Solubility of Monofunctional Organic Solids in Chemically Diverse Supercritical Fluids

William J. Schmitt* and Robert C. Reid

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Solubilities were measured for nine organic solids in four supercritical fluids over a pressure range of about 60–360 bar and from 35 to 70 °C. The solids were chosen to reflect different chemical functionalities so as to identify the role of chemical groups in solubility relationships. The four supercritical fluids, CO_2 , ethane, fluoroform, and chiorotrifluoromethane, were selected as they have nearly equal critical temperatures but differ greatly in structure. It was concluded that the choice of supercritical fluid extractant should be based on the same general criteria presently used for liquid extractions. The experimental data were correlated by a modified Peng–Robinson equation of state where the solute parameters were regressed from data.

One of the principal goals of the experimental research reported herein was to measure and compare the solubilizing power of various supercritical fluids for specific solutes (or classes of solutes) based on the chemical nature of both the supercritical fluid and the solute. In liquids, temperature is often the significant parameter that influences solubility and comparisons between solvents are normally made at equilivalent temperatures. In supercritical extractions, however, qualitative statements concerning good or bad solvents (for any particular solute) are difficult to defend since there is little agreement under what conditions comparisons should be made. Both temperature and pressure can affect the solubility of a solute in a supercritical fluid whereas in liquid solvents ($T < T_c$), the influence of pressure is small. Solubility comparisons in supercritical fluids require a more definitive specification of the state and behavior of the fluid.

In the past several years a number of investigators have published equilibrium solubility data for various solids in supercritical fluids. In general, two separate classes of solute molecules have been studied. At one extreme there now exist many solubility data for simple polycyclic hydrocarbons containing no chemical functionality (1-3), and, at the other extreme, solubility data for chemically complex solutes, usually natural products, containing several functional groups per molecule (4, 5). It was the purpose of this investigation to bridge the gap between the two existing sets of data by investigating systematically the solubilities of various monofunctional solid solutes closely related to simple aromatic hydrocarbons in structure.

Selection of Supercritical Fluids and Solutes

According to the law of corresponding states, different fluids behave similarly (with respect to their P-V-T properties) if they are compared at equivalent *reduced* temperatures, pressures, and volumes. However, in supercritical extraction, solubility is a strong function of the vapor pressure of the solute, and the vapor pressure is determined by the temperature of the system, not the reduced temperature of the solvent. In order to remove the effect of vapor pressure from comparisons of a solute's solubility in a series of different solvents, the comparisons must be made at the same absolute temperature. However, in order to apply the principle of corresponding states to the dilute solvent phase, comparisons should also be made at the same reduced temperature. Only if the different solvents have essentially the same critical temperature can both conditions be simultaneously fulfilled.

Within reasonable limits, four chemically diverse supercritical solvents having nearly the same critical temperatures (29 ± 3 °C) were included in this study. These were carbon dioxide, ethane, fluoroform, and chlorotrifluoromethane. The first two have received considerable attention by previous researchers. Fluoroform was selected because of its analogous structure to chloroform, which is a known good organic solvent and is capable of hydrogen bonding. Chlorotrifluoromethane is a completely halogenated methane and is chemically inert. The properties of the supercritical fluid solvents are shown in Table I.

The solutes to be studied were selected such that each was either a simple polycyclic hydrocarbon or a monofunctional derivative of one. As noted above, we wished to examine how the addition of a specific chemical group to a hydrocarbon skeleton affected that molecule's solubility in various supercritical fluids. Most of the solutes were derivatives of naphthalene, but, for practical reasons, a few of the solutes were derivatives of either anthracene or benzene.

The principal solutes, along with several of their pertinent physical properties, are listed in Table II, Vapor pressures for all of the solutes were found in the literature with the exception of 2-aminofluorene. The sublimation vapor pressures of this compound were determined as a function of temperature with a Knudsen sublimation apparatus in our laboratory (δ).

