Isobaric Heat Capacity for Liquid 1-Chloro-1,1-difluoroethane and 1,1-Difluoroethane

Shinsuke Nakagawa, Tatsuji Hori, Haruki Sato,' and Koichi Watanabe

Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan

The isobaric heat capacities (C_P) for liquid 1-chloro-1,1-difluoroethane (HCFC-142b) and 1,1-difluoroethane (HFC-152a) have been measured by means of flow calorimetry. For HCFC-142b, 31 C_P values have been measured at temperatures from 276 to 350 K and pressures from 1.0 to 3.0 MPa. For HFC-152a, 36 C_P have been measured at temperatures from 276 to 360 K and pressures from 1.0 to 3.2 MPa. The uncertainties are estimated as ±13 mK in temperature, ±3 kPa in pressure, and ±0.4% for most of the C_P measurements. The purity of samples used for both HCFC-142b and HFC-152a measurements was 99.95 mol %. Correlations of liquid C_P as a function of temperature and pressure have been developed for both refrigerants on the basis of the measurements.

Introduction

Several hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) have been developed as chlorofluorocarbon (CFC) alternatives. Caloric property values of refrigerants are not only essential in heat transfer calculations for designing heat pumps or refrigerators, but are also essential in the development of thermodynamic equations of state from which reliable properties such as enthalpy or entropy can be derived.

We have previously reported isobaric heat capacities of liquid refrigerants, i.e., 1,2-dichloro-1,1,2,2-tetrafluoroethane (CFC-114, CCIF₂CCIF₂) (1, 2), 1,2,2,2-tetrafluoroethane (HFC-134a, CH₂FCF₃) (3), and 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123, CHCl₂CF₃) (4), measured by using the same flow calorimeter originally developed by our group (2, 5).

1-Chloro-1,1-difluoroethane (HCFC-142b, CCIF₂CH₃) is flammable, so pure HCFC-142b is not suitable for industrial applications. A binary mixture (40 wt % chlorodifluoromethane (HCFC-22, CHCIF₂) + 60 wt % HCFC-142b) is considered as a dichlorodifluoromethane (CFC-12, CCl₂F₂) alternative because the vapor pressure is close to that of CFC-12 and higher cycle performance can be expected since the mixture is nonazeotropic. HFC-152a which has a vapor pressure similar to that of CFC-12 is also considered as one of the CFC-12 alternatives because the estimated refrigerator performance is superior to CFC-12 (6). However, HFC-152a is also flammable in air, so the use as one component of refrigerant mixtures would be attractive.

Measurements of isobaric heat capacity and respective correlations for liquid HFC-142b and HFC-152a are reported in this paper.

Experimental Section

Detailed descriptions regarding the experimental procedure and flow calorimeter used in this study have been reported in previous papers (1-3). The special features of our apparatus are its nearly adiabatic performance, flow stability of the sample liquid in a closed circulation system, and reliability of the mass flow rate measuring system. Flow calorimetry requires three simultaneous measurements: measurement of energy flow, \hat{Q} , supplied by a microheater to the sample liquid, measurement of the temperature increment, ΔT , which

• To whom correspondence should be addressed.

is the difference between the temperatures of the sample liquid before and after heating by the microheater, and measurement of the mass flow rate, m. The isobaric heat capacity, C_{P_1} is obtained from the following relation of the experimental measurements:

$$C_P = \dot{Q}/(\dot{m}\Delta T) \tag{1}$$

The temperature and temperature increment were measured with two platinum resistance thermometers, which were calibrated with a standard platinum resistance thermometer in accordance with the temperature scale of IPTS-68. The mass flow rate was measured directly using a timer, a threeway magnetic valve, and a digital balance on which a special cell connecting with the circulation line is placed. The energy flow was precisely determined by measuring the electric potential difference at the microheater and the electric current through a standard resistor.

