PVTx Properties of the Binary 1,1-Difluoroethane + 1,1,2,2-Tetrafluoroethane System

Takeshi Tamatsu, Takahiro Sato,* Haruki Sato, and Koichi Watanabe

Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan

The experimental pressure-volume-temperature-composition (PVTx) properties of the binary refrigerant 1,1-difluoroethane (HFC-152a) + 1,1,2,2-tetrafluoroethane (HFC-134) have been measured by means of a constant-volume method coupled with expansion procedures in an extensive range of temperatures, pressures, and densities. A total of 202 PVTx property data were measured in a range of temperatures from 320 to 440 K, pressures from 1.0 to 4.3 MPa, and densities from 54 to 155 kg/m³. A Clausius-Clapeyron-type correlation for the dew-point pressures was developed which can reproduce the measurements within ±5 kPa.

Introduction

In our previous publications, we reported the PVTx property measurements for several binary refrigerants: the chlorodifluoromethane (HCFC-22) + dichlorodifluoromethane (CFC-12) system (1); the chlorodifluoromethane (HCFC-22) + 1,2-dichlorotetrafluoroethane (CFC-114) system (2); the bromotrifluoromethane (Halon 1301) + 1,2-dichlorotetrafluoroethane (CFC-114) system (3); the 1,1-difluoroethane (HFC-152a) + 1,2-dichlorotetrafluoroethane (CFC-114) system (4); the chloropentafluoroethane (CFC-115) + 1,2-dichlorotetrafluoroethane (CFC-114) system (5, 6); and the chlorodifluoromethane (HCFC-22) + 1-chloro-1,1-difluoroethane (HCFC-142b) system (7).

The binary refrigerant 1,1-difluoroethane (HFC-152a) + 1,1,2,2-tetrafluoroethane (HFC-134) has zero ODP (ozone depletion potential), and both pure components have similar vapor pressures. Because of its flammable characteristics, HFC-152a is not considered as a suitable working fluid for domestic refrigeration systems. The mixture of HFC-152a with a nonflammable refrigerant, HFC-134, however, may overcome such a drawback in practical application. This mixture with around 20 wt % HFC-152a showed azeotropic behavior for T > 330 K due to our previous study system (8). The present work is to reconfirm this observation and to provide precise PVTx measurements for the binary refrigerant of present interest.

Samples and Sample Purification

The purities of the samples used are 99.9 wt % for HFC-152a and 99.94 wt % for HFC-134 according to the analysis of the supplier. We did not purify and analyze the samples ourselves.

Experimental Section

The apparatus and procedure have been reported by Takaishi et al. (9, 10). The isochoric method coupled with expansion procedures was applied for measuring dew-point pressures and PVTx properties, i.e., PVT properties at different compositions. The apparatus shown in Figure 1 consists of a sample cell (A), an expansion cell (B), a differential pressure detector (C), a platinum resistance thermometer calibrated on ITS-90 (G), a thermostated bath (H), temperature control/measuring devices, and pressuremeasuring instruments.

The inner volumes of the sample cell and expansion cell were carefully calibrated with pure water; they were 238.368

Figure 1. Experimental apparatus: (A) sample cell; (B) expansion cell; (C) differential pressure detector; (D) main heater; (E) auxiliary heater; (F) stirrer; (G) platinum resistance thermometer; (H) thermostated bath; (I) vacuum pump; (J) nitrogen cylinder; (K) electric resistance detector; (L) nitrogen gas damper; (M) precise pressure controller; (N) air-pistontype dead-weight pressure gauge; (O) digital quartz pressure transducer; (P) digital quartz pressure computer; (Q) thermometer; (R) pen recorder; (S) PID controller; (T) dc power supply; (V1)-(V11) valves.

 \pm 0.0027 and 55.583 \pm 0.007 cm³ at room temperature condition, respectively. The temperature in the thermostated bath filled with silicone oil was controlled within ± 2 mK. After thermal equilibrium was confirmed and the pressure remained unchanged over several hours, the temperature and the pressure of the sample fluid were measured.

When a series of pressure measurements along an isochore was completed, we expanded part of the sample fluid into the expansion cell in the single phase to obtain another isochore, with the composition unchanged. The valves between the sample cell and expansion cell were closed when the temperature and the pressure became stable.

The experimental errors of the present measurements are estimated to be not greater than ± 7 mK in temperature, ± 2 kPa in pressure, $\pm 0.10\%$ in density, and $\pm 0.20\%$ in each composition.

Results

A total of 202 density values were measured along 16 isochores at temperatures from 320 to 440 K, pressures from 1.0 to 4.3 MPa, and mass fractions of 20 wt % (27.911 mol %),

^{*} To whom correspondence should be addressed.

