Conductance of Lithium and Sodium Perchlorates and of Some Quaternary Ammonium Halides and Perchlorates in a Propylene Carbonate + Tetrahydrofuran Mixture at 25 °C

Anis A. Al-Najar,* Khadim M. H. Alami, and Awatif M. Ebraheem

Departments of Chemistry and Mathematics, College of Science, University of Basrah, Basrah, Iraq

The electrical conductances of lithium and sodium perchlorates and of some quaternary ammonium halides and perchlorates in propylene carbonate (PC) + tetrahydrofuran (THF) (1:1 in volume) have been measured at 25 °C. The conductance data were analyzed by a minimization technique using the complete form of the Fuoss/Hsia (F/H) equation. All electrolytes were found to be anomalous in showing unusually higher molar conductances than in each solvent alone. The effect of the variation of the three parameters K_A , Λ_o , and awas fully investigated.

Introduction

Although considerable work has been reported on measurements of conductivity of various electrolytes in mixed organic solvents, the relationship between conductivity and solvent composition is not well understood. Various explanations were given for the abnormal conductance in mixed solvents. It is evident that electrical conductivity of electrolytes in mixed solvents is influenced firstly by the concentration of the electrolyte and secondly by the viscosity of the solvent medium. Beside that, attempts to use mixed organic solvents in high-energy batteries have been reported (1, 2).

In recent years much interest has been shown in the solvent properties of both propylene carbonate and tetrahydrofuran. Some lithium batteries (3-5) have adopted mixed organic electrolytes, such as a mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane dissolving lithium perchlorate. PC has been adopted as the solvent for high-energy batteries by many researchers, and tetrahydrofuran (THF) has been used in an investigation of a secondary lithium electrode (6). In connection with these solvents, electrolytic conductances of the mixed systems of PC and THF (1:1 in volume) with lithium and sodium perchlorates and with some tetraalkylammonium salts were measured in this study. Relationships between viscosity and solvent composition in terms of nature and number of solvent moles in the mixture have been discussed (7). It was found that the molar conductivity of the PC + THF mixture was higher than that of each single solvent, and the maximum value of the molar conductivity was obtained at the mixture ratio of about 1:1.

Experimental Section

Conductance measurements were made at 25 °C with a Wayne-Kere B331 autobalance precision bridge. The conductivity cell used is that described elsewhere (8) with platinum electrodes which were lightly coated with platinum black before use, and the cell constant (as determined by a standard solution of KCl) was 0.169 93 \pm 0.000 03 cm⁻¹.

Propylene carbonate and tetrahydrofuran were purified by the methods described elsewhere (2, 9), and the final water contents were below 100 ppm in PC and 200 ppm in THF. The conductivities (S cm⁻¹) of the final products were in the ranges $(2-4) \times 10^{-8}$, $(1-2) \times 10^{-6}$, and $(3-5) \times 10^{-6}$ for PC, THF, and their mixture (1:1), respectively, at 25 °C. Lithium and sodium perchlorates were used after drying under reduced pressure at 160–170 °C for 24 h, and tetraalkylammonium salts were dried under reduced pressure at 65–75 °C for 24 h, where all electrolytes were taken as analar (7).

Solutions for the conductivity measurements were prepared by weighing from the stock solutions and the solvents. Solvent mixtures were also made by weight. Preparation of the solutions and all the other manipulations were performed in a drybox.

Results and Discussion

• •

The experimental molar conductances Λ_{exp} of lithium and sodium perchlorates and of tetraethylammonium iodide, bromide, chloride, and perchlorate as well as tetrabutylammonium perchlorate have been measured in this work at different molar concentrations C; the results are given in Tables I–IV. Figures 1 and 2 show Λ_{exp} vs $C^{1/2}$ for the same electrolytes. These data were analyzed by means of the Fuoss/ Hsia equation (10):

$$\Lambda = [\Lambda_{o} - \Delta \Lambda] [1 + \Delta X/X] / [1 + 3\phi/2]$$
(1)

where all symbols are defined in the original paper. All calculations were performed on an ACOS 800 computer using the values of Λ_o , a, and K_A independently which produce a theoretical curve (Λ_{calcd} against $C^{1/2}$) giving the best fit to the measured conductance (Λ_{exp}) at a series of known concentrations of solute. The criterion of "fit" is that the sum of the squares S^2 of the differences between Λ_{calcd} and Λ_{exp} at each concentration should be a minimum, and hence the standard deviation σ is also a minimum which is given by

$$S^{2} = \sum_{1}^{N} [\Lambda_{\text{calcd}} - \Lambda_{\text{exp}}]^{2} \quad \sigma = (S^{2}/N)^{1/2}$$
(2)

where N represents the number of experimental points.

