Excess Molar Volumes and Refractive Indices of cis-9-Octadecenoic Acid + n-Alkanes or Alkan-1-ols at 298.15 K

Cayetano Yanes,' Alfredo Maestre, Pilar Pérez-Tejeda, and Juan J. Calvente
Departamento de Quimica Física, Facultad de Química, Profesor García González, s/n, 41012 Sevilla, Spain

The excess molar volumes $V_{\mathrm{m}}^{\mathrm{E}}$ and refractive indices n_{D} of cis-9-octadecenoic (oleic) acid +an-alkane ($\mathrm{C}_{7}-\mathrm{C}_{12}$) or + an alkan-1-ol ($\mathrm{C}_{8}-\mathrm{C}_{12}$) have been determined at 298.15 K for all mixtures. The excess volumes are negative over the whole composition range. A linear dependence between $V_{m}{ }^{5}$ at the minimum and the number of carbon atoms, N_{C}, and between $V_{\mathrm{m}}{ }^{\mathrm{E}}(x=0.5)$ and the volume fraction, ϕ_{1}, of the second component is found. Molar refractions have been derived from refractive indices and densities using the Lorenz-Lorentz equation.

Introduction

cis-9-Octadecenoic acid ($\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{CH}=\mathrm{CHC}_{7} \mathrm{H}_{14} \mathrm{CO}_{2} \mathrm{H}$) (oleic acid) is one of the main constituents of various vegetable oils and lipids making up biological membranes and is of considerable importance in the soap and food industries (1).

In previous papers $(2,3)$ we have studied $H_{m}{ }^{E}$ and $V_{\mathrm{m}}{ }^{\mathrm{E}}$ and binary mixtures of oleic acid + benzene, cyclohexane, hexane, trichloroethene, or tetrachloroethene at 298.15 K. In the present study values of $V_{\mathrm{m}}{ }^{\mathrm{E}}$ and n_{D} for x oleic acid $+(1-x)$ n-alkanes (heptane, octane, nonane, decane, and dodecane) or alkan-1-ols (hexan-1-ol, heptan-1-ol, octan-1-ol, nonan-1ol, decan-1-ol, and dodecan-1-ol) are reported. The binary mixture of oleic acid with n-alkane is known as a system of associated and nonassociating molecules, while in the case of alkan-1-ols they not only contain self-associated species, but also show cross association between oleic acid and alkan-1-ol. The result will be used to analyze effects of the aliphatic chain length and -OH group on the measured properties.

Experimental Section

cis-9-Octadecenoic acid (BDH) was checked for purity by GLC $\mathbf{~} 92 \%$ oleic acid, 4.5% linoleic acid, 2.1% stearic acid, and 1.4% palmitic acid) and was stored frozen under nitrogen atmosphere in order to avoid oxidation by air. All the remaining chemicals were products from Fluka, and their purity was better than 99% as determined by GLC. They were carefully dried with an activated molecular sieve prior to making up mixtures by weight.

The densities, ρ, of the pure components and their binary mixtures were made with an Anton Paar vibrating-tube densimeter, and the corresponding refractive indices, n_{D}, were measured with an Abbe refractometer (Atago 308). The details of measurements, ρ and n_{D}, are described elsewhere (2,4). The temperature in the densimeter and refractometer was regulated through a cascade water bath apparatus (Heto) with a stability within $\pm 0.01 \mathrm{~K}$ as checked by a digital precision thermometer (Anton Paar DT 100-20). Density values and refractive index values have an uncertainty of $\pm 8 \times 10^{-6} \mathrm{~g}$ cm^{-3} and $\pm 10^{-4}$, respectively.