			- · ·	n .	** * ~ ~ ~			
Journal of	t Cnemical	and	Engineering	g Data,	Vol. 37,	, NO. ·	4,1992	513

ρ/(kg·m ⁻³)	T/K	P/MPa	$ ho/(kg\cdot m^{-3})$	T/K	P/MPa	$ ho/(kg\cdot m^{-3})$	T/K	P/MPa
			20.041 wt %	(27.911 mol %)	HFC-152a	<u> </u>		
155.704	320.000	0.9755	123.34	380.000	2.8885	97.80	420.000	2.9605
155.63ª	330.000	1.2566	123.28	390.000	3.0521	97.75	430.000	3.0748
155.55ª	340.00	1.5953	123.22	400.000	3.2130	97.70	440.000	3.1881
155.48ª	350.000	1.9978	123.16	410.000	3.3704	78.07ª	320.000	0.9744
155.40 ^a	360.000	2.4709	123.09	420.000	3.5244	78.03ª	330.000	1.2541
155.324	370.000	3.0164	123.03	430.000	3.6758	78.00ª	340.000	1.5875
155.25	380.000	3.2774	122.97	440.000	3.8250	77.96	350.000	1.8152
155.18	388.988	3.4798	98.27*	320.000	0.9756	77.92	360.000	1.9134
155.09	400.000	3.7209	98.23ª	330.000	1.2556	77.89	370.000	2.0086
155.02	410.000	3.9328	98.18ª	340.000	1.5930	77.85	380.000	2.1015
154.94	420.000	4.1410	98.13 ^a	350.000	1.9892	77.81	390.000	2.1926
123.70	320.000	0.9755	98.08	360.000	2.2319	77.77	400.000	2.2823
123.64ª	330.000	1.2563	98.04	370.000	2.3599	77.73	410.000	2.3713
123.58	340.000	1.5943	97.99	380.000	2.4850	77.70	420.000	2.4586
123.524	350.000	1.9961	97.94	390.000	2.6065	77.66	430.000	2.5457
123.46 ^a	360.000	2.4628	97.89	400.000	2.7270	77.62	440.000	2.6315
123.40	370.000	2.7187	97.84	410.000	2.8442			
			39.983 wt % ((50.717 mol %)	HFC-152a			
131.11ª	320.000	0.9911	103.91	370.000	2.5985	82.35	420.000	2.7 9 02
131.05ª	330.000	1.2761	103.86	380.000	2.7535	82.31	430.000	2.8948
130 .99 °	340.000	1.6177	103.81	390.000	2.9023	82.27	440.000	2.9980
130.92ª	350.000	2.0249	103.76	400.000	3.0488	65.74ª	320.000	0.9907
130.86ª	360.000	2.5047	103.71	410.000	3.1917	65.71ª	330.000	1.2747
130.79	370.000	2.9405	103. 66	420.000	3.3324	65.68ª	340.000	1.6160
130.73	380.000	3.1496	103.60	430.000	3.4717	65.65	350.000	1.7220
130.67	390.000	3.3510	103.55	440.000	3.6079	65.62	360.000	1.8108
130.60	400.000	3.5479	82.75°	320.000	0.9909	65.59	370.000	1.8975
130.54	410.000	3.7400	82.71ª	330.000	1.2749	65.55	380.000	1.9823
130.47	420.000	3.9288	82.67ª	340.000	1.6171	65.52	390.000	2.0663
130.40	430.000	4.1141	82.63	350.000	2.0035	65.49	400.000	2.1488
130.34	440.000	4.2970	82.59	360.000	2.1250	65.46	410.000	2.2297
104.16°	320.000	0.9915	82.55	370.000	2.2415	65.43	420.000	2.3110
104.11ª	330.000	1.2742	82.51	380.000	2.3561	65.39	430.000	2.3898
104.06 ^a	340.000	1.6171	82.47	390.000	2.4673	65.36	440.000	2.4681
104.01°	350.000	2.0245	82.43	400.000	2.5761			
103. 96	360.000	2.4395	82.39	410.000	2.6835			
			59.999 wt % ((69.852 mol %)	HFC-152a			
120.504	320.000	1.0175	95.50	370.000	2.5994	75.72	410.000	2 6847
120.44	330.000	1.3068	95.45	380.000	2.7525	75.68	420 000	2 7904
120.38	340.000	1.6535	95.41	390.000	2.9016	75.65	430.000	2 8949
120.32ª	350.000	2.0668	95.36	400.000	3.0466	75.61	440.000	2,9982
120.26ª	360.000	2.5525	95.31	410.000	3.1904	60.429	320,000	1 0161
120.21	370.000	2.9431	95.26	420.000	3.3303	60.394	330,000	1 3054
120.15	380.000	3,1516	95.22	430.000	3 4692	60.36	340.000	1 6987
120.09	390.000	3 3529	95.17	440.000	3 6061	60.33	350.000	1 7910
120.03	400.000	3.5507	76.054	320.000	1 0160	60.31	360.000	1 8107
119.97	410.000	3 7422	76 024	330.000	1 3069	60.28	370.000	1 8070
119.91	420.000	3.9290	75.984	340.000	1 6537	60.25	380.000	1 0827
119.85	430,000	4 1142	75.94	350,000	2 0047	60.20	390.000	2 0660
95 734	320,000	1 0163	75 91	360.000	2.0047	60.22	400.000	2.0005
95 684	330,000	1 3008	75.87	370.000	2.1200	60.15	410,000	2.1450
95 64¢	340.000	1 6533	75.83	380.000	2.2420	60.10	420.000	2.2000
95 594	350,000	2 0630	75.80	390.000	2.0000	60.13	420.000	2.3111
95.55	360.000	2.4392	75.76	400.000	2.4078	60.10	430.000	2.3900
		201002	70 000	00.000	LIDG 150	00.01	440.000	2.4000
100 694	200.000	1.0591	79.909 Wt % (86.002 mol %)	HFC-152a	00.00	400.000	
100.00*	320.000	1.0001	00.90	370.000	2.0771	69.69	420.000	2.7558
100 594	330.000	1.3454	80.05	380.000	2.7271	68.86	430.000	2.8581
100.500	340.000	1.7012	00.00	390.000	2.8/2/	68.82	440.000	2.9586
109.53	300.000	2.1237	86.80	400.000	3.0144	54.97*	330.000	1.3431
109.47	360.000	2.6193	86.76	410.000	3.1548	54.95	340.000	1.6144
109.42	370.000	2.9296	86.72	420.000	3.2920	54.92	350.000	1.7043
109.37	380.000	3.1314	86.67	430.000	3.4278	54.89	360.000	1.7919
109.31	390.000	3.3271	86.63	440.000	3.5595	54.87	370.000	1.8771
109.26	400.000	3.5174	69.19	330.000	1.3399	54.84	380.000	1.9603
109.20	410.000	3.7037	69.16°	340.000	1.6979	54.81	390.000	2.0430
109.15	420.000	3.8863	69.13	350.000	1.9871	54.79	400.000	2.1236
109.09	430.000	4.0670	69.10	360.000	2.1046	54.76	410.000	2.2035
87.14ª	320.000	1.0486	69.06	370.000	2.21 96	54.73	420.000	2.2821
87.104	330.000	1.3399	69. 03	380.000	2.3307	54 .71	430.000	2.3591
87.06ª	340.000	1.6989	69.00	390.000	2.4391	54.68	440.000	2.4348
87.01ª	350.000	2.1198	68.96	400.000	2.5472			
86.97	360.000	2.4227	68.93	410.000	2.6519			