Results

For HCFC-142b, measurements were made at temperatures from 276 to 350 K and pressures from 1.0 to 3.0 MPa. The results are listed in Table I. For HFC-152a, measurements were made at temperatures from 276 to 360 K and pressures from 1.0 to 3.2 MPa. The results are listed in Table II. Tables I and II include both temperatures on IPTS-68 and temperatures on ITS-90, where the measured temperature is assigned to the temperature that is the arithmetic mean of the temperatures of the sample liquid before and after heating.

To show the effect of heat loss on the final C_P values, deviations of experimental data, $C_{P,exp}$, from the final C_P values are plotted against the inverse mass flow rates in Figures 1 and 2 for HCFC-142b and HFC-152a, respectively. Measurements were performed at more than two different mass flow rates under a certain measuring condition, i.e., at a certain temperature and pressure. It was confirmed from Figures 1 and 2 that the C_P results do not depend on the mass flow rates. Thus, it was concluded that the effect of heat losses for both HCFC-142b and HFC-152a measurements was small enough to be neglected.

The temperature increment has to be small enough not to produce any difference between the C_P values at the inlet and outlet temperatures; i.e., experimental specific heat values, $C_{P,exp}$, could be regarded as a C_P value at an average temperature between the inlet and outlet temperatures.

Journal of Chemical and Engineering Data, Vol. 38, No. 1, 1993 71

						Cp/(k.l.							Cp/(kJ·
T ₆₈ /K	<i>T</i> ₉₀ /K	P/MPa	$\Delta T_{68}/\mathrm{K}$	$\dot{m}/(\mathbf{g}\cdot\mathbf{s}^{-1})$	$\dot{Q}/(J \cdot s^{-1})$	kg ⁻¹ ·K ⁻¹)	$T_{68}/{ m K}$	$T_{90}/{ m K}$	P/MPa	$\Delta T_{68}/\mathrm{K}$	<i>m</i> /(g·s ⁻¹)	$\dot{Q}/(J \cdot s^{-1})$	kg ⁻¹ •K ⁻¹)
275.66	275.66	1.007	5.029	0.1222	0.7693	1.252	329.99	329.98	1.505	4.975	0.0785	0.5495	1.407
275.65	275.65	1.009	5.006	0.0594	0.3725	1.254	330.01	330.00	2.003	5.016	0.0787	0.5514	1.397
275.66	275.66	1.005	5.001	0.1438	0.9027	1.255	330.02	330.01	2.002	5.043	0.1199	0.8459	1.398
275.66	275.66	1.003	5.011	0.0713	0.4481	1.255	330.01	330.00	2.500	5.012	0.1199	0.8376	1.394
275.66	275.66	1.502	5.026	0.1209	0.7613	1.253	330.00	329.99	2.500	5.001	0.0786	0.5482	1.394
275.65	275.65	1.505	5.004	0.0719	0.4504	1.251	330.00	329.99	2.998	5.004	0.0784	0.5438	1.386
275.65	275.65	2.003	5.005	0.0717	0.4483	1.249	330.01	330.00	2.997	5.017	0.1195	0.8306	1.385
275.65	275.65	1.995	4.994	0.1206	0.7533	1.251	340.02	340.00	1.502	5.029	0.1209	0.8774	1.443
275.65	275.65	2.505	5.012	0.1204	0.7537	1.249	340.00	339.98	1.501	5.008	0.0726	0.5255	1.445
275.65	275.65	2.506	5.007	0.0717	0.4480	1.249	340.01	339.99	1.499	5.022	0.0601	0.4361	1.445
275.63	275.63	2.993	4.982	0.0725	0.4501	1.246	340.00	339.98	1.498	5.006	0.1449	1.0460	1.443
275.64	275.64	2.996	4.993	0.1213	0.7536	1.245	340.00	339.98	1.497	4.995	0.0917	0.6604	1.442
