Table III. ${ }^{13} \mathrm{C}$ NMR Data

compd	chem
5 a	$29.1(\mathrm{C}-1) ; 20.6$ (C-2); 21.9^{b} (C-3); 28.4 (C-4); 121.6 (C-5); 133.1 (C-6); 129.2 (C-7); 126.4 (C-8); 156.8 (C-9); 136.4_{5} (C-11); 128.3 (C-12); 135.7_{5} (C-13); 155.2 (C-14)
5c	$\begin{aligned} & 29.1(\mathrm{C}-1) ; 20.7^{\circ}(\mathrm{C}-2) ; 22.0^{c}(\mathrm{C}-3) ; 28.6(\mathrm{C}-4) ; 122.2(\mathrm{C}-5) ; 133.2(\mathrm{C}-6) ; 129.2(\mathrm{C}-7) ; 126.5_{5}(\mathrm{C}-8) ; 155.7(\mathrm{C}-9) ; 136.3(\mathrm{C}-11) ; 129.1 \\ & (\mathrm{C}-12) ; 136.8(\mathrm{C}-13) ; 155.4(\mathrm{C}-14) ; 37.5\left(\mathrm{CH}_{2}-1^{\prime}\right) ; 30.4\left(\mathrm{CH}_{2}-2^{2}\right) ; 29.0_{5}{ }^{d}\left(\mathrm{CH}_{2}-3^{\prime}\right) ; 29.0^{d}\left(\mathrm{CH}_{2}-4^{\prime}\right) ; 28.6^{d}\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 31.7\left(\mathrm{CH}_{2}-6^{\prime}\right) ; 22 \\ & \left(\mathrm{CH}_{2}-7^{\prime}\right) ; 14.0\left(\mathrm{CH}_{3}\right) \end{aligned}$
5d	$29.1_{5} \cdot(\mathrm{C}-1) ; 20.8^{e}(\mathrm{C}-2) ; 22.1^{e}(\mathrm{C}-3) ; 28.7(\mathrm{C}-4) ; 122.1(\mathrm{C}-5) ; 133.2(\mathrm{C}-6) ; 129.2(\mathrm{C}-7) ; 126.6(\mathrm{C}-8) ; 155.7(\mathrm{C}-9) ; 136.4(\mathrm{C}-11) ; 129.2$ ${ }^{(\mathrm{C}-12) ; 136.8(\mathrm{C}-13) ; 155.4(\mathrm{C}-14) ; 37.5\left(\mathrm{CH}_{2}-1^{-1}\right) ; 30.4\left(\mathrm{CH}_{2}-2^{2}\right) ; 28.6^{f}\left(\mathrm{CH}_{2}-3^{\prime}\right) ; 28.6^{f}\left(\mathrm{CH}_{2}-4^{\prime}\right) ; 29.4^{f}\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 29.0^{\prime}\left(\mathrm{CH}_{2}-6^{\prime}\right) ;}$ $29.1_{5}^{f^{\prime}}\left(\mathrm{CH}_{2} 7^{\prime}\right) ; 31.9\left(\mathrm{CH}_{2}-8^{\prime}\right) ; 22.6_{5}\left(\mathrm{CH}_{2}-9^{\prime}\right) ; 14.0_{5}\left(\mathrm{CH}_{3}\right)$
5 e	
5 j	$28.9(\mathrm{C}-1) ; 20.0_{5}{ }^{\text {h }}(\mathrm{C}-2) ; 21.3^{h}(\mathrm{C}-3) ; 28.1(\mathrm{C}-4) ; 120.9(\mathrm{C}-5) ; 132.8(\mathrm{C}-6) ; 12 . .1(\mathrm{C}-7) ; 126.5$ ($\left.\mathrm{C}-8\right) ; 151.9(\mathrm{C}-9) ; 136.3(\mathrm{C}-11) ; 128.3$ $(\mathrm{C}-12) ; 137.1(\mathrm{C}-13) ; 156.3(\mathrm{C}-14) ; 33.2_{5}\left(\mathrm{CH}_{2}-1\right) ; 24.5\left(\mathrm{CH}_{2}-2^{\prime}\right) ; 55.0\left(\mathrm{CH}_{2}-3^{\prime}\right) ; 41.9\left(\mathrm{CH}_{3}\right)$