Experimental Procedure

A schematic diagram of the experimental apparatus is shown in Figure 1. It is similar to several described before (2, 12). To expedite data collection, two extraction columns (C1 and C2) were run in parallel. These could be operated at different temperatures, but the pressures in each column were identical since they were fed from a common compressor and surge tank (a 2-L autoclave). The system pressure was held to within ± 0.3 bar at pressures up to 150 bar and was maintained to within ± 1 bar at the highest pressures used (360 bar). Temperatures in the bath(s) were maintained within ± 0.1 °C and the supercritical fluid from both extraction vessels passed through lines traced with flowing water at the same temperature as in the constant temperature bath. This precaution was necessary to prevent solid precipitation in an exit line since the solubility of solutes in supercritical fluids may either increase or decrease with temperature depending upon the specific temperature and pressure employed. The precipitated solid was subsequently weighed and analyzed. The operation of the unit is similar to that described earlier (2).

Preliminary extraction experiments were made with solid naphthalene and supercritical carbon dioxide. The results over a temperature range of 35-45 °C and a pressure range of

^{*} Address correspondence to this author at The Upjohn Company, 1500-91-1, Kalamazoo, MI 49002.

Table I. Physical Properties of the Solvents

gas	formula	MW	<i>T</i> _c , °C	P _c , bar	$\rho_{\rm c},{\rm mol/cm^3}$	ω	
carbon dioxide	CO2	44.01	31.1	73.8	0.0106	0.225	
ethane	C_2H_6	30.07	32.2	48.8	0.0067	0.098	
chlorotrifluoromethane (R-13)	CCIF ₃	104.46	28.8	39.2	0.0055	0.180	
fluoroform (R-23)	CHF3	70.01	26.1	49.5	0.0075	0.272	

Table II. Physical Properties of the Solutes^a

					vapor	press.	
compd	formula	structure	<i>T</i> _m , °C	V ⁸ , m ³ /mol	A	В	supplier, purity
naphthalene	C ₁₀ H ₈	$\langle \rangle \rangle$	80.1	1.10 × 10⁴	13.583	3733.9	Baker, >98%
biphenyl	$C_{12}H_{10}$		69.2	1.32	14.804	4367.4	Aldrich, 98%
phenanthrene	C ₁₄ H ₁₀		100	1.51	13.545	4567.7	Aldrich, ~98%
anthracene	C ₁₄ H ₁₀		218	1.42	14.755	5313.7	Aldrich, >99.5%
benzoic acid	$C_7H_6O_2$	CO2H	122	0.965	14.408	4618.1	Baker, 99%
1,4-naphthoquinone	$C_{10}H_6O_2$		126	1.11	14.735	4739.4	Aldrich, >97%
acridine	$C_{13}H_9N$		107-109	1.78	13.721	4740.1	Fluka, 98%
2-naphthol	$C_{10}H_8O$	ОН	122	1.18	14.815	4923.9	Aldrich, 99%
2-aminofluorene	$C_{13}H_{11}N$	NH2	131	1.53	14.865	5469	Aldrich, 98%

^a Vapor pressure constants in the equation $\log P^{vap}$ (Pa) = A - B/T. For use in the range 35–70 °C, except naphthalene 35–55 °C. Vapor pressure references: naphthalene (7), phenanthrene (8), 1,4-naphthoquinone (9), acridine (8), biphenyl (10), anthracene (8), benzoic acid (8), 2-naphthol (11).

Table III. Matrix of the Systems Studied^a

solute	CO_2	C_2H_6	CHF_3	$CClF_3$	Table
naphthalene	(13)	(1), x	x	x	IV
phenanthrene	(1, 2)	X	X	x	v
anthracene	(1)	(1)	x		VI
biphenyl	(3)	x			VII
benzoic acid	(2), x	x	x	x	VIII
2-naphthol	x	x	x	x	IX
acridine	x	x	x	x	х
1,4-naphthoquinone	X	X	x	x	XI
2-aminofluorene	x	x	x	x	XII

 ${}^{\alpha}x$ indicates new experimental data in the specified table; () indicates reference for data source.