For the pure compounds, the densities measured at 298.15 K were $0.67925 \mathrm{~g} \mathrm{~cm}^{-3}$, heptane; $0.69829 \mathrm{~g} \mathrm{~cm}^{-3}$, octane; $0.71385 \mathrm{~g} \mathrm{~cm}^{-3}$, nonane; $0.72620 \mathrm{~g} \mathrm{~cm}^{-3}$, decane; 0.74567 g cm^{-3}, dodecane; $0.81501 \mathrm{~g} \mathrm{~cm}^{-3}$, hexan-1-ol; $0.81891 \mathrm{~g} \mathrm{~cm}^{-3}$,

Figure 1. Excess molar volumes $V_{m}{ }^{\mathrm{E}}$ of x oleic acid $+(1-$ x) n-alkane at 298.15 K : heptane; $\boldsymbol{\nabla}$, octane; m , nonane; A , decane; \uparrow, dodecane; -, calculated from eq 1 with the coefficients from Table III.

Figure 2. Excess molar volumes $V_{m}{ }^{E}$ of x oleic acid $+(1-$ x) alkan-1-ol at 298.15 K : + , hexan-1-ol; ©, heptan-1-ol; ∇, octan-1-ol; m, nonan-1-ol; A, decan-1-ol; \uparrow, dodecan-1-ol; -, calculated from eq 1 with the coefficients from Table III.
heptan-1-ol; $0.82148 \mathrm{~g} \mathrm{~cm}^{-3}$, octan-1-ol; $0.82428 \mathrm{~g} \mathrm{~cm}^{-3}$, nonan1 -ol; $0.82615 \mathrm{~g} \mathrm{~cm}^{-3}$, decan-1-ol; and $0.82973 \mathrm{~g} \mathrm{~cm}^{-3}$, dodecan-1-ol. These values are in reasonable agreement with those compiled by the literature. The precision of the excess molar volume is within $\pm 0.002 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.

Table I. Denaities ρ, Excess Molar Volumes $V_{\mathbf{m}}{ }^{\mathbb{E}}$, Refractive Indices n_{D}, and Molar Refractions $[R]_{18}$ for x cis- $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{CH}=\mathrm{CHC}_{7} \mathrm{H}_{14} \mathrm{CO}_{2} \mathrm{H}+(1-\mathrm{x}) \mathrm{C}_{7} \mathrm{H}_{16}, \mathrm{C}_{8} \mathrm{H}_{18}, \mathrm{C}_{8} \mathrm{H}_{20}, \mathrm{C}_{10} \mathrm{H}_{22}$, or $\mathrm{C}_{12} \mathrm{H}_{28}$ at 298.15 K