5k	29.1 (C-1); 20.2^{i} (C-2); 21.4^{i} (C-3); 28.2 (C-4); 121.6 (C-5); 132.7 (C-6); 129.1 (C-7); 126.4 (C-8); 149.2 (C-9); 137.2 (C-11); 128.7 (C-12); $137.7(\mathrm{C}-13) ; 156.8(\mathrm{C}-14) ; 29.4\left(\mathrm{CH}_{2}-1^{1}\right) ; 55.3\left(\mathrm{CH}_{2}-2{ }^{2}\right) ; 41.8\left(\mathrm{CH}_{3}\right)$
6 a	29.4_{5} (C-1); 20.7^{j} (C-2); 22.0^{j} (C-3); 28.7 (C-4); 122.6 (C-5); 133.0 (C-6); 129.3 (C-7); 126.1 (C-8); 153.0 (C-9); 136.7 (C-11); 129.0 (C-12); 137.4 (C-13); 156.1 (C-14); $35.3_{5}\left(\mathrm{CH}_{2}-\alpha, \alpha^{\prime}\right) ; 30.9\left(\mathrm{CH}_{2}-\beta, \beta^{\prime}\right)$
6b	$29.2(\mathrm{C}-1) ; 20.7^{k}(\mathrm{C}-2) ; 22.0^{k}(\mathrm{C}-3) ; 28.7(\mathrm{C}-4) ; 122.4$ (C-5); $133.3(\mathrm{C}-6) ; 129.4$ (C-7); 126.2 (C-8); 154.0 (C-9); 136.6 (C-11); 129.0 (C-12); $1368(\mathrm{C}-13) ; 155.7_{5}(\mathrm{C}-14) ; 36.4\left(\mathrm{CH}_{2}-\alpha, \alpha^{\prime}\right) ; 2995\left(\mathrm{CH}_{2}-\beta, \beta^{\prime}\right)$
6c	$29.2_{5}(\mathrm{C}-1) ; 20.7^{1}(\mathrm{C}-2) ; 22.0^{i}(\mathrm{C}-3) ; 28.7(\mathrm{C}-4) ; 122.2(\mathrm{C}-5) ; 133.3(\mathrm{C}-6) ; 129.3(\mathrm{C}-7) ; 126.4(\mathrm{C}-8) ; 155.0(\mathrm{C}-9) ; 136.5(\mathrm{C}-11) ; 129.0_{5}$ (C-12); $136.8(\mathrm{C}-13) ; 155.6(\mathrm{C}-14) ; 37.0\left(\mathrm{CH}_{2}-\alpha, \alpha^{\prime}\right) ; 29.9\left(\mathrm{CH}_{2}-\beta, \beta^{\prime}\right) ; 27.7_{5}\left(\mathrm{CH}_{2}-\gamma, \gamma^{\prime}\right)$
6 d	$29.1(\mathrm{C}-1) ; 20.7^{m}(\mathrm{C}-2) ; 22.0^{m}(\mathrm{C}-3) ; 28.7(\mathrm{C}-4) ; 122.1_{5}(\mathrm{C}-5) ; 133.3(\mathrm{C}-6) ; 129.3(\mathrm{C}-7) ; 126.5(\mathrm{C}-8) ; 155.3(\mathrm{C}-9) ; 136.4(\mathrm{C}-11) ; 129.1$. (C-12);136.8(C-13); $155.5(\mathrm{C}-14) ; 37.1_{5}\left(\mathrm{CH}_{2}-\alpha, \alpha^{\prime}\right) ; 30.2_{5}\left(\mathrm{CH}_{2}-\beta, \beta^{\prime}\right) ; 28.2\left(\mathrm{CH}_{2}-\gamma, \gamma^{\prime}\right)$