The values of the derived parameters for all salts, Λ_o , a, and K_A are summarized in Table V together with the standard deviation σ .

The common characteristic point of analyzing data for all electrolytes is that their molar conductivities are higher than those in each single solvent. The very significant factors affecting the conductance of ionic solutions would be the dielectric constant and the viscosity in connection with the solvation of the ions and the solvent-solvent interaction. The same trend was found by Matsuda and Satake (7).

It could be assumed that the increase in molar conductivity of the solution with the addition of THF to PC is caused

^{*} To whom correspondence should be addressed at the Department of Chemistry.

Li	ClO ₄	Νε	aClO ₄		
$C \times 10^{-4}/$ (mol dm ⁻³)			$\Lambda_{exp}/$ (S cm ² mol ⁻¹)		
(mol dm ⁻³) 1.1466 4.9043 9.3184 11.7460 14.0781 18.9732 21.2491 23.5447 25.8915 27.9497 29.9486	(S cm ² mol ⁻¹) 49.360 48.579 47.215 46.739 46.687 46.339 45.968 45.779 45.424 45.100 44.794	(mol dm ⁻³) 2.0758 3.0931 5.6372 7.2372 9.3011 11.4081 14.4344 17.0955 19.7944 22.1546 24.1900 26.3020	53.098 52.179 51.785 51.186 50.847 50.279 49.795 49.374 48.919 48.579 48.155 48.072		
		28.9611 31.1458 33.2458 35.1905 37.2370 39.0343 41.0737 44.1610	47.938 47.525 47.384 47.244 47.055 46.779 46.745 46.473		

Table I. Experimental Conductance Data at 25 °C

Table II.Experimental Conductance Data at 25 °C

(C ₂)	H ₅) ₄ NI	(C ₂ H ₅) ₄ NClO ₄			
$C \times 10^{-4}/$ (mol dm ⁻³)	$\Lambda_{ m exp}/$ (S cm ² mol ⁻¹)	$C \times 10^{-4}/$ (mol dm ⁻³)	$\Lambda_{ m exp}/$ (S cm ² mol ⁻¹)		
10.8673	54.403	6.3834	74.575		
13.0403	53.968	12.7875	72.446		
15.2613	53.481	18.2320	71.102		
17.3707	52.995	19.9053	70.774		
19.5647	52.719	21.9655	70.427		
21.7169	52.402	24.0184	69.963		
23.8773	52.208	26.1526	69.621		
25.8885	51.801	27.9414	69.286		
27.8374	51.609	29.6721	69.012		
29.7897	51.369	31.5288	68.703		
31.7874 '	51.209	33.6210	68.444		
33.6989	51.046	35.4515	68.227		
35.5214	50.856	37.6032	67.859		
37.6294	50.707	39.5411	67.592		

Table III. Experimental Conductance Data at 25 °C

23.1747 50.260 3.5216 55.415 25.7289 49.713 8.3448 53.639 28.2321 49.364 10.3614 53.016	(C ₂ H	I ₅) ₄ NCl	$(C_2H_5)_4NBr$	
25.7289 49.713 8.3448 53.639 28.2321 49.364 10.3614 53.016				$\Lambda_{ m exp}/$ (S cm ² mol ⁻¹)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.1747 25.7289 28.2321 30.3044 32.3153 34.1642 36.3873 38.5026 40.5991	50.260 49.713 49.364 49.084 48.694 48.374 48.129 47.908 47.717	3.5216 8.3448 10.3614 12.3769 14.4577 16.7009 19.1188 21.8241 24.5143 26.6278 28.7746 31.1269 33.3556 35.3705 37.4489 39.8014	$\begin{array}{c} 55.415\\ 53.639\\ 53.016\\ 52.682\\ 52.189\\ 51.952\\ 51.435\\ 50.929\\ 50.603\\ 50.170\\ 49.947\\ 49.545\\ 49.291\\ 48.954\\ 48.709\\ 48.466\end{array}$

by the effect of the low viscosity of THF on the Waldens product. However, the reason for the low molar conductivity of the THF-rich solution cannot be interpreted by this viscosity theory. It has been reported that the dielectric constant decreases with the THF content and the above observation would be attributed to specific solvation (11-13)or to the decrease in the Waldens product (14).