\boldsymbol{x}	$\begin{gathered} \rho / \\ \left(\mathrm{g} \mathrm{~cm}^{-8}\right) \end{gathered}$	$\begin{gathered} V_{\mathrm{m}}^{\mathrm{E}} / \\ \left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right) \end{gathered}$	n_{D}	$[R]_{12}$	x	$\begin{gathered} \rho / \\ \left(\mathrm{g} \mathrm{~cm}^{-8}\right) \end{gathered}$	$\begin{gathered} V_{\mathrm{m}}^{\mathrm{E}} / \\ \left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right) \end{gathered}$	$n \mathrm{D}$	$[R]_{12}$
$\mathrm{C}_{7} \mathrm{H}_{18}$									
0.0	0.67925		1.3856	34.62	0.5144	0.82820	-0.812	1.4386	61.55
0.1224	0.73001	-0.514	1.4043	41.07	0.6273	0.84638	-0.731	1.4450	67.46
0.1777	0.74874	-0.657	1.4110	43.97	0.7156	0.85853	-0.590	1.4480	71.92
0.2783	0.77669	-0.821	1.4212	49.30	0.8531	0.87482	-0.329	1.4544	79.29
0.4163	0.80977	-0.878	1.4324	56.45	1.0	0.88940		1.4590	86.82
0.4560	0.81750	-0.836	1.4350	68.61					
$\mathrm{C}_{8} \mathrm{H}_{18}$									
0.0	0.69829		1.3958	39.29	0.5334	0.83235	-0.682	1.4404	64.63
0.1242	0.74102	-0.363	1.4102	45.20	0.6067	0.84355	-0.605	1.4444	68.21
0.2160	0.76702	-0.547	1.4190	49.57	0.6925	0.85537	-0.488	1.4480	72.21
0.2757	0.78186	-0.621	1.4238	62.40	0.8032	0.86905	-0.353	1.4528	77.53
0.4152	0.81152	-0.693	1.4334	69.00	1.0	0.88940		1.4590	86.82
0.4507	0.81814	-0.696	1.4358	60.71					
$\mathrm{C}_{9} \mathrm{H}_{20}$									
0.0	0.71385		1.4042	43.96	0.5650	0.83764	-0.462	1.4436	68.25
0.1133	0.74713	-0.243	1.4154	48.89	0.6202	0.84557	-0.420	1.4452	70.50
0.2121	0.77178	-0.361	1.4232	53.13	0.6901	0.85501	-0.377	1.4480	73.48
0.3399	0.79909	-0.453	1.4316	58.60	0.7352	0.86068	-0.324	1.4502	75.48
0.3875	0.80814	-0.466	1.4342	60.61	0.7955	0.86788	-0.256	1.4524	78.06
0.4527	0.81969	-0.469	1.4382	63.46	0.8806	0.87756	-0.229	1.4558	81.76
0.5080	0.82881	-0.466	1.4400	65.70	1.0	0.88940		1.4590	86.82
$\mathrm{C}_{10} \mathrm{H}_{22}$									
0.0	0.72620		1.4098	48.53	0.5588	0.83712	-0.373	1.4431	69.88
0.0985	0.75125	-0.136	1.4186	52.43	0.5902	0.84156	-0.348	1.4447	71.12
0.2095	0.77614	-0.257	1.4250	56.55	0.7177	0.85843	-0.295	1.4496	75.98
0.3048	0.79511	-0.325	1.4307	60.20	0.7992	0.86819	-0.235	1.4526	79.12
0.4098	0.81383	-0.368	1.4364	64.22	0.9009	0.87948	-0.156	1.4558	82.98
0.4413	0.81907	-0.377	1.4382	65.46	1.0	0.88940		1.4590	86.82
0.5187	0.83124	-0.390	1.4414	68.36					
$\mathrm{C}_{12} \mathrm{H}_{26}$									
0.0	0.74567		1.4197	57.77	0.5037	0.83025	-0.154	1.4431	72.44
0.1022	0.76555	-0.075	1.4253	60.76	0.5513	0.83678	-0.151	1.4450	73.84
0.2038	0.78381	-0.129	1.4305	63.74	0.5887	0.84175	-0.140	1.4461	74.89
0.2923	0.79855	-0.143	1.4344	66.29	0.6942	0.85520	-0.128	1.4499	77.97
0.3468	0.80716	-0.144	1.4368	67.88	0.7980	0.86750	-0.081	1.4531	80.97
0.4013	0.81549	-0.157	1.4391	69.47	0.9019	0.87913	-0.057	1.4562	83.97
0.4390	0.82103	-0.154	1.4405	70.55	1.0	0.88940		1.4590	86.82

Results and Discussion

Tables I and II report the $V_{\mathrm{m}}{ }^{E}$ and n_{D} results at 298.15 K . They were smoothed by an unweighted least-squares method to the equation

$$
\begin{equation*}
V_{\mathrm{m}}^{\mathrm{E}}=x(1-x) \sum_{i=1}^{n} A_{i}(1-2 x)^{i-1} \tag{1}
\end{equation*}
$$

