_{1}
12.35	0.000	0.000	24.44	0.392	0.665
14.67	0.058	0.191	25.91	0.459	0.711
15.26	0.066	0.230	27.13	0.525	0.749
15.68	0.087	0.274	28.07	0.564	0.783
16.24	0.108	0.322	29.21	0.610	0.808
17.18	0.141	0.370	29.73	0.647	0.827
17.77	0.157	0.391	30.20	0.679	0.839
18.61	0.185	0.437	31.06	0.720	0.867
19.35	0.206	0.479	32.84	0.805	0.909
20.33	0.246	0.516	34.08	0.875	0.939
21.66	0.293	0.574	34.64	0.904	0.954
22.69	0.329	0.615	35.36	0.949	0.975
23.12	0.339	0.631	36.38	1.000	1.000

Table III. Deviations between Calculated and Measured y_{1} Values for Cyclohexane (1)-Toluene (2) at 323.15 K and Ethanol (1)-Water (2) at 101.33 kPa

$$
\Delta Y=\frac{1}{N} \sum_{i=1}^{N}\left|y_{i, \text { caldd }}-y_{i, \text { exput }}\right|
$$

system	no. of data points	ΔY
cyclohexane-toluene $(T=323.15 \mathrm{~K})$	26	0.0071
ethanol-water $(P=101.33 \mathrm{kPa})$	26	0.0097

ene (p.a. grade, $99.5 \mathrm{~mol} \%$, Grupo Química, Brazh), and potassium acetate (p.a. grade, $99.9 \mathrm{~mol} \%$, Reagen, Brazl) were used without further purification. The water used was labora-tory-distilled, and its normal boiling point was 373.15 K .

Results and Discussion

Performance of the Now Apparatus. The performance of the apparatus was evaluated by measuring vapor pressure values for ethanol and vapor-liquld equilibrium data for the systems toluene-cyclohexane, and water-ethanol.
Vapor pressure data of pure ethanol were measured over the range 306-360 K, and the results were fitted to the Antoine equation:

$$
\ln \left(P^{v} / k P a\right)=A-B /((T / K)+C)
$$

The results appear in Table I. The normal bolling temperature obtained from this equation is 351.49 K , while the literature value (10) is 351.43 K . The average relative deviation between experimental and calculated pressures was 0.042%. The average deviation between the experimental vapor pressures and the values of Ambrose and Sprake (11) was 0.02 kPa .

Vapor-liquid equilibrium data have been measured for the system cyclohexane-toluene at 323.15 K and for the system water-ethanol at $101.33 \mathbf{k P a}$. The results are given in Tables

Table IV. Experimental Results for Ethanol (1)-Water (2)-Potassium Acetate at $101.33 \mathbf{k P a}$