^a Under the vapor-liquid equilibrium.

Table II. Saturated-Vapor Densities ρ'' and Dew-Point Pressures P_d

Figure 2. Distribution of the PVTx measurements on a pressure-temperature plane: (\triangleright) 20 wt % HFC-152a; (+) 60 wt % HFC-152a; (\diamond) 40 wt % HFC-152a; (\diamond) 80 wt % HFC-152a, HFC-152a, HFC-134, — (11); HFC-152a, --- (12).

Figure 3. Available saturated vapor and liquid density data: (▶) 20 wt % HFC-152a; (+) 60 wt % HFC-152a; (♦) 40 wt % HFC-152a; (○) 80 wt % HFC-152a; HFC-134, — (15, 16); HFC-152a, --- (13, 14).

40 wt % (50.717 mol %), 60 wt % (69.852 mol %), and 80 wt % (86.002 mol %) HFC-152a, as tabulated in Table I. Figure 2 shows the distribution of the PVTx data on a pressure-temperature plane, while the vapor-pressure curves are calculated from the correlations of both pure components (11, 12).

We have also determined 16 saturated-vapor densities and dew-point pressures within the uncertainty of $\pm 0.5\%$ and ± 7 kPa by finding the breaking point of each isochore graphically on a pressure-temperature plane. The values are given in Table II, and Figure 3 shows the available saturated-vapor and -liquid densities on the temperature-density plane. The

Table III. Parameters in Equation 1 for Each Composition

Figure 4. Deviation of dew-point pressure measurements from the vapor pressure of HFC-134 (11): (▶) 20 wt % HFC-152a; (+) 60 wt % HFC-152a; (◊) 40 wt % HFC-152a; (○) 80 wt % HFC-152a; HFC-134, — (11); HFC-152a, ··· (12), eq 1, ---.

data for saturated-vapor densities are those by the present study, while those for saturated-liquid densities were reported by Maezawa et al. (8). The saturated-liquid and -vapor curves for HFC-152a were drawn from the correlations by Higashi et al. (13) and by Kabata (14), whereas those for HFC-134 were by Maezawa et al. (15) and by Tamatsu (16), respectively.