where x is the mole fraction of oleic acid and $V_{m}{ }^{E}$ is the excess volume. The coefficients A_{i} and standard deviations $s\left(V_{\mathrm{m}}{ }^{\mathrm{E}}\right)$ are summarized in Table III. Graphical representations of the above equation are shown in Figures 1 and 2, where the continuous lines are calculated values. The excess molar volumes, $V_{\mathrm{m}}{ }^{\mathrm{E}}$, of oleic acid $+n$-alkane or + alkan-1-ol are negative over the whole composition range and decrease with the increase in the aliphatic chain length of the second component for both series. The inclusion of a - OH group in the n-alkane molecule leads to more positive $V_{\mathrm{m}}{ }^{\mathrm{E}}$ values. The observed minima shift slightly to higher mole fractions of oleic acid for all mixtures, this effect being more marked in the case of alkan-1-ols. It is interesting to note that in binary mixtures of n-alkanes with alkanols (5), excess molar volumes exhibit more negative values with increasing chain length of the alkanol. An opposite effect of that was observed by us.

In the liquid state, fatty acids, like oleic acid, form cyclic dimers through hydrogen bonds (6), where their molecules are orientationally correlated in parallel disposition.

The negative contribution to $V_{m}{ }^{E}$ observed with n-alkanes is principally due to the geometrical fitting in the ordered oleic acid structure. This fact is favored with a decrease of the aliphatic chain length of the n-alkane, whereas in the case of alkan-1-ols there is a second factor that contributes positively to $V_{\mathrm{m}} \mathrm{E}$, i.e., the disruption of the hydrogen-bonded alkanol structure by the presence of oleic acid (7). Both oleic acid $+n$-alkane mixtures and oleic acid + alkan-1-ol mixtures show a linear dependence between excess molar volumes at the minimum, $V_{\text {min }}^{\mathbb{E}}$, and the number of carbon atoms, N_{C}, or between $V_{\mathrm{m}}{ }^{\mathrm{E}}(x=0.5)$ and the volume fraction of the second component, ϕ_{1}. The following expressions for the above mixtures were obtained:
n-alkanes

$$
\begin{gather*}
V_{\text {min }}^{E}=0.143 N_{\mathrm{C}}-1.832 ; s=0.022 \tag{2}\\
V_{\mathrm{m}}^{ \pm}(x=0.5)=6.769 \phi_{1}-2.963 ; s=0.012 \tag{3}
\end{gather*}
$$

alkan-1-ols

$$
\begin{gather*}
V_{\text {min }}^{ \pm}=0.016 N_{\mathrm{C}}-0.283 ; s=0.0018 \tag{4}\\
V_{\mathrm{m}}^{\mathrm{E}}(x=0.5)=0.539 \phi_{1}-0.320 ; s=0.00004 \tag{5}
\end{gather*}
$$

where s denotes standard deviations.

Table II. Densities ρ, Excess Molar Volumes $V_{m} E$, Refractive Indices n_{D}, and Molar Refractions [R] $]_{12}$ for x cis $-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{CH}=\mathrm{CHC}_{7} \mathrm{H}_{14} \mathrm{CO}_{2} \mathrm{H}+(1-x) \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}, \mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}, \mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}, \mathrm{C}_{9} \mathrm{H}_{20} \mathrm{O}, \mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}$, or $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{O}$ at 298.15 K