Table IV. Experimental Conductance Data for $(C_4H_9)_4NClO_4$ at 25 °C

$C \times (mol \ d)$	10 ⁻⁴ / dm ⁻³)	-	(S c	Λ _{exp} / m ² m	ol-1)		C > (mo	< 10 ⁻⁴ / l dm ^{-:}	/ ³)	(S c	Λ _{exp} m ² r	√ nol ⁻¹)
3.2 5.7	200 223		 	51.05 50.50 50.11 49.69 48.70 47.80 47.80 47.41 47.17	0 7 9 0 1 1		29 31 33 36 39	5361 3108 5947 4692 4245 1073 5006		•	46.7 46.4 45.9 45.9 45.7 45.4 45.2	53 85 85 26 06
73. 72				0			-	-		SH31 Nacle) ₄
71-						0	0		A [د _ي لي 11210 12210	NCIO	4
70-							0	0	,			
6\$) 0	o	0	
68- T-											0	۰。
Low wo S V												
∽ ≤	•	•										
50-	4	, ,	•									
49-		۵	·	•	•							
48-					۵		•	• •	•			
41-	4	L		4	4		4	۵	•	•	•	•••
46-						•	4	A	Δ	۵ ۵	۵	
45	c	:03			0'04	2		A 	A 05			۵ 0:06
Figure	e 1.	۸	(8)	cm ²			noi d	dium.	lith	ium	tet	raath

Figure 1. Λ_{exp} (S cm² mol⁻¹) of sodium, lithium, tetraethylammonium, and tetrabutylammonium perchlorates versus $C^{1/2}$ (mol dm⁻³) at 25 °C.

Some precise viscosity and conductance measurements on solutions of the same electrolytes studied here have been made in PC only (15-18). The significance of the viscosity coefficient in interpreting the conductance data obtained has been discussed. The conductance data indicated negligible ion association in all these electrolytes. Furthermore, it was found that, in the event of ion-ion contacts, the bare ions rather than their solvated cospheres are presumably involved as indicated from the calculated a parameters.

In comparison with our parameters Λ_o , a, and K_A given in Table V, it is clear that all Λ_o values obtained here are higher than those measured in PC or in THF separately. This may be attributed to the decrease in the viscosity coefficient as well as to some sort of solvation, so that solvated cospheres rather than their bare ions are presumably involved. This behavior could be more indicated from the high values of aparameters (distances of closest approach of ions) obtained here which do not agree with the crystallographic radii. The values of K_A given in the same table show good evidence of considerable ion association. It is concluded that there is a significant ion-solvent interaction in these systems.

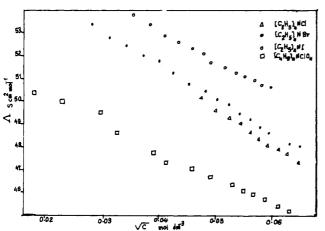


Figure 2. Λ_{exp} (S cm² mol⁻¹) of tetraethylammonium chloride, bromide, and iodide and of tetrabutylammonium perchlorate versus $C^{1/2}$ (mol dm⁻³) at 25 °C.