Discussion

1

The dew-point pressures were correlated by a simple Clausius-Clapeyron correlation as follows:

$$n \left(P_{d} / MPa \right) = C - D / (T/K)$$
(1)

Because of the limited number of available data along each isopleth, the simplest functional form of eq 1 was applied. P_d denotes the dew-point pressure and T the temperature, and C and D are the parameters determined by a least-squares fit. Those are listed in Table III.

Figure 4 shows the pressure deviations of the dew-pointpressure data from the vapor-pressure correlation of HFC-134 (11). The data of each composition, i.e., 20, 40, 60, and 80 wt % HFC-152a, are correlated by eq 1 within ± 5 kPa. Furthermore, it should be noted that dew-point pressures of 20 wt % HFC-152a are always lower than vapor pressures of HFC-134, with the maximum difference of about 35 kPa at 370 K. Azeotropic behavior was evident at temperatures above 310 K for the blend with a composition of about 20 wt % HFC-152a. Since the composition dependence of measured pressures is less significant, this binary refrigerant system would be applied in practice as a near-azeotropic refrigerant.

Conclusion

The present study provides the first set of PVTx property data for the binary HFC-152a + HFC-134 system. A total of 202 densities for HFC-152a + HFC-134 were measured along 16 isochores. A dew-point pressure correlation being effective in the temperature range from T = 320 to T = 370K was developed for each composition. The existence of azeotropic behavior was reconfirmed at the blend of 20 wt % HFC-152a for T > 310 K as reported by our previous study of the present binary system (8).

Acknowledgment

We are indebted to Daikin Industries Ltd., Osaka, for kindly furnishing the sample, to the National Research Laboratory of Metrology, Tsukuba, for the calibration of the thermometer, and to Shin-etsu Chemicals Co., Ltd., Tokyo, for furnishing the silicone oil.

Literature Cited

- Takaishi, Y.; Kagawa, N.; Uematsu, M.; Watanabe, K. Proc. 8th ASME Symp. Thermophys. Prop. 1981, 2, 387.
 Hasegawa, N.; Uematsu, M.; Watanabe, K. J. Chem. Eng. Data
- (2) Hasogawa, H., Utanawa, M., Hutanabe, K. J. Chem. 1985, 30 (1), 32.
 (3) Hosotani, S.; Maezawa, Y.; Uematsu, M.; Watanabe, K. J. Chem. Eng. Data 1988, 33 (1), 20.
 (4) Yada, N.; Uematsu, M.; Watanabe, K. Trans. Jpn. Assoc. Refrig.
- 1988, 5 (1), 107 (in Japanese).
- (5) Yada, N.; Uematsu, M.; Watanabe, K. J. Chem. Eng. Data 1989, 34 (4), 431.
- (6) Yada, N.; Uematsu, M.; Watanabe, K. Int. J. Thermophys. 1989, 10 (3), 639.

- (7) Kumagai, K.; Yada, N.; Sato, H.; Watanabe, K. J. Chem. Eng. Data 1991, 36 (2), 236.
- Maezawa, Y.; Sato, H.; Watanabe, K.; Oshima, S. Proc. 3rd ASME/ (8) JSME Joint Thermal Eng. Conf. 1991, 3, 443.
- Takaishi, Y.; Uematsu, M.; Watanabe, K. Proc. 15th Int. Congr. (9) Refrig. 1978, 2, 117.
- (10) Takaishi, Y.; Uematsu, M.; Watanabe, K. Bull. JSME 1982, 25 (204), 944. (11) Tamatsu, T.; Sato, H.; Watanabe, K. J. Chem. Eng. Data 1992, 37
- (2), 216. (12) Tamatsu, T.; Sato, T.; Sato, H.; Watanabe, K. Int. J. Refrig., in
- press. (13) Higashi, Y.; Ashizawa, M.; Kabata, Y.; Majima, T.; Uematsu, M.; Watanabe, K. JSME Int. J. 1987, 30, 1106.
- (14) Kabata, Y. M.S. Thesis, Department of Mechanical Engineering, Keio University, Yokohama, Japan, 1991.
- (15) Maezawa, Y.; Sato, H.; Watanabe, K. J. Chem. Eng. Data 1991, 36, (2), 151.
- (16) Tamatsu, T. M.S. Thesis, Department of Mechanical Engineering, Keio University, Yokohama, Japan, 1991.

Received for review March 3, 1992. Accepted July 15, 1992.

Registry No. HFC-152a, 75-37-6; HFC-134, 359-35-3.