${ }^{a}$ Recorded with a Bruker AM 200 spectrometer. ${ }^{b-m}$ These attributions may be commuted.

Hydrochloride is precipitated by addition of ether in a wide quantity. The salt is recrystallized from either an ethanol-ether mixture or an ethanol-acetone mixture.

Acknowledgment

The authors thank J. C. Gastaud for the technical assistance.
Registry No. 2, 82791-68-2; 3a, 99053-30-2; 3e, 99053-52-8; 3f, 99053-53-9; 3g, 99053-54-0; 3h, 99053-55-1; 4b, 99053-56-2; 4c, 99053-57-3; 4d, 99053-58-4; 5a, 99053-31-3; 5b, 99053-32-4; 5c, 99053-33-5; 5d, 99053-34-6; 5e, 99053-35-7; 51, 99053-36-8; 5g, 99053-37-9; 5h, 99053-38-0; 5i, 99053-39-1; 5J, 99053-40-4; 5k, 99053-41-5; 51, 99053-42-6; 5m, 99053-43-7; 6a, 99053-44-8; 6b, 99053-45-9; 6c, 99053-46-0; 6d, 99053-47-1; 6e, 99053-48-2; 6f, 99053-49-3; 6g, 99053-50-6; 6h, 99053-51-7; $\mathrm{CH}_{3} \mathrm{Br}, 74-83-9 ; \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}$, 110-53-2; $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Br}, 111-83-1 ; \mathrm{C}_{10} \mathrm{H}_{2}, \mathrm{Br}, 112-29-8 ; \mathrm{BrCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, 100-39-0 ;$ 2- $\mathrm{BrCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, 611-17-6 ; 3-\mathrm{BrCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, 766-80-3 ; 4-\mathrm{BrCH}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}$, 622-95-7; 3-BrCH $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}, 402-23-3 ; \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}, 5459-68-7 ; \mathrm{Br}(\mathrm{C}-$ $\left.\mathrm{H}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}, 53929-74-1 ; \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}, 5392-81-4 ; \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}(\mathrm{CH}-$
$\left.\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}, 90221-88-8 ; \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Br}, 109-64-8 ; \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Br}, 110-52-1 ; \mathrm{Br}(\mathrm{C}-$ $\left.\mathrm{H}_{2}\right)_{5} \mathrm{Br}, 111-24-0 ; \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{Br}, 629-03-8 ; \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{Br}, 4549-31-9 ; \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{Br}$, 4549-32-0; $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{Br}, 4101-68-2 ; \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{Br}, 3344-70-5$.

Llterature Cited

(1) Werbel, L. M. U.S. Patent 4291034, 1981.
(2) Galy, J. P.; Elguero, J.: Vincent, E. J.; Galy, A. M.; Barbe, J. Synthesis 1979, 944.
(3) Galy, J. P.; Elguero, J.; Vincent, E. J.; Galy, A. M.; Barbe, J. Heterocycles 1980, 14, 311
(4) Mahamoud, A.; Galy, J. P.; Vincent, E. J.; Barbe, J. Synthesis 1981, 917.
(5) Smolders, R. R.; Hanulse, J.; Coomans, R.; Proletto, V.; Voglet, N.; Waefelaer, A. Synthesis 1983, 493.
(6) Barbe, J.; Galy, J. P.; Giovannangeli, G.; Soyfer, J. C. French Patent 84-12825, 1984.

Recelved for revlew May 29, 1985. Accepted July 19, 1985. This work was partially supported by a grant of the C.N.R.S. (PIRMED program 069311051).

Picrates of Some Ring-Substituted 2-Amino- and 3-Aminopyridines

Frank L. Setliff
Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204

The preparation of the picrates of nine ring-substituted 2 -amino- and 3 -aminopyridines is described. Melting points and methods of purification are also presented.

In past years we have prepared various ring-substituted 2-amino- and 3-aminopyridines as synthetic intermediates. Since picrates are one of the better quallative analytical derivatives for amines, and since the picrate derivatives for the aforementioned aminopyridines have never been reported, we now wish to report the preparation and melting points of these picrates.

Elemental analyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) in agreement with theoretical values, and which confirm 1:1 stoichiometry for the picrate salts, were obtained and submitted for review. Experimental data for the picrates are reported in Table I.

Experimental Sectlon

Elemental analyses were performed by Galbralth Laboratories, Knoxville, TN. Melting points were taken on a Mel-Temp apparatus and are uncorrected.

Picrate Formation-General Procedure. The appropriate aminopyridine (0.005 mol) was dissolved in absolute ethanol (35

Table I. Experimental Data for Picrates

picrate of	yield, $\%$	mp, ${ }^{\circ} \mathrm{C}$	recryst solvent
2-amino-3-bromo-5-methylpyridine (1) ${ }^{a}$	94	261	acetone
3-amino-2-chloropyridine (1)	82	168	ethanol
2-amino-5-bromo-3-methylpyridine (2)	95	259	acetone
2-amino-3-methyl-5-nitropyridine (3)	86	252	acetone
2-amino-5-methyl-3-nitropyridine (3)	89	244	acetone
3-amino-2-chloro-5-methylpyridine (4)	74	160	ethanol
5-amino-2-chloro-3-methylpyridine (5)	88	172	ethanol
3-amino-2-bromo-5-methylpyridine (6)	51	151	ethanol-
			water
5-amino-2-bromo-3-methylpyridine (6)	85	176	ethanol