310.01	310.00	0.999	5.025	0.1211	0.8145	1.339	340.00	339.98	1.503	5.002	0.1039	0.7498	1.443
310.00	309.99	0.998	5.007	0.0721	0.4839	1.341	339.99	339.97	1.502	4.989	0.0791	0.5687	1.441
310.00	309.99	0.998	5.005	0.0596	0.4006	1.343	340.00	339.98	1.503	5.006	0.0666	0.4808	1.442
310.00	309.99	0.999	5.011	0.1440	0.9666	1.339	340.01	339.99	1.502	5.017	0.1333	0.9633	1.440
309.99	309.98	0.997	4.987	0.0849	0.5666	1.338	340.00	339.98	2.004	5.008	0.1215	0.8707	1.432
310.00	309.99	0.997	4.989	0.0975	0.6501	1.337	340.01	339.99	2.005	5.035	0.0725	0.5220	1.431
310.00	309.99	1.505	5.001	0.1203	0.8035	1.336	339.99	339.97	2.501	5.006	0.0730	0.5205	1.424
310.00	309.99	1.507	4.979	0.0781	0.5192	1.336	340.00	339.98	2.495	5.008	0.1218	0.8689	1.425
310.00	309.99	2.000	4.979	0.1193	0.7911	1.332	339.99	339.97	2.998	5.010	0.1217	0.8614	1.413
310.01	310.00	1.997	5.021	0.0783	0.5234	1.331	340.01	339.99	3.002	5.035	0.0730	0.5197	1.413
310.00	309.99	2.500	4.998	0.1193	0.7913	1.327	350.01	349.99	2.002	5.025	0.1211	0.9042	1.486
310.00	309.99	2.500	4.989	0.0783	0.5181	1.327	350.01	349.99	2.001	5.026	0.1211	0.9043	1.486
309.99	309.98	2.996	4.972	0.1193	0.7849	1.323	350.01	349.99	2.000	5.027	0.0728	0.5442	1.487
310.00	309.99	2.996	4.994	0.0782	0.5172	1.324	349.98	349.96	1.999	4.983	0.0602	0.4467	1.489
320.02	320.01	1.004	5.023	0.1198	0.8236	1.369	349.99	349.97	2.002	4.995	0.1459	0.0813	1.484
320.02	320.01	1.004	5.002	0.0782	0.5359	1.371	350.00	349.98	2.505	5.009	0.1222	0.9028	1.475
320.01	320.00	1.502	5.005	0.0781	0.5338	1.366	349.99	349.97	2.505	4.988	0.0733	0.5374	1.471
320.01	320.00	1.501	5.030	0.1187	0.8141	1.364	349.99	349.97	3.003	5.001	0.0732	0.5358	1.464
320.00	319.99	2.003	4.994	0.1203	0.8184	1.362	350.00	349.98	3.003	5.026	0.1218	0.8942	1.461
320.00	319.99	2.003	4.995	0.0787	0.5358	1.362	349.99	349.97	1.703	4.996	0.1215	0.9049	1.491
320.00	319.99	2.504	4.989	0.1200	0.8136	1.358	349.99	349.97	1.704	4.993	0.0727	0.5423	1.494
320.00	319.99	2.503	4.997	0.0789	0.5356	1.358	350.00	349.98	1.602	5.005	0.0729	0.5448	1.492
320.01	320.00	2.995	5.013	0.1197	0.8138	1.356	350.00	349.98	1.602	5.000	0.1211	0.9036	1.492
319.99	319.98	2.997	4.984	0.0789	0.5327	1.355	349.99	349.97	1.506	4.989	0.1211	0.9036	1.496
330.01	330.00	1.005	5.015	0.1207	0.8531	1.410	350.00	349.98	1.505	5.006	0.0728	0.5449	1.496
329.99	329.98	1.005	4.980	0.0721	0.5056	1.408	350.01	349.99	1.408	3.005	0.1210	0.5448	1.499
330.00	329.99	1.006	4.989	0.0592	0.4177	1.415	350.01	349.99	1.409	3.014	0.1209	0.5448	1.495
330.00	329.99	1.006	4.990	0.0591	0.4177	1.416	350.00	349.98	1.409	3.003	0.1212	0.5449	1.498
330.01	330.00	1.007	5.014	0.1436	1.0155	1.411	350.00	349.98	1.408	3.011	0.0722	0.3253	1.496
329.99	329.98	1.007	5.002	0.0907	0.6395	1.410	349.98	349.96	1.407	3.002	0.0724	0.3253	1.496
330.01	330.00	1.504	5.016	0.1205	0.8493	1.405							

Figure 1. $C_{P,exp}$ for HCFC-142b as a function of inverse mass flow rates.