100–300 bar agreed with those of Tsekhanskaya et al. (13) to within $\pm 5 \mod \%$. Error % is here and elsewhere in this paper defined as $(y_2^{exptl} - y_2^{lt.}) \times 100/y_2^{lt}$. Also, as will be noted later, there were several other instances in our solvent-solute test matrix where our work overlapped those of previous investigators. In all cases except for a single reported 55 °C ethane/naphthalene datum point (14), the agreement between our solubility results and those presented in the literature was within about $\pm 10 \mod \%$. Prior to these proof tests with naphthalene and carbon dioxide, we also studied the effect of flow rate variations in the extraction cell to ensure that we were

Figure 1. Supercritical extraction apparatus.

always operating in a sufficiently low flow regime that equilibrium was attained between the solid and the exit fluid (β).

Experimental Results

The matrix of systems studied is shown in Table III. With nine solutes and four supercritical fluids, there are 36 possible binaries. Three systems (biphenyl in CHF_3 and $CCIF_3$ and an-thracene in $CCIF_3$) were not studied as the solubilities were suspected of being very small. In a few other cases, data

Table IV.	Solubility of	Nanhthalene iz	n Three S	Supercritical	Solvente
1 4010 1 4.	Solubility of	TIADING TATELLE II		SUDCICILICAL	SUIVERUS