${ }^{a}$ Numbers in parentheses are literature references for the preparation of the aminopyridines.
mL) with magnetic stirring and slight warming. (In the case of the nitropyridines a mixture of 40 mL of ethanol and 40 mL of acetone was required.) Picric acid ($1.15 \mathrm{~g}, 0.005 \mathrm{~mol}$) was added in one portion to the stirred amine solution and the resulting mixture was slowly warmed to $50^{\circ} \mathrm{C}$ for 10 min with continued stirring. The yellow suspension was cooled to $10^{\circ} \mathrm{C}$, and the crude picrate was collected by filtration and washed
with cold ethanol. Recrystallization was performed as indicated in Table I.

Registry No. 2-Amino-3-bromo-5-methylpyridine picrate, 98875-88-8; 3-amino-2-chloropyridine picrate, 98875-89-9; 2-amino-5-bromo-3methylpyridine picrate, 98875-90-2; 2-amino-3-methyl-5-niltropyrdine picrate, 98875-91-3; 2-amino-5-methyl-3-nitropyridine picrate, 98875-92-4; 3-amino-2-chioro-5-methylpyridine picrate, 98875-93-5; 5-amino-2-chloro-3-methylpyridine picrate, 98875-94-6; 3-amino-2-bromo-5-methylpyridine picrate, 98875-95-7; 5-amino-2-bromo-3-methylpyridine picrate, 98875-96-8.

Literature Clited

(1) Link, W.; Borne, R.; Setlift, F. J. Heterocycl. Chem. 1987, 4, 641.
(2) Setliff, F. J. Chem. Eng. Data 1970, 15, 590.
(3) Lappin, G.; Slezak, F. J. Am. Chem. Soc. 1950, 72, 2806.
(4) Setliff, F. Org. Prep. Proced. Int. 1971, 3, 217.
(5) Setliff, F.; Rankin, G. J. Chem. Eng. Data 1872, 17, 515.
(6) Setliff, F.; Greene, J. Org. Prep. Proced. Int. 1977, $9,13$.

Received for review July 29, 1985. Accepted August 20, 1985. A faculty research grant from the UALR Otfice of Research and Sponsored Programs and support from the UALR College of Sciences Office of Research in Science and Technology are gratefully acknowledged.

A Convenient Synthesis of Fluorinated 2,4,6-Triarylpyridines via 4-Picolinium Ylides

Ram S. Tewarl,* Anlta Bajpal, and Mahendra K. Pathak
Department of Chemistry, H.B. Technological Institute, Kanpur-208002, India

Abstract

The reaction of 2-naphthoyl-4-plcoilnium methylide with fluoro-substituted benzylideneacetophenones gave a varlety of fluorinated $\mathbf{2 , 4 , 6}$-triarylpyridines. The structural asslgnment of the pyildines was made on the basls of elemental analysis and spectroscoplc evidence and the use of a known synthetic route and procedures.

Experimental Section

The structure of compounds 5 was established by microanalyses and physical and spectral data (Table I). Melting points were measured on a Gallen-Kamp apparatus and are uncorrected. The NMR spectra (CDCl_{3}) were recorded on a Varian A-60 and A-90 spectrophotometer with tetramethylsilane as the internal standard. IR spectra (KBr) are recorded on a Perkin-Elmer infracord spectrophotometer. Analytical samples were purified by column chromatography over silica gel. Purity was checked by thin layer chromatography.

The IR spectrum of the products in general exhibited the aromatic absorption bands in the region $3000-3030 \mathrm{~cm}^{-1}$. The strong bands in the region $1500-1600 \mathrm{~cm}^{-1}$ have been assigned to the interaction between $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ vibrations to the pyridine ring. The bands due to ring vibrations and $\mathrm{C}-\mathrm{H}$ deformations are observed near 1245 and $1020 \mathrm{~cm}^{-1}$.

2-Naphthoyl-4-picolinium methyl bromide was prepared by treatment of 2-naphthoylmethyl bromide and 4-picoline in benzene at reflux temperature according to the Krohnke (1) method.

Preparatlon of Fhuorinated 2,4,6-Trlarylpyridines. A general procedure (2) was used in all the reactions (Scheme I).

Scheme I

(4)