x_{1}	y_{1}	T/K	γ_{1}	γ_{2}	x_{1}	y_{1}	T/K	γ_{1}	γ_{2}
$s=0.000$									
0.000	0.000	373.15			0.536	0.669	352.95	1.184	1.529
0.023	0.200	366.55	5.094	1.036	0.611	0.710	352.35	1.126	1.639
0.042	0.289	364.15	4.373	1.026	0.718	0.761	351.75	1.050	1.912
0.073	0.399	360.45	3.952	1.031	0.773	0.798	351.65	1.027	2.019
0.138	0.493	358.05	2.812	1.027	0.816	0.831	351.55	1.016	2.096
0.147	0.509	357.55	2.775	1.025	0.869	0.882	351.45	1.016	2.069
0.164	0.521	357.05	2.593	1.041	0.897	0.897	351.25	1.009	2.317
0.209	0.566	356.25	2.274	1.029	0.924	0.921	351.35	1.002	2.402
0.238	0.562	355.75	2.020	1.099	0.936	0.930	351.35	0.998	2.528
0.295	0.587	354.95	1.753	1.157	0.951	0.943	351.35	0.996	2.691
0.377	0.614	354.15	1.478	1.264	0.975	0.972	351.45	0.998	2.584
0.437	0.627	353.65	1.326	1.379	0.992	0.984	351.45	0.993	4.618
0.490	0.640	353.25	1.225	1.493	1.000	1.000	351.45		
$s=0.025$									
0.000	0.000	375.35			0.539	0.704	353.05	1.233	1.530
0.009	0.145	370.25	8.769	1.007	0.572	0.715	352.85	1.189	1.604
0.018	0.213	366.55	6.902	1.068	0.602	0.746	352.65	1.188	1.564
0.039	0.328	364.15	5.329	1.018	0.645	0.764	352.45	1.144	1.669
0.049	0.388	362.55	5.355	0.995	0.697	0.799	352.25	1.114	1.727
0.084	0.465	360.05	4.069	0.998	0.725	0.820	351.95	1.112	1.756
0.125	0.504	358.65	3.108	1.023	0.771	0.845	351.75	1.086	1.929
0.146	0.528	357.65	2.896	1.040	0.808	0.865	351.55	1.068	2.130
0.198	0.556	356.75	2.313	1.082	0.858	0.912	351.45	1.065	2.078
0.243	0.578	356.05	2.012	1.124	0.863	0.923	351.55	1.068	1.950
0.275	0.606	355.65	1.892	1.120	0.873	0.924	351.55	1.056	2.176
0.309	0.602	354.95	1.717	1.221	0.913	0.962	351.55	1.051	2.181
0.416	0.655	353.95	1.440	1.327	0.931	0.975	351.55	1.045	2.621
0.471	0.676	353.55	1.331	1.412	0.940	0.983	351.55	1.043	2.930
0.500	0.689	353.35	1.286	1.450	0.975	1.000	351.55		
$s=0.050$									
0.000	0.000	374.25			0.505	0.718	353.25	1.333	1.496
0.014	0.242	369.35	9.473	0.974	0.541	0.744	353.15	1.294	1.508
0.024	0.345	366.95	8.143	0.932	0.618	0.795	352.65	1.232	1.558
0.041	0.451	362.35	7.340	0.947	0.672	0.817	352.45	1.173	1.731
0.103	0.503	360.15	3.563	1.002	0.728	0.852	352.35	1.133	1.833
0.145	0.549	358.25	2.948	1.033	0.771	0.887	352.25	1.118	1.877
0.230	0.598	356.55	2.160	1.112	0.803	0.917	352.15	1.114	1.890
0.287	0.620	355.75	1.844	1.187	0.853	0.950	352.15	1.086	2.095
0.326	0.637	354.65	1.739	1.264	0.895	0.990	352.15	1.079	2.256
0.404	0.669	354.15	1.503	1.355	0.950	1.000	352.15		
0.478	0.705	353.55	1.368	1.454					
$s=0.066$									
0.034	0.427	367.55	7.029	0.833	0.489	0.740	353.95	1.382	1.405
0.048	0.495	365.75	6.141	0.798	0.533	0.762	353.55	1.323	1.466
0.103	0.541	362.25	3.534	0.894	0.540	0.768	353.45	1.323	1.461
0.120	0.557	361.35	3.240	0.912	0.585	0.781	353.35	1.246	1.603
0.132	0.568	360.65	3.083	0.924	0.642	0.824	353.25	1.202	1.613
0.178	0.593	359.45	2.494	0.969	0.697	0.881	352.95	1.196	1.450
0.193	0.607	358.65	2.420	0.985	0.744	0.895	352.75	1.147	1.758
0.273	0.658	355.65	2.070	1.101	0.777	0.924	352.75	1.133	1.677
0.289	0.659	355.35	1.978	1.138	0.788	0.929	352.65	1.129	1.760
0.337	0.671	355.15	1.740	1.027	0.818	0.953	352.55	1.120	1.824
0.381	0.693	355.05	1.592	1.234	0.846	0.987	352.45	1.124	1.031
0.394	0.694	354.75	1.563	1.276	0.934	1.000	352.35		
0.410	0.702	354.45	1.534	1.298					
$s=0.085$									
0.000	0.000	375.15			0.436	0.743	353.95	1.555	1.309
0.019	0.377	372.25	9.332	0.782	0.506	0.782	353.65	1.426	1.353
0.055	0.521	366.35	5.562	0.778	0.565	0.806	353.45	1.325	1.473
0.140	0.592	360.85	3.008	0.915	0.617	0.844	353.25	1.280	1.472
0.182	0.622	358.45	2.649	0.984	0.705	0.909	352.95	1.220	1.425
0.272	0.668	356.65	2.026	1.078	0.740	0.935	352.75	1.204	1.381
0.296	0.685	356.05	1.954	1.092	0.780	0.963	352.65	1.181	1.286
0.360	0.714	355.05	1.737	1.169	0.915	1.000	352.65		
0.385	0.728	354.55	1.689	1.200					
$s=0.150$									
0.000	0.000	379.45			0.271	0.735	356.65	2.238	1.048
0.024	0.473	373.35	9.239	0.734	0.411	0.799	355.15	1.694	1.199
0.086	0.608	367.45	3.998	0.741	0.433	0.811	354.05	1.700	1.263
0.126	0.653	362.25	3.492	0.849	0.511	0.844	353.65	1.524	1.414
0.206	0.704	358.35	2.652	0.962					