x	$\rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	$\begin{gathered} V_{\mathrm{m}}^{\mathrm{E}} / \\ \left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right) \end{gathered}$	$n_{\text {D }}$	$[R]_{12}$	x	$\rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	$\begin{gathered} V_{\mathrm{m}}^{\mathrm{E}} / \\ \left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right) \end{gathered}$	$n_{\text {D }}$	$[R]_{12}$
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$									
0.0	0.81501		1.4161	31.47	0.4941	0.86868	-0.174	1.4470	58.83
0.1039	0.83265	-0.126	1.4262	37.22	0.5326	0.87089	-0.163	1.4485	60.98
0.1937	0.84409	-0.176	1.4327	42.19	0.6059	0.87469	-0.132	1.4506	65.03
0.2986	0.85455	-0.198	1.4388	48.00	0.6855	0.87838	-0.111	1.4527	69.43
0.3478	0.85863	-0.193	1.4413	50.74	0.7809	0.88224	-0.080	1.4550	74.72
0.3999	0.86258	-0.198	1.4435	53.62	0.8924	0.88616	-0.045	1.4571	80.87
0.4505	0.86599	-0.185	1.4455	56.42	1.0	0.88940		1.4590	86.82
$\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}$									
0.0	0.81891		1.4224	36.09	0.4478	0.86500	-0.165	1.4465	58.83
0.0987	0.83330	-0.100	1.4299	41.10	0.4984	0.86810	-0.151	1.4481	61.40
0.2001	0.84495	-0.156	1.4360	46.25	0.5995	0.87365	-0.129	1.4510	66.53
0.2458	0.84940	-0.166	1.4385	48.60	0.7023	0.87849	-0.094	1.4535	71.74
0.2996	0.85410	-0.164	1.4409	51.32	0.7928	0.88220	-0.055	1.4553	76.32
0.3523	0.85832	-0.170	1.4430 .	53.98	0.8941	0.88593	-0.025	1.4572	81.45
0.3984	0.86169	-0.171	1.4448	56.33	1.0	0.88940		1.4590	86.82
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$									
0.0	0.82148		1.4277	40.76	0.5362	0.86937	-0.122	1.4500	65.49
0.1031	0.83467	-0.089	1.4336	45.49	0.5944	0.87252	-0.105	1.4515	68.18
0.1884	0.84363	-0.122	1.4380	49.45	0.7007	0.87770	-0.068	1.4538	73.07
0.2983	0.85339	-0.153	1.4426	54.52	0.7939	0.88179	-0.056	1.4556	77.35
0.3986	0.86083	-0.149	1.4460	59.14	0.8993	0.88591	-0.033	1.4575	82.20
0.4516	0.86433	-0.143	1.4477	61.59	1.0	0.88940		1.4590	86.82
0.4972	0.86712	-0.132	1.4490	63.70					
$\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{O}$									
0.0	0.82428		1.4319	45.38	0.4498	0.86367	-0.136	1.4484	64.03
0.1008	0.83560	-0.073	1.4366	49.56	0.5009	0.86676	-0.126	1.4496	66.14
0.1999	0.84507	-0.115	1.4406	53.67	0.5962	0.87206	-0.108	1.4518	70.09
0.2516	0.84950	-0.136	1.4424	55.81	0.6634	0.87546	-0.089	1.4532	72.87
0.2993	0.85325	-0.138	1.4441	57.80	0.7913	0.88131	-0.058	1.4555	78.15
0.3459	0.85671	-0.142	1.4455	59.73	0.8791	0.88490	-0.031	1.4570	81.79
0.3959	0.86017	-0.140	1.4470	61.81	1.0	0.88940		1.4590	86.82
$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}$									
0.0	0.82615		1.4355	50.05	0.4515	0.86310	-0.131	1.4492	66.64
0.1012	0.83638	-0.070	1.4392	53.75	0.4998	0.86600	-0.122	1.4504	68.43
0.1988	0.84500	-0.109	1.4425	57.35	0.5905	0.87108	-0.104	1.4522	71.76
0.2443	0.84867	-0.119	1.4439	59.03	0.7005	0.87666	-0.075	1.4542	75.80
0.3021	0.85305	-0.130	1.4455	61.15	0.7914	0.88089	-0.056	1.4560	79.17
0.3503	0.85647	-0.131	1.4468	62.93	0.8957	0.88533	-0.029	1.4578	83.04
0.3906	0.85921	-0.134	1.4478	64.41	1.0	0.88940		1.4590	86.82
$\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}$									
0.0	0.82973		1.4410	59.30	0.4989	0.86493	-0.094	1.4518	73.05
0.1019	0.83815	-0.039	1.4437	62.12	0.5456	0.86759	-0.094	1.4526	74.33
0.2025	0.84578	-0.075	1.4457	64.85	0.6024	0.87069	-0.085	1.4534	75.88
0.3012	0.85265	-0.090	1.4480	67.60	0.6860	0.87505	-0.076	1.4547	78.18
0.3473	0.85570	-0.100	1.4491	68.89	0.7871	0.87998	-0.052	1.4563	80.98
0.3945	0.85868	-0.098	1.4500	70.19	0.8899	0.88467	-0.024	1.4578	83.83
0.4490	0.86199	-0.093	1.4510	71.69	1.0	0.88940		1.4590	86.82