Conversely, the temperature increment has to be large enough to neglect uncertainty propagation from the absolute temperature measurements. The measurements on HCFC-142b at temperatures from 276 to 340 K and measurements at 350 K except those at a pressure of 1.4 MPa were performed with 5 K increments, while measurements at 350 K and 1.4 MPa were performed with 3 K increments. The measurements of HFC-152a at temperatures from 276 to 340 K, measurements at 350 K and 2.7 MPa, and measurements at 360 K were performed with 5 K increments, while measurements at 350 K and 355 K except those at 350 K and 2.7 MPa were performed with 3 K increments. We confirmed that the

Figure 2. $C_{P,exp}$ for HFC-152b as a function of inverse mass flow rates.

uncertainty of $C_{P,exp}$ due to the effect of the magnitude of the temperature increments was within $\pm 0.12\%$ to $\pm 0.4\%$ for HFC-152a and within $\pm 0.22\%$ for HCFC-142b by examining correlations to be discussed in the succeeding section. In Tables III and IV, 31 C_P values for HCFC-142b and 36 C_P values for HFC-152a at nominal temperatures and pressures determined from the present measurements are listed. The values were converted from the measurements with the aid of the respective correlations.

The uncertainties of C_P values in Tables I and II are $\pm 0.22\%$ for the measurements with temperature increments of 5 K and $\pm 0.34\%$ for those with temperature increments of 3 K,