Table V. Critical Temperature ($\boldsymbol{T}_{\mathrm{c}}$), Critical Pressure ($\boldsymbol{P}_{\mathrm{c}}$), Critical Compressibility Factor (Z_{c}), Rackett's Parameter $\left(Z_{\mathrm{R}}\right)$, Acentric Factor (ω), Tsonopoulos Constants (a, b), and Parameters of the Antoine Equation (A, B, C)

	ethanol	water	cyclohexane	toluene
$\overline{T_{\mathrm{c}}{ }^{\text {a }} / \mathrm{K}}$	516.2	647.3	557.4	591.7
$P_{c}^{a} /\left(\mathbf{k P a} \times 10^{-2}\right)$	63.8	220.5	40.7	41.1
$Z_{\text {c }}{ }^{\text {a }}$	0.248	0.229	0.273	0.264
$\omega^{\text {a }}$	0.635	0.344	0.218	0.257
$Z_{\text {R }}{ }^{\text {b }}$	0.2520	0.2380	0.2729	0.2646
$a^{\text {c }}$	0.0878	0.0279	0	0
b^{c}	0.0560	0.0229	0	0
$A^{\text {d }}$	18.9119	18.3036	15.7527	16.0137
B^{d} / K	3803.98	3816.44	2766.63	3906.52
C^{d} / K	-41.68	-46.13	-50.50	-53.67

${ }^{a}$ Reference 21. ${ }^{b}$ Reference 19. ${ }^{\text {c }}$ Reference 18. ${ }^{d}$ Reference 20.

Figure 2. Temperature-mole fraction of ethanol dlagram for the system water-ethanol-potassium acetate at 101.33 kPa and $\mathrm{s}=$ 0.025 .

II and IV. Comparisons with data measured by Sleg (12), Myers (13), and Rivenq (14) for the system cyctohexane-toluene and with data measured by Bloom (15) and Jones (16) for the system water-ethanol show good agreement. The thermodynamic consistency of the data was tested by the Fredenslund test (17). The results appear in Table III. Thermodynamic quantties used in the calculations are given in Table V. The data sets were considered consistent using the criteria given in the ilterature.

Sah Effoct Data. The effect of potassium acetate on the vapor-llquid equllibrium of ethanot-water was studied at 101.33 kPa at flve different mole fractions of acetate $(0.025,0.050$, $0.066,0.085$, and 0.150). The results are given in Table IV. Experimental actlvity coefficients for water and ethanol on a three-component basis were obtained from the equation

$$
\ln \gamma_{1}=\ln \left(\frac{y_{i} P}{x_{i} P_{i} v}\right)+\frac{\left(B_{i n}-V_{i}\right)\left(P-P_{i}^{v}\right)}{R T}+\frac{\left(1-y_{i}\right)^{2} P \sigma}{R T} \delta
$$

where $\delta=2 B_{j}-B_{f}-B_{j}$. Second virlal coefficients B_{f}, B_{j}, and B_{j} were estimated using corretations suggested by Tsonopoulos (18). The pure liquid molar volumes V, were obtained by the modifled Rackett equation (19). For the vapor pressure $P_{1}{ }^{\vee}$, Itierature values (20) were used. Pure component thermodynamic quantities used in these calculations are given In Table V. Figure 2 shows a typlcal curve at 101.33 kPa for the studled
system at a salt mole fraction of 0.025 . The azeotropic point disappears at a salt mole fraction larger than 0.066 . Vaporliquid equilibrium of the studied system have been also measured by Schmilt (4), Meranda and Furter (3), and Costa Novella and Tarraso (1). All these measurements have been performed using an Othmer-type still. A comparison with Schmitt's data is possible. The data of the present work show a slight negative deviation in the vapor composition (between 0.005 and 0.02) and a negative temperature deviation between 1 and 4 K . These differences may be attributed to the Cottrell pump in the proposed still, which allows a temperature measurement without superheating.