temp, °C	press. (abs), bar	$\rho, mol/cm^3$	ρ,	mole fraction	enhance. factor ^a	temp, °C	press. (abs), bar	ρ , mol/cm ³	ρ _r	mole fraction	enhance. factor ^a
	Solub	ility of Nar	hthalen	e in Ethane			Solubi	lity of Nant	thalene i	n Fluoroform	
35.1	50.9	0.006 30	0.926	0.25×10^{-2}	660	35.1	60.5	0.006 809	0.9029	2.46×10^{-3}	500
35.1	55.6	0.009 28	1.373	1.12	2 090	35.1	73.3	0.009 532	1.264	4 24	1 050
35.1	60.1	0.01001	1.482	1.29	2 600	34.9	96.1	0.011 298	1.498	6.06	1990
35.0	65.5	0.01055	1.559	1.42	3180	35.0	141.3	0.013.027	1.727	7 49	3 600
35.0	69.1	0.01084	1.604	1.54	3 600	35.0	221.0	0.01468	1.947	8.71	6 500
34.9	91.5	0.01179	1.742	1.97	6 200	35.1	351.3	0.016.25	2 1 5 5	918	10800
35.0	99.4	0.012 03	1.780	2.08	6 980	45.1	60.5	0.004 422	0.5864	$0.857 \times$	72
35.0	120.5	0.01251	1.848	2.30	9450		0010	0.000	0.0001	10-3	.2
35.0	131.0	0.01284	1.897	2.54	11400	45.1	73.3	0.006 920	0.9176	3 30	338
35.0	150.8	0.01298	1.921	2.56	13 100	44.9	96.1	0.009704	1.287	7.04	962
34.9	181.0	0.01336	1.975	2.78	17200	45.0	141.3	0.011.988	1.590	10.09	2000
35.1	198.7	0.013 59	2.009	3.02	20,000	44.9	221.0	0.013.95	1.850	12.3	3870
35.1	250.0	0.014 08	2.081	3.24	27 600	45.0	351.3	0.01571	2.083	13.4	6620
34.9	301.7	0.01451	2.144	3.19	32700	55.0	66.0	0.004.300	0.5702	1.24×10^{-3}	50
35.0	362.0	0.014 86	2.196	3.48	42 900	55.1	82.8	0.006547	0.8681	4 21	214
45.0	51.0	0.003 50	0.517	0.06×10^{-2}	43	55.0	123.0	0.010.043	1.332	11 1	850
45.0	55.5	0.004 48	0.663	0.15	118	55.0	171.0	0.011970	1.587	14.4	1 530
45.1	65.5	0.00763	1.127	1.36	1 260	55.1	240.8	0.01359	1.802	18.4	2730
45.0	69.1	0.00862	1.276	1.40	1 380	54.9	351.4	0.01517	2.012	18.5	4 050
45.0	91.5	0.01072	1.584	2.67	3470			0101011		10.0	1000
45.0	120.5	0.01178	1.741	3.46	5940	\mathbf{Sol}	ubility of Na	aphthalene i	n Monoc	hlorotrifluorom	ethane
45.1	131.0	0.01200	1.773	3.86	7130	35.1	50.1	0.007054	1.271	2.84×10^{-3}	478
44.9	150.7	0.01247	1.845	4.08	8750	34.9	71.5	0.009 000	1.622	4.35	1070
44.9	199.0	0.01318	1.951	4.74	13 400	35.0	98.2	0.01008	1.816	5.41	1800
45.0	250.0	0.01372	2.030	5.25	18 600	35.0	140.9	0.01112	2.004	6.33	3 000
45.1	301.7	0.01414	2.090	5.42	23 000	35.1	199.8	0.01205	2.171	7.12	4800
45.0	364.0	0.01458	2.151	5.85	29 900	35.1	281.3	0.01291	2.326	7.66	7200
55.0	56.3	0.00357	0.528	0.12×10^{-2}	41	34.9	355.3	0.01348	2.429	7.84	9 5 0 0
55.0	61.3	0.00425	0.625	0.19	$72^{$	45.1	50.1	0.004384	0.790	1.17×10^{-3}	82
55.0	71.5	0.006 49	0.960	1.14	503	44.9	71.5	0.007781	1.402	5.16	525
55.1	80.2	0.00810	1.199	2.09	1 0 2 0	45.0	98.2	0.009246	1.666	7.11	985
54.9	100.8	0.00966	1.431	4.37	2750	45.1	140.9	0.010505	1.893	8.94	1760
54.9	100.8	0.01090	1.613	6.48	4920	45.1	199.8	0.01156	2.083	10.08	2800
55.1	164.0	0.011 91	1.760	10.7	10,900	45.0	281.3	0.01253	2.258	10.35	4 100
55.0	175.0	0.01224	1.809	11.1	12100	45.1	355.3	0.01315	2.369	10.92	5500
55.0	202.0	0.01267	1.872	13.7	17400	55.0	51.6	0.003580	0.645	1.08×10^{-3}	35
55.0	206.0	0.01272	1.879	13.0	17 000	54.9	61.3	0.005110	0.921	2.82	108
55.0	225.0	0.01298	1.918	13.6	19100	54.9	86.9	0.007737	1.394	7.50	407
55.0	251.0	0.013 26	1.959	12.9	20 100	54.7	130.3	0.009576	1.725	11.51	951
55.0	302.0	0.01373	2.029	13.6	25900	54.8	200.3	0.01108	1.996	14.71	1 850
55.0	364.0	0.014 20	2.098	13.4	30 400	55.0	282.0	0.01214	2.187	16.2	2900
	000		1.000		30 100	55.0	360.3	0.01284	2.314	15.8	3500

^a Enhancement factor = $y_2 P / P_2^{vp}$.

already existed or were supplemented in this work. The new experimental data are shown in Tables IV-XII.

Over half of the results in Tables IV-XII were averages of replicate measurements and the results typically agreed within 5 mol %. Also, in the tables, the densities (and reduced densities) shown are those for the *pure* solvent. The solubilities were, in essentially all cases, so small that a true mixture density calculation was not warranted. The solute enhancement factors are the final entries in the data tables. The enhancement factor is defined as the actual solubility of the solute in an ideal gas at the same temperature. When the logarithm of the enhancement factor is plotted against fluid density, very linear solubility isotherms are obtained over a wide range of super-critical fluid conditions (6, 12).