Table II. Measurements on HFC-152a

						0 10 1							
<i>T</i> ₆₈ /K	<i>T</i> ₉₀ /K	<i>P</i> /MPa	$\Delta T_{68}/{ m K}$	ṁ/(g•s⁻¹)	$Q/(J_{-8}^{-1})$	$C_P/(\mathbf{k}\mathbf{J}\cdot\mathbf{k}\mathbf{g}^{-1}\cdot\mathbf{K}^{-1})$	$T_{68}/{ m K}$	T_{90}/K	<i>P</i> /MPa	$\Delta T_{68}/{ m K}$	$\dot{m}/(g\cdot s^{-1})$	$\dot{Q}/(J \cdot s^{-1})$	$C_P/(\mathbf{k}\mathbf{J}\cdot\mathbf{k}\mathbf{g}^{-1}\cdot\mathbf{K}^{-1})$
275.66	275.66	1.010	5.010	0.0963	0.8132	1.686	319.99	319.98	3.001	5.027	0.0577	0.5427	1.870
275.69	275.69	1.011	5.075	0.0587	0.5004	1.680	330.00	329.99	1.701	5.018	0.0963	0.9585	1.984
275. 64	275.64	1.501	4.953	0.0973	0.8093	1.679	330.00	329.99	1.699	5.011	0.0578	0.5745	1.984
275. 6 7	275.67	1.500	5.010	0.0586	0.4923	1.678	329.99	329.98	2.003	4.987	0.0969	0.9530	1.973
275. 64	275. 64	3.006	4.972	0.0976	0.8076	1.665	329.99	329.98	2.002	4.988	0.0582	0.5723	1.972
275.66	275.66	3.003	5.022	0.0584	0.4870	1.661	329.99	329.98	2.502	4.988	0.0581	0.5681	1.960
275.65	275.65	2.509	5.009	0.0584	0.4871	1.666	330.00	329.99	2.502	5.004	0.0971	0.9508	1.958
275.65	275.65	2.509	4.997	0.0973	0.8114	1.670	330.00	329.99	3.001	5.010	0.0968	0.9447	1.948
275. 64	275.64	2.007	4.984	0.0976	0.8150	1.676	330.00	329.99	2.999	5.002	0.0584	0.5673	1.943
275.68	275. 68	2.006	5.065	0.0583	0.4945	1.674	330.01	330.00	2.195	5.024	0.0975	0.9622	1.965
300.01	300.00	1.507	5.018	0.0969	0.8595	1.768	329.98	329.97	2.197	4.979	0.0580	0.5681	1.969
300.00	299.99	1.508	5.008	0.0584	0.5170	1.767	340.00	339.98	2.202	5.013	0.0967	1.0112	2.086
300.00	299.99	2.504	5.009	0.0974	0.8597	1.763	340.00	339.98	2.1 94	5.031	0.0581	0.6094	2.086
300.00	299.99	2.996	5.020	0.0976	0.8598	1.756	340.00	339.98	2.500	5.014	0.0580	0.6015	2.070
300.00	299.99	2.995	5.026	0.0975	0.8599	1.755	340.01	339.99	2.497	5.025	0.0967	1.0060	2.071
299.99	299.98	2.003	5.010	0.0974	0.8624	1.767	339.98	339. 96	2.999	4.968	0.0970	0.9851	2.044
299.99	299.98	2.003	5.008	0.0977	0.8624	1.764	33 9.99	339.97	3.000	4.988	0.0582	0.5933	2.044
299.97	299.96	1.006	4.980	0.0975	0.8615	1.774	340.00	339.98	2.794	5.013	0.0973	1.0034	2.058
310.01	310.00	1.505	5.001	0.0953	0.8709	1.828	340.00	339.98	2.799	5.005	0.0582	0.6000	2.059
309.98	30 9. 97	1.504	4.948	0.0574	0.5196	1.828	350.00	349.98	2.701	5.005	0.0971	1.0812	2.224
310.00	309.99	2.007	4.973	0.0960	0.8711	1.825	350.00	349.98	2.700	5.007	0.0579	0.6441	2.223
310.00	309.99	1.998	4.994	0.0580	0.5269	1.820	350.00	349.98	2.602	3.000	0.0974	0.6529	2.235
310.00	309.99	2.502	4.992	0.0960	0.8709	1.818	350.01	349.99	2.603	3.015	0.0578	0.3908	2.242
310.01	310.00	2.498	5.034	0.0578	0.5275	1.814	350.00	349.98	2.801	2.983	0.0975	0.6442	2.215
309.98	309.97	1.108	4.974	0.0967	0.8806	1.832	349.98	349.96	2.804	2.983	0.0582	0.3840	2.212
309.99	309.98	1.109	4.985	0.0582	0.5311	1.830	349.98	349.96	3.003	3.002	0.0990	0.6525	2.196
310.00	309.99	3.001	5.006	0.0966	0.8738	1.808	349.98	349.96	2.999	2.998	0.0594	0.3907	2.195
310.01	310.00	2.997	5.003	0.0581	0.5272	1.813	349.99	349.97	3.201	3.015	0.0992	0.6525	2.182
320.00	319.99	2.002	5.008	0.0973	0.9196	1.887	349.99	349.97	3.199	3.004	0.0596	0.3906	2.183
319.99	319.98	2.006	4.973	0.0579	0.5437	1.890	354.99	354.97	2.998	3.046	0.0979	0.6880	2.307
319.99	319.98	1.508	4.978	0.0958	0.9055	1.899	354.97	354.95	2.999	3.005	0.0594	0.4116	2.305
320.00	319. 99	1.507	5.003	0.0578	0.5485	1.897	354.95	354.93	3.205	2.967	0.0992	0.6704	2.278
319.99	319. 98	2.496	4.977	0.0579	0.5424	1.882	354.96	354.94	3.201	3.002	0.0597	0.4089	2.281
319.99	319.98	2.499	4.986	0.0961	0.9017	1.883	360.00	359.98	3.205	5.023	0.0990	1.2158	2.445
320.00	319. 9 9	3.002	4.988	0.0964	0.8987	1.869	360.00	359.98	3.209	5.020	0.0595	0.7286	2.439

