where $\phi_{k}{ }^{\circ}$ and $\phi_{v}{ }^{\circ}$ are limiting apparent molar compressiblity and limiling apparent molar volume, respectively. S_{K} and S_{V} are constants. The values of $\phi_{K}{ }^{\circ}$ and $\phi_{v}{ }^{\circ}$ and constants S_{K} and S_{v} have been obtained from the intercept and slope of the plots of ϕ_{K} vs $c^{1 / 2}$ and ϕ_{V} vs $c^{1 / 2}$ below the cmc and are recorded in Table II. The comparison of the data with that of electrolytes (20) shows that these soaps behave as simple electrolytes in dilute solutions.

The values of solvation number, S_{n}, of the solutions of manganese soaps in propan-1-ol decrease with increasing soap concentration (Table I). The plots of S_{n} vs c are characterized by a break at the cmc. The values of the solvation number exhiblt a marked change above the cme which may be attributed to more intake of solvent molecules above the cmc to reduce the reputsive forces acting between polar heads of lonic micelles.
Data on ultrasonic velocity show that the manganese soaps behave as simple electrolytes in solutions. The results confirm that there is a significant interaction between the soap-solvent molecules in dllute solutions, and the soap molecules do not aggregate appreclably above the cmc.

Regitiry Mo. Manganese caproate, 16571-42-9; manganese caprylate, 6819-13-2; manganese caprate, 7436-66-4; 1-propanol, 71-23-8.

Lherature Ched

(1) Bossert, R. G. J. Chem. Educ. 1950, 27, 10-15.
(2) Reed, P. D. J. Am. Perfum. Aromat. 1981, 76 (3), 49-50.
(3) Kambe, H. Bull. Chom. Soc. Jpn. 1961, 34, 1786-90.
(4) Mahendra, K. N.; Parashar, G. K.; Mehrotra, R. C. Synth. React. Inorg. Mot.-Org. Chem. 1961, 11 (3), 187-96.
(5) Herron, R. C.; Plink, R. C. J. Chem. Soc. 1955, 3948-52.
(6) Grunwaid, E.; Coburn, W. C. J. Am. Chem. Soc. 1958, 80, 1322.
(7) Coggeshall, N. D.; Saler, E. L. J. Am. Chem. Soc. 1951, 73, 5414.
(8) LIn, W.; Tsay, S. J. J. Phys . Chem. 1970, 74, 1037.
(9) Schnelder, W. G. In Hycrogen Bonding; Hadri, D., Ed.; Pergamon Press: London, 1959; p 55.
(10) Pimentel, G. C.; MacloHlan, A. L. The Hydrogen Bond; W. H. Freeman and Co.: San Francisco, 1960; p 67.
(11) Mehrotra, K. N.; Rawat, M. K. Indlan J. Pure Appl. Phys. 1991, 29, 131-33.
(12) Mehrotra, K. N.; Tandon, K. Monatsch. Chem. 1990, 121, 577-84.
(13) Mehrotra, K. N.; Tandon, K. Acoust. Lett. 1990, 13, 205-8.
(14) Renand, P. Chim. Anal. (Parls) 1964, 46 (5), 227.
(15) Pasynskill, A. Acta physicochim. URSS 1938, 8, 357; Russ. J. Phys. Chem. (Engl. Transl.) 1938, 11, 451.
(16) Garnsey, R.; Boe, R. J.; Mahoney, R.; Litovitz, T. A. J. Chem. Phys. 1909, 50, 5222.
(17) Prakash, S.; Icinaporla, F. M.; Pandey, J. D. J. Phys Chem. 1984, 58, 3078.
(18) Bachem, C. Z. Phys. A 1936, 101, 541.
(19) Masson, D. O. Philos. Mag. 1929, 8, 218.
(20) Nigam, P. S.; Hasan, M. Indlan J. Pure Appl. Phys . 1988, 24, 502.

Recelved for review June 20, 1991. Revised December 5, 1991. Accepted December 21, 1991.

Excess Volumes of 1,2-Dibromoethane + 1-Propanol, + 1-Butanol, or + 1-Pentanol from 293.15 to 333.15 K

N. V. Choudary * and A. P. Kudchadker
Department of Chemical Engineering, Indian Insttute of Technology, Powal, Bombay 400 076, Indla

Abstract

Excees molar volumes \boldsymbol{V}^{E} of 1,2-dilbromoethane wht 1-propanol, 1-butanol, and 1-pentanol have been meacured at five temperatures, from 293.15 to 333.15 K . NMR shitts have aleo been reported for the mixtures of 1,2-dibromoethane with 1-butanol at $303.15 \mathrm{~K} . V^{E}$ is positive in all the mixtures studied over the whole range of compoetions at all temperatures and Increases in the order 1-pentanol > 1-butanol > 1-propanol. The temperature coefficient of V^{E} is positive. The positive excess molar volumes have been ascribed to deassoclation of seli-assoclated alcohol aggregates.

Introduction

We report new data on excess molar volumes, V^{E}, for three binary mixtures of 1,2-dibromoethane with 1-propanol, 1-butanol, and 1-pentand as a function of temperature from 293.15 to 333.15 K . We also report NMR chemical shifts for the mixtures of 1,2 -dibromoethane in 1-butanol at 303.15 K . The experimental results have been used to examine the effect of hydrogen bonding between like and unlike molecules of $V E$. The results have also been used to study the effect of temperature on V^{E}.