We show some typical solubility graphs in Figures 2 through 4. The solubilities of phenanthrene are given as a function of reduced solvent density at 55 °C in Figure 2. This plot is typical of the hydrocarbons studied (naphthalene, phenanthrene, anthracene, and biphenyl) with ethane being the most efficacious solvent for all of the simple hydrocarbons, followed by CO_2 . Fluoroform and $CCIF_3$ were poor solvents for these molecules. In Figure 3, the same type of graph is presented for benzoic acid. Here, CO_2 is distinctively a better solvent than the rest. Carboxylic acids were found difficult to dissolve in supercritical gases, as was previously noted by Stahl et al. (15).

Finally, for 2-aminofluorene, in Figure 4, fluoroform was a very good solvent with only CO_2 exceeding it in solvent power at high reduced densities. Fluoroform was a poor solvent for hydrocarbons, but was found to be a good solvent for a few particular molecules such as 2-aminofluorene and 1,4-naphthoquinone. It appears that fluoroform is a good solvent for molecules containing functional groups capable of hydrogen-bond association with the acidic proton on fluoroform, such as carbonyl and amine. Izatt et al. (16) have also suggested that hydrogen bonding may be present in some fluorinated gases used as solvents near their critical points.

Correlation

The solubilities of solids in supercritical solvents are usually correlated with eq 1. As written, we have assumed that the

$$y_2 = (P_2^{vp}/P)(\phi_2^{-1}) \exp(V_2^{s}P/RT)$$
(1)

system pressure is much greater than the vapor pressure of the solute, that the solute is incompressible, and that no solvent dissolves in the solid solute (17). Subscript 2 refers to the solute and y_2 is the mole fraction of the solute in the fluid phase. To determine the solute solubility at a given temperature

Figure 2. Solubility of phenanthrene in four supercritical solvents.

Figure 3. Solubility of benzoic acid in four supercritical solvents.

and pressure, one must know the pure solute vapor pressure (P_2^{vp}) , the molar volume of the solute (V_2^s) , and the fugacity coefficient of the solute in the supercritical phase (ϕ_2) . It is the last that concerns us here as we assume P_2^{vp} and V_2^s are available from independent measurements or from literature data.

Table V. Solubility of Phenanthrene in Three Supercritical Solvents

-			_		
	press.	ρ,		mole	enhance.
temp, °C	(abs), bar	mol/cm ³	ρ_r	fraction	factor
	Solubility	of Phena	nthren	e in Ethane	
45.0	71.0	0.00893	1.313	4.00×10^{-4}	18500
45.0	85.3	0.0104	1.531	8.66	47800
45.0	109.5	0.0115	1.688	18.5	131 400
45.0	171.0	0.0128	1.882	33.8	375000
44.9	264.0	0.0139	2.040	48.6	832 000
45.0	355.0	0.0145	2.134	60.4	1392000
55.0	71.0	0.00631	0.928	2.02×10^{-4}	3 400
55.0	85.3	0.00869	1.279	5.41	10900
55.0	109.5	0.01046	1.538	17.7	46 000
55.1	171.0	0.0122	1.794	41.8	168 000
54.9	264.0	0.0134	1.971	63.7	402500
55.0	355.0	0.0141	2.074	80.1	674000
	Solubility o	f Phenant	hrene i	n Fluoroform	
45.0	80.0	0.00803	1.064	1.48×10^{-4}	7690
45.0	111.5	0.01070	1.419	4.55	32 900
45.0	202.0	0.01358	1.802	8.90	116 700
45.0	364.0	0.01584	2.100	12.8	302500
55.1	80.0	0.00617	0.818	0.99×10^{-4}	1860
55.0	111.5	0.009 34	1.239	4.74	12500
55.0	202.0	0.0128	1.696	11.7	55 900
55.0	364.0	0.0153	2.030	17.2	148100
Solubilit	v of Phenar	threne in	Monoc	hlorotrifluoro	methane
45.0	75.5	0.00807	1.455	2.38×10^{-4}	11650
45.0	108.0	0.00960	1.730	4.21	29 500
45.0	180.0	0.011 26	2.028	6.52	76 200
45.0	301.0	0.0127	2.290	8.73	170 300
55.0	75.5	0.006 86	1.237	2.31×10^{-4}	4075
55.0	108.0	0.008 80	1.587	4.78	12200
55.0	180.0	0.0107	1.933	9.02	38 500
55.0	301.0	0.0124	2.221	11.0	78200