Experimental values of n_{D} for binary mixtures (Tables I and II) were fitted by the least-squares method with a polynomial function of the form

$$
\begin{equation*}
n_{\mathrm{D}}=\sum_{i=1}^{n} A_{i} x^{i-1} \tag{6}
\end{equation*}
$$

where the values of coefficients A_{i} are listed in Table III along with the standard deviations, $s\left(n_{\mathrm{D}}\right)$, of each fitting.

The refractive index for a pure liquid can be related to its molar volume V_{m} in terms of the molar refraction $[R]$ according to the Lorenz-Lorentz equation (7):

$$
\begin{equation*}
[R]=\frac{n^{2}-1}{n^{2}+2} V_{\mathrm{m}} \tag{7}
\end{equation*}
$$

This can be rearranged for a binary mixture as

$$
\begin{equation*}
[R]_{12}=\frac{n_{12}^{2}-1}{n_{12}^{2}+2} \frac{M_{12}}{\rho_{12}} \tag{8}
\end{equation*}
$$

where subscript 12 refers to the binary mizture and M_{12} is the average molar mass defined as $x_{1} M_{1}+\left(1-x_{1}\right) M_{2}$. Values of $[R]_{12}$ are given in Tables I and II with an associated uncertainty of $\pm 0.02 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$, by considering the uncertainties estimated for ρ and n_{D}.
In order to check the vality of the Lorenz-Lorentz equation to the experimental values, a plot of $[R]_{12}$ vi x_{1} is shown in Figure 3. All binary mixtures fit eq 8 satisfactorily (regression coefficients, $r=0.999$). On the other hand, $[R]_{12}$ is expected to be an additive and constitutive quantity for mixtures:

$$
\begin{equation*}
[R]_{12}=x_{1}[R]_{1}+\left(1-x_{1}\right)[R]_{2} \tag{9}
\end{equation*}
$$

where subscripts 1 and 2 correspond to components 1 and 2. The difference between the experimental and predited values exceeds the experimental uncertainty of $\pm 0.02 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ which can be adscribed to strong interactions between components 1 and 2.

Figure 3. Molar refractions [$R]_{12}$ for n-alkanes and alkan-1-ols as a function of the oleic acid mole fraction x_{1} : (left side) heptane; $\boldsymbol{\nabla}$, octane; $\boldsymbol{\square}$, nonane; \boldsymbol{A}, decane; \uparrow, dodecane; (right side) \times, hexan-1-ol; \bullet, heptan-1-ol; ∇, octan-1-ol; \square, nonan-1-ol; A, decan-1-ol; *, dodecan-1-ol.

Table III. Coefficients A_{i} and Standard Deviations for Representation of Excess Molar Volumes $V_{m}{ }^{E}$ and Refractive Indices n_{D} for $x \mathrm{C}_{18} \mathrm{H}_{3} \mathrm{O}_{2}+(1-x)$ Organic Compound at 298.15 K by Equations 1 and 6