[^0]Table I. Normal Boiling Points, T_{b}, and Densities, ρ, of Pure Components

	$T_{\mathrm{b}} / \mathrm{K}$			$\rho(303.15 \mathrm{~K}) /$ $\left(\mathrm{kg} \mathrm{m}^{-3}\right)$	
component	this worl	lit. (2)		this work	lit. (3)
1,2-dibromoethane	404.15	404.51		2158.9	
1-propanol	370.10	370.301		795.36	795.61
1-butanol	390.65	390.875		802.51	801.91
1-pentanol	410.65	411.133	806.94	807.12	

Expermental Section

Apparatus and Procecture. The batch dilatometers used for measuring $V^{\mathbf{E}}$ were similar to that described by Choudary and Naldu (1). The mixing cell contained two bulbs of different capacties that were connected through a U-tube with mercury separating the two compartments. One end of the first bulb was fitted with a capillary outlet, and the opposite end of the second bulb was closed with a Tefion stopper. Twelve dilatometers of this type were used to cover the whole range of compositions. The composition of each mixture was determined directly by weighing. After the experiment a few mixtures were analyzed on GC (Schimadzu GC, R1A, dual column gas chromatograph with flame ionization detector) to confirm the correctness of the compositions of mixtures. The measurements were made using a thermostatic bath controlled to

Table II. Excess Molar Volumes, $V^{\mathbb{E}}$, Coefficients, a_{i}, Equation 1, and Standard Deviations, $\sigma\left(V^{\mathbb{E}}\right)$, Equation 2, for 1,2-Dibromoethane (1) + 1-Alkanols (2) as a Function of Mole Fraction x_{1} at Temperature T

Table II (Continued)

Flgure 1. Excess molar volume V^{E} for 1,2 -dibromoethane $(1)+$ 1-propanol (2) as a function of the mole fraction, x_{1}, of 1,2-dibromoethane: $0,293.15 \mathrm{~K} ; 0,303.15 \mathrm{~K} ; ~ ■, 313.15 \mathrm{~K} ;$ ■, $323.15 \mathrm{~K} ; \Delta$, 333.15 K ; calculated from eq 1 and parameters given in Table II.
whthin $\pm 0.001 \mathrm{~K}$. The $V^{E \prime}$ s were reproducible to $\pm 0.003 \times$ $10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$.

NMR data were obtained on a Varian XL 100 nuclear magnetic resonance spectrometer. This instrument gives a spectrum on precallbrated chart paper. The studles were carried out under optimum ambient conditions. The samples were checked against an external reference (3% tetramethylsilane in CDCl_{3}) as well as against the tetramethylisiane used internally. The reference compound and lts position did not affect the shilts being measured.

Maierlafs. 1,2-Dibromoethane (Riedel) was purified by the method described by Riddick and Bunger (2). 1-Propanol (IDPL, India), 1-butanol (IDPL, Indla), and 1-pentanol (Riedel) were further purified as described by Choudary and Naldu (1). The purified substances were checked for purity by GC and were found to be better than $98.9 \mathrm{~mol} \%$ and also by measuring the density, ρ, and normal boiling point, T_{b} (Table I).

Results and Discuscion

The experimental V^{E} data for the three binary mixtures are given in Table II. The values of $V^{\mathbf{E}}$ may be expressed by an empirical equation of the form given below:

$$
\begin{equation*}
V^{E} /\left(10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}\right)=x_{1} x_{2}\left[a_{1}+a_{2}\left(x_{1}-x_{2}\right)+\ldots\right] \tag{1}
\end{equation*}
$$

where a_{1}, a_{2}, etc., are adjustable parameters. The values of parameters a_{1} obtained by least-squares analysis of n experi-

Figure 2. Chemical shifts, δ, for 1,2-dibromoethane (1) +1 -butanol (2) as a function of the mole fraction, x_{1}, of 1,2-dibromoethane at 303.15 K .
mental points along with standard deviation $\sigma\left(V^{\mathrm{E}}\right)$ calculated using eq 2 are also given in Table II.

$$
\begin{equation*}
\sigma\left(V^{\mathrm{E}}\right)=\left[\frac{\left(V_{{ }_{\text {calcd }}}-V^{\mathrm{E}}{ }_{\text {exppt }}\right)^{2}}{(n-p)}\right]^{1 / 2} \tag{2}
\end{equation*}
$$

The experimental data are also graphically presented for the mixtures of 1,2-dibromoethane with 1-propanol in Figure 1. The graphs of the other two systems are similar to Figure 1.
V^{E} is positive over the whole range of composition in the three mixtures and increases in the order 1-pentanol > 1-butanol $>$ 1-propanol. The temperature coefficient of V^{E} is positive. These results show that the main contribution to V^{E} is the expansion in volume due to deassociation of the alcohols. The same conclusion is also reached by the NMR study. The NMR chemical shifts (Figure 2) reveal that the proton absorption of hydroxylic proton moves upfield by the addition of dibromoethane; l.e., the electron density around the proton increases due to the decrease in hydrogen bonding (4).

Reglstry No. PrOH, 71-23-8; BuOH, 71-36-3; 1,2-dibromoethane, 106-93-4; 1-pentanol, 71-41-0.

Literature Cited

(1) Choudary, N. V.; Naidu, P. R. Can. J. Chem. 1981, 59, 2210.
(2) Riddick, J. A.; Bunger, W. B. Organic Solvents; John Wiley \& Sons: New York, 1986.
(3) Hales, J. L.; Ellender, J. H. J. Chem. Thermodyn. 1976, 8, 1177.
(4) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identiffcatton of Organic Compounds; John Wiley \& Sons: New York, 1981; p 194.

Recelved for review February 14, 1992. Revised March 16, 1992. Accepted April 20, 1992.

[^0]: - To whom correspondence should be addressed at the Research Centre, Indlan Petrochemicals Corp. Ltd., Baroda 391 346, India.