Table V. Best Fit Values for Λ_0 , K_A , and a Parameters

electrolyte	$\Lambda_{o}/$ (S cm ² mol ⁻¹)	K _A / (mol L ⁻¹)	a/A°	σ
LiClO ₄	52.01	95	13	0.096
NaClO ₄	60.03	85	12	0.071
$(C_2H_5)_4NI$	58.11	45	12	0.086
$(C_2H_5)_4NClO_4$	86.02	90	10	0.087
$(C_2H_5)_4NCl$	58.80	57	12	0.067
$(C_2H_5)_4NBr$	58.01	74	10	0.074
(C4H9)4NClO4	54.05	50	12	0.082

Plots of Λ against $C^{1/2}$ in PC + THF (1:1 in volume) containing various perchlorates are shown in Figure 1. In the range of concentrations studied, the order of molar conductivities of electrolytes is

$$(C_2H_5)_4NClO_4 > NaClO_4 > (C_4H_9)_4NClO_4 > LiClO_4$$

This order would be the same as that of molar conductivities of the cations, and the molar conductivities were almost the same as that in the infinite dilution.

Also, plots of Λ against $C^{1/2}$ in PC + THF (1:1 in volume) containing various tetraethylammonium electrolytes are

shown in Figure 2. The order of molar conductivities covering the range of concentrations studied is

$$(C_{2}H_{5})_{4}NClO_{4} > (C_{2}H_{5})_{4}NI > (C_{2}H_{5})_{4}NBr >$$

 $(C_2H_5)_ANCl > (C_4H_9)_ANClO_4$

In general, large cations show a normal size-mobility dependence, but alkali-metal ions produce a reverse trend, in terms of bare-ion radii. Anions have much higher mobilities than cations, relative to their crystallographic size, indicating relatively low solvation of anions by a PC + THF mixture. Furthermore, comparison of the limiting conductances of the perchlorates suggests that the mobility of lithium ion is lower than that of $(C_4H_9)_4N^+$ and $(C_2H_5)_4N^+$, indicating that the lithium ions in a PC + THF mixture are substantially more solvated than in PC only.

Literature Cited

- (1) Jasinski, R. Electrochem. Technol. 1968, 6, 28.
- (2) Saito, T.; Ikeda, H.; Matsuda, Y.; Tamura, H. J. Appl. Electrochem. 1976, 6, 85.
- (3) Fukuda, M. Denki Kagaku 1973, 41, 593.
- (4) Ikeda, H.; Saito, H.; Tamura, H. Denki Kagaku 1978, 45, 314.
 (5) Ikeda, H.; Ueno, S.; Saito, T.; Nakaido, S.; Tamura, H. Denki Ka-
- gaku 1978, 45, 391. Koch, V.; Young, J. H. Electrochem. Soc. 1978, 125, 1317.
- (6)
- (7) Matsuda, Y.; Satake, H. Denki Kagaku 1979, 47, 743.
- (8) Al-Najar, A. A.; Ibrahim, A. M. Iraqi J. Sci. 1981, 22 (4), 466. (9) Matsuda, Y.; Ouchi, Y.; Tamura, H. J. Appl. Electrochem. 1974, 4, 53.
- (10) Fuoss, R. M.; L-Hsia, K. Proc. Natl. Acad. Sci. U.S.A. 1967, 57, 1550; 1967, 58, 1818.
- (11) Hyne, J. B. J. Am. Chem. Soc. 1960, 82, 5129.
- (12) Hyne, J. B.; Wills, R.; Wonkka, R. E. J. Am. Chem. Soc. 1962, 84, 2914.
- (13) Hyne, J. B.; Wills, R. J. Am. Chem. Soc. 1963, 85, 3650.
- (14) Accascina, F.; De Lisi, R.; Goffredi, M. Electrochim. Acta. 1970, 15, 1209.
- (15) Mukherjee, L. M.; Boden, D. P. J. Phys. Chem. 1969, 73, 3965. Mukherjee, L. M.; Boden, D. P.; Lindauer, R. J. Phys. Chem. 1970, (16)
- 74, 1942.
- (17) Cuortot-Coupez, J.; Her, M. L. C. R. Acad. Sci., Ser. 3 1970, 271, 357.
- (18) Jansen, M. L.; Yeager, H. L. J. Phys. Chem. 1973, 77, 3089.

Received for review April 8, 1992. Accepted June 6, 1992.

Registry No. LiClO4, 7791-03-9; NaClO4, 7601-89-0; (C2H5)4-NI, 68-05-3; (C₂H₅)₄NClO₄, 2567-83-1; (C₂H₅)₄NBr, 71-91-0; (C₂H₅)₄NCl, 56-34-8; (C₄H₉)₄NClO₄, 1923-70-2.