organic compound		A_{1}	A_{2}	A_{3}	A_{4}	$10^{3} 8$	organic compound		A_{1}	A_{2}	A_{3}	A_{4}	$10^{3} 8$
$\mathrm{C}_{7} \mathrm{H}_{16}$	$V_{\mathrm{m}} \mathrm{E}^{\text {/ }}\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	-3.3292	-1.3527	-0.7144		12.8	$\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}$	$V_{\mathrm{m}} \mathrm{E}^{\text {/ }}\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	-0.6118	-0.4176	-0.1105	-0.2365	3.22
	$n_{\text {D }}$	1.3860	0.1635	-0.1477	0.0575	0.103		$n_{\text {D }}$	1.4226	0.0793	-0.0686	0.0258	0.034
$\mathrm{C}_{8} \mathrm{H}_{18}$	$V_{\mathrm{m}} \mathrm{E}^{1}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	-2.7229	-0.8804			10.0	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	$V_{\mathrm{m}}{ }^{\mathrm{E}} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	-0.5190	-0.5083	-0.1604	0.2565	3.97
	$n_{\text {D }}$	1.3960	0.1230	-0.0899	0.0300	0.052		$n_{\text {D }}$	1.4277	0.0622	-0.0469	0.0160	0.022
$\mathrm{C}_{9} \mathrm{H}_{20}$	$V_{\mathrm{m}} \mathrm{E} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	-1.8564	-0.3919	-0.3740		17.0	$\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{O}$	$V_{\mathrm{m}}^{\mathrm{E}} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	-0.5117	-0.3397	-0.0684		2.18
	$n_{\text {D }}$	1.4045	0.1021	-0.0750	0.0278	0.110		$n_{\text {D }}$	1.4319	0.0505	-0.0355	0.0125	0.001
$\mathrm{C}_{10} \mathrm{H}_{22}$	$V_{\mathrm{m}}{ }^{\mathrm{E}} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	-1.5070	-0.1898	-0.0691	0.4455	8.53	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}$	$V_{\mathrm{m}} \mathrm{E}^{1} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	-0.4860	-0.3194	-0.0583	0.0648	1.85
	$n^{\text {D }}$	1.4102	0.0811	-0.0481	0.0158	0.021			1.4355	0.0389	-0.0216	0.0063	0.039
$\mathrm{C}_{12} \mathrm{H}_{26}$	$V_{\mathrm{m}}{ }^{\mathrm{E}} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	-0.6094	-0.1553	-0.1501		5.51	$\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{O}$	$V_{\mathrm{m}}^{\mathrm{E}} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	-0.3822	-0.1228			3.01
		1.4197	0.0567	-0.0234	0.0060	0.001		$n_{\text {D }}$	1.4410	0.026	-0.0111	0.0026	0.016
$\mathrm{C}_{6} \mathrm{H}_{44} \mathrm{O}$	$V_{\mathrm{m}} \mathrm{E}^{1} /\left(\mathrm{cm}^{9} \mathrm{~mol}^{-1}\right)$	-0.6796	-0.5525	-0.3195		3.56							
	$n_{\text {D }}$	1.4164	0.0992	-0.0923	0.0358	0.058							

Literature Cited

(1) Maeda, H.; Eguchi, Y.; Suzuki, M. J. Phys. Chem. 1992, 96, 10487.
(2) Yanes, C.; Pérez-Tejeda, P.; Maestre, A.J.Chem. Thermodyn. 1989, 21, 819, 1217
(3) Yanes, C.; Pellicer, J.; Rojas, E.; Zamora, M. J. Chem. Thermodyn. 1979, 11, 177.
(4) Yanes, C.;Pérez-Tejeda, P.; Garcia-Pañeda, E.;Maestre, A. J. Chem. Soc., Faraday Trans. 1992, 88, 223.
(5) Zhao, V.; Hu, Y. Fluid Phase Equilib. 1990, 57, 89.
(6) Marsh, K. N. Annu. Rep. Prog. Chem., Sect. C 1990, 77, 101.
(7) Handa, Y. P.; Benson, G. C. Fluid Phase Equilib. 1979, 3, 185.
(8) Bottcher, C. J. F.; Bordewijk, P. Theory of Electric Polarization, 2nd ed.; Elsevier: Amsterdam, 1978; Vol. II, Chapter XII.

Received for review October 27, 1992. Revised April 9, 1993. Accepted June 3, 1993.