Table III. Isobaric Heat Capacity C_P of HCFC-142b

$T_{68}/{ m K}$	<i>T</i> ₉₀ /K	P/MPa	$C_P/(\mathbf{kJ}\cdot\mathbf{kg}^{-1}\cdot\mathbf{K}^{-1})$
275.65	275.65	1.000	1.254
275.65	275.65	1.500	1.252
275.65	275.65	2.000	1.250
275.65	275.65	2.500	1.249
275.65	275.65	3.000	1.245
310.00	309.99	1.000	1.340
310.00	309.99	1.500	1.336
310.00	309.99	2.000	1.332
310.00	309.99	2.500	1.327
310.00	309.99	3.000	1.323
320.00	31 9.9 9	1.000	1.370
320.00	319.99	1.500	1.365
320.00	319.99	2.000	1.362
320.00	319.99	2.500	1.358
320.00	319.99	3.000	1.356
330.00	329. 99	1.000	1.411
330.00	329. 99	1.500	1.406
330.00	329.99	2.000	1.398
330.00	329.99	2.500	1.394
330.00	329.99	3.000	1.386
340.00	339.98	1.500	1.443
340.00	339.98	2.000	1.431
340.00	339.98	2.500	1.424
340.00	339.98	3.000	1.413
350.00	349.98	1.400	1.497
350.00	349.98	1.500	1.496
350.00	349.98	1.600	1.492
350.00	349.98	1.700	1.493
350.00	349.98	2.000	1.486
350.00	349.98	2.500	1.473
350.00	349.98	3.000	1.462

where the contributions are $\pm 0.01\%$ in supplied energy flow, $\pm 0.26\%$ and $\pm 0.36\%$ in mass flow rates for HCFC-142b and HFC-152a, respectively, ± 0.013 K in average temperature, and ± 3 kPa in pressure. The overall uncertainty of the final C_P values of HCFC-142b summarized in Table III is better than $\pm 0.34\%$ except at 350 K and 1.4 MPa where the uncertainty is estimated to be within $\pm 0.43\%$. The overall uncertainty of the final C_P values of HFC-152a summarized in Table IV is better than $\pm 0.42\%$ at temperatures from 276 to 350 K (except those at 2.7 MPa) and at 360 K, while the uncertainty at 350 K and 2.7 MPa and at 355 K is estimated to be within $\pm 0.49\%$.

Discussion

For HCFC-142b, Yada (7) has reported a modified-BWRtype equation of state (BWR = Benedict-Webb-Rubin) on the basis of his own PVT property data in both vapor and liquid phases, but the C_P values derived from his equation of state are greater than the present measurements by 20-30%. For HFC-152a, Yin et al. (8) have also reported a modified-BWR-type equation of state on the basis of available PVT property data covering an extensive range of gaseous and liquid phases. The C_P values derived from their equation of state, $C_{P, calcd}$, are systematically more than 5% greater than the present results, C_P , as shown in Figure 3.

The C_P values of HCFC-142b and HFC-152a were correlated with the following function of temperature and pressure:

$$C_P M/R = a + bP_r^{0.5} + cP_r$$
 (2)

$$a = a_1 + a_2/(1 - T_r)^{0.5} + a_3/(1 - T_r) + a_4/(1 - T_r)^3$$

$$b = b_1 + b_2/(1 - T_r)^{0.5} + b_3/(1 - T_r)^{1.5}$$

$$c = c_1 + c_2/(1 - T_r)^{1.5}$$

where $P_r = P/P_c$, $T_r = T/T_c$, $R = 8.31451 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, and M is molar mass. The coefficients of the correlations for HCFC-142b and HFC-152a are listed in Table V. The correlation for HCFC-142b represents the measurements within the uncertainty from 276 to 350 K at pressures between the