In our opinion stilis with recirculation of both phases containing a Cottrell pump seem to be an improvement of ebulllometric techniques for the measurement of the salt effect on liquid-vapor equilibria.

Nomenclature

$A, B, C=$ parameters of the Antoine equation
$a, b=$ Tsonopoulos constants
$B_{j}, B_{j}, B_{j}=$ virial coefficients, $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$
$N=$ number of data points
$P^{V}=$ vapor pressure, kPa
$P=$ pressure, kPa
$R=$ untuersal gas constant, $\mathrm{cm}^{3} \mathrm{kPa} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$s=$ mole fraction of salt
$T=$ absolute temperature, K
$V_{I}=$ molar volume of component $I, \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$
$x=$ mole fraction in the liquid phase
$y=$ mole fraction in the vapor phase
$z=$ compressibillty factor
$Z_{\mathrm{R}}=$ Rackett's parameter
Greek Letters
$\gamma_{1}, \gamma_{2}=$ activity coefficients
$\omega=$ acentric factor

Subscripts

calcd $=$ calculated
exptl $=$ experimental
$\mathrm{c}=\mathrm{crtt} \mid \mathrm{cal}$

Ltherature Ched

(1) Costa Novella, E.; Tarras6, J. M. An. Fis. Quilm. 1952, 6B, 441.
(2) Johnson, A. I.; Furter, W. F. Can. J. Technol. 1957, 34, 413.
(3) Meranda, D.; Furter, W. F. Can. J. Chem. Eng. 1966, 44, 298.
(4) Schmitt, D. Ph.D. Thesis, University of Karisruhe, FRG, 1979.
(5) Galan, M. A.; Labrador, M. D.; Alvarez, J. R. J. Chem. Eng. Data 1980, 25, 7.
(6) Hala, E.; Plck, J.; Friend, V.; VHm, O. Vapor-Liquid Equilibrium; Pergamon: Oxford, 1967.
(7) Malanowskl, S. Fkid Phase Equillb. 1982, 8, 197.
(8) Naumann, D.; Scheunemann, U.; Wagner, H. G. Z. Phys. Chem. Neve Folge 1981, 127, 129.
(9) Zemp, R. J. M.Sc. Thesis, State Unlversity Campinas, Brazll, 1989.
(10) Timmermans, J. Phystco - Chemical Constants of Pure Organic Compounds ; Elsevier: Amsterdam, 1965; Vol. 2.
(11) Ambrose, D.; Sprake, C. H. S. J. Chem. Thermodyn. 1970, 2, 631.
(12) Sleg, L. Chem.-Ing.-Tech. 1950, 15, 322.
(13) Myers, H. S. Ind. Eng. Chem. 1958, 48, 1104.
(14) Rivenq, F. Buth. Soc. Chmm. 1989, 9, 3034.
(15) Bloom, C. H.; Clump, C. W.; Koeckert, A. H. Ind. Eng. Chem. 1961, 53, 829.
(16) Jones, C. A.; Schoenborn, E. M.; Colburn, A. P. Ind. Eng. Chem. 1943, 35, 666.
(17) Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor-Liquid Equilloria Using UNIFAC; Elsevier: Amsterdam, 1977.
(18) Tsonopoulos, C. AIChE J. 1074, 20, 263.
(19) Prausnitz, J. M.; Anderson, T. F.; Grens, E. A.; Eckert, C. A.; Hsteh, R.; O'Connell, J. P. Computer Calcukattons for Millicomponent Vapor-Lilauld and Liquid-Liquid Equllbbila; Prentlice-Hall: Englewood Clifts, NW, 1980.
(20) Gmehiling, J.; Onken, U.; Vapor-Llquid Equillibrium Data Collection; DECHEMA Chemiatry Data Series; DECHEMA: Frankfurt, 1977; Vol. 1, pp 1-10.
(21) Reid, R. C.; Prausnitz, J. M.; Poing, B. E. The Propertles of Gases ano Liquids; McGraw-Hill: New York, 1987.

Recelved for review September 23, 1891. Revised manuscript recelved February 19, 1992. Accepted February 25, 1992.