T	ahi	h	IV.	Isohs	ric Hes	t Cana	nity (In of	HFC.	1520
	αυ.			19005			ICILY C	/P UI	nru-	1028

T_{66}/K	<i>T</i> ₉₀ /K	P/MPa	$C_P/(\mathbf{kJ}\cdot\mathbf{kg}^{-1}\cdot\mathbf{K}^{-1})$
275.65	275.65	1.000	1.683
275.65	275.65	1.500	1.679
275.65	275.65	2.000	1.675
275.65	275.65	2.500	1.668
275.65	275.65	3.000	1.663
300.00	299.99	1.000	1.774
300.00	299.99	1.500	1.767
300.00	299.99	2.000	1.765
300.00	299.99	2.500	1.763
300.00	299.99	3.000	1.755
310.00	309.99	1.100	1.831
310.00	309.99	1.500	1.828
310.00	309.99	2.000	1.822
310.00	309.99	2.500	1.816
310.00	309.99	3.000	1.810
320.00	319.99	1.500	1.898
320.00	319.99	2.000	1.889
320.00	319.99	2.500	1.882
320.00	319.99	3.000	1.870
330.00	329.99	1.700	1.984
330.00	329.99	2.000	1.972
330.00	329.99	2.200	1.967
330.00	329.99	2.500	1.959
330.00	329.99	3.000	1.945
340.00	339.98	2.200	2.086
340.00	339.98	2.500	2.071
340.00	339.98	2.800	2.058
340.00	339.98	3.000	2.044
350.00	349.98	2.600	2.238
350.00	349.98	2.700	2.224
350.00	349.98	2.800	2.213
350.00	349.98	3.000	2.195
350.00	349.98	3.200	2.183
355.00	354.98	3.000	2.306
355.00	354.98	3.200	2.280
360.00	359.98	3.200	2.437

Table V. Coefficients of Isobaric Specific Heat Correlations for HCFC-142b and HFC-152a

Figure 3. Deviations of the present results from the equation of state of Yin et al. (8) for HFC-152a.

saturation pressure and 3.0 MPa, whereas that of HFC-152a represents the measurements within the uncertainty from 276 to 360 K and up to 3.2 MPa. The correlation for HCFC-

Table VI. Isobaric Heat Capacity of Saturated Liquid HCFC-142b

		i al 514	
T ₆₈ /K	$T_{90}/{ m K}$	P/MPa	$C_P/(\mathbf{k}\mathbf{J}\cdot\mathbf{kg}^{-1}\cdot\mathbf{K}^{-1})$
273.15	273.15	0.145	1.251
280.00	280.00	0.186	1.266
290.00	290.00	0.261	1.289
300.00	299.99	0.358	1.315
310.00	309.99	0.479	1.343
320.00	319.99	0.628	1.375
330.00	329.99	0.810	1.410
340.00	339.98	1.028	1.451
350.00	349.98	1.287	1.501

Table VII. Isobaric Heat Capacity of Saturated Liquid HFC-152a

T ₆₈ /K	T_{90}/K	P/MPa	$C_P/(\mathbf{k}\mathbf{J}\cdot\mathbf{k}\mathbf{g}^{-1}\cdot\mathbf{K}^{-1})$
273.15	273.15	0.264	1.679
280.00	280.00	0.335	1.698
290.00	290.00	0.465	1.733
300.00	299.99	0.629	1.776
310.00	309.99	0.835	1.832
320.00	319.99	1.087	1.903
330.00	329.99	1.392	1.994
340.00	339.98	1.757	2.112
350.00	349.98	2.190	2.275
360.00	359.98	2.700	2.544

Figure 4. Measured (symbols) and calculated (solid lines) C_P values for HCFC-142b: (\odot) 350 K, (\triangleleft) 340 K, (\bigcirc) 330 K, (\bigcirc) 320 K, (\diamond) 310 K, (\diamondsuit) 276 K.

Figure 5. Measured (symbols) and calculated (solid lines) C_P values for HFC-152b: (\blacktriangle) 360 K, (\bigtriangledown) 355 K, (\odot) 350 K, (\triangleleft) 340 K, (\bigcirc) 330 K, (\bigcirc) 320 K, (\diamond) 310 K, (\blacklozenge) 300 K, (\triangleright) 276 K.

142b reproduces measured C_P data with a maximum deviation of $\pm 0.35\%$ and a standard deviation of $\pm 0.15\%$. The correlation of HFC-152a reproduces the measured C_P data with a maximum deviation of $\pm 0.24\%$ and a standard deviation of $\pm 0.11\%$.

Saturated liquid C_P values were also derived from the correlations by substituting the vapor pressures calculated from equations developed by Kumagai et al. (9) for HCFC-142b and Higashi et al. (10) for HFC-152a. These values are listed in Tables VI and VII for HCFC-142b and HFC-152a, respectively. The uncertainty of these values is estimated to

be about $\pm 0.5\%$ considering the extrapolation procedure. The measured C_P values in the compressed liquid phase, the isotherms, and the saturation curve calculated from the respective correlations are shown in the C_P -P diagrams in Figures 4 and 5.

Conclusions

Thirty-one C_P values of HCFC-142b were measured in the liquid phase at temperatures from 276 to 350 K and pressures up to 3.0 MPa. Thirty-six C_P values of HFC-152a were measured at temperatures from 276 to 360 K and pressures up to 3.2 MPa. These C_P data were compared with the values derived from available equations of state, effective including the liquid phase. The values of C_P for both refrigerants were correlated with the same functional form of temperature and pressure. Saturated liquid C_P values were derived from the correlations.

Acknowledgment

Daikin Industries, Ltd., Osaka, Japan, is greatly appreciated for kindly furnishing the samples of HCFC-142b and HFC-152a.

Literature Cited

- Ashizawa, M.; Saitoh, A.; Sato, H. Proc. Congr. Refrig., 17th 1987, B, 185.
- Sato, H.; Sakate, N.; Ashizawa, M.; Uematsu, M.; Watanabe, K. Proc.—ASME-JSME Therm. Eng. Jt. Conf., 2nd 1987, 4, 350.
 Saitoh, A.; Nakagawa, S.; Sato, H.; Watanabe, K. J. Chem. Eng.
- (3) Saturi, A., Hakagawa, S., Satu, H., Watahabe, K. J. Chem. Eng. Data 1990, 35 (2), 107.
 (4) Nakagawa, S., Sato, H.; Watahabe, K. J. Chem. Eng. Data 1991, 36
- (2), 156.
 (5) Saitoh, A.; Sato, H.; Watanabe, K. Int. J. Thermophys. 1989, 10 (3),
- 649.
 (6) Kamei, A.; Piao, C.-C.; Sato, H.; Watanabe, K. ASHRAE Trans. 1990, 96 (Part 1), 141.
- (7) Yada, N. Ph.D. Dissertation, Keio University, 1991, p 235 (in Japanese).
- (8) Yin, K.-M.; Yada, N.; Watanabe, K. Proc. Jpn. Symp. Thermophys. Prop., 9th 1988, 211.
- (9) Kumagai, K.; Yada, N.; Sato, H.; Watanabe, K. Proc. Jpn. Symp. Thermophys. Prop., 10th 1989, 67 (in Japanese with English abstract).
- (10) Higashi, Y.; Ashizawa, M.; Kabata, Y.; Majima, T.; Uematsu, M.; Watanabe, K. JSME Int. J. 1987, 30 (265), 1106.

Received for review March 26, 1992. Revised September 8, 1992. Accepted September 19, 1992. The present study was supported partially by the Grant-In-Aid for Scientific Research Fund in 1990 (General Research (C) No. 02650166) of the Ministry of Education, Science and Culture of Japan and Tokyo Electric Power Co., Ltd.