Table VI. Solubility of Anthracene in Fluoroform

temp, °C	press. (abs), bar	ρ , mol/cm ³	$\rho_{\rm r}$	mole fraction	enhance. factor
55.1	91.8	0.00764	1.013	0.91×10^{-5}	2 250
55.0	142.0	0.0109	1.452	2.98	11600
55.0	298.0	0.0145	1.923	6.65	54 400
70.1	111.0	0.00748	0.992	1.2×10^{-5}	694
70.0	176.0	0.0108	1.433	7.69	7280
70.0	299.0	0.0136	1.805	12.8	20500

Table VII. Solubility of Biphenyl in Ethane

temp, °C	press. (abs), bar	$\rho, mol/cm^3$	$\rho_{\rm r}$	mole fraction	enhance. factor
35.0	70.5	0.0109	1.603	1.24×10^{-2}	20 600
35.2	86.0	0.0116	1.706	1.54	30200
35.2	113.0	0.0124	1.824	1.89	49 000
35.2	180.0	0.0134	1.971	2.66	109 800
35.2	281.0	0.0143	2.103	3.09	198900
45.0	70.5	0.00891	1.310	1.01×10^{-2}	5970
45.2	86.0	0.0106	1.559	1.77	12500
45.0	113.0	0.0116	1.700	2.66	25400
45.0	180.0	0.0129	1.903	4.81	72600
45.1	281.0	0.0136	2.051	6.22	143700

In almost all instances, ϕ_2 is determined from an equation of state applicable to the solute-solvent mixture. We employed the Peng-Robinson equation (18) although others could have been used. When used in the traditional manner, routine thermodynamics allows one to obtain ϕ_2 in terms of the component critical properties, acentric factors, and a characteristic binary interaction parameter (2, 6, 18). For the present study, however, we did not follow this usual route for three reasons. First, in several cases, critical properties of the solutes were not available in the literature and estimation techniques were not judged to be accurate. (Note this is often the case when

$\mathbf{x} = \mathbf{x} + $
--

temp.	press.	0.		mole	enhance.	temp.	press.	ρ.		mole	enhance.
°C	(abs), bar	mol/cm ³	ρ_{r}	fraction	factor	°C	(abs), bar	mol/cm ³	ρ_r	fraction	factor
	Solubility	of Benzoic	Acid in	Carbon Dioxide		35.0	281.5	0.014.34	2 1 2 2	18.2	192.000
35.1	101.0	0.01610	1.517	0.80×10^{-3}	30 600	35.0	363.6	0.01489	2.204	19.2	261 700
35.0	113.0	0.01686	1.589	1.03	43 500	45.1	61.6	0.00617	0.913	0.742×10^{-4}	573
35.0	120.0	0.017 24	1.625	1.38	62800	45.0	75.7	0.009 59	1.419	3.58	3 4 3 0
35.1	151.0	0.01855	1.748	1.74	97 700	45.1	86.2	0.01043	1.544	5.43	5900
35.0	160.0	0.01886	1.778	2.37	143700	45.0	110.9	0.01150	1.698	11.2	15 800
35.0	240.0	0.02040	1.923	3.10	282 000	45.0	149.6	0.01243	1.840	15.2	29 000
35.0	280.0	0.020 90	1.970	3.31	351 000	45.1	201.5	0.013 19	1.952	20.9	53 000
34.9	282.3	0.02094	1.974	2.93	313 077	45.0	281.4	0.01397	2.064	25.1	89 500
34.9	363.8	0.02174	2.049	3.15	434 000	45.0	361.9	0.014 56	2.155	26.3	120 200
45.1	101.0	0.01111	1.047	0.26×10^{-3}	3 400	55.0	54.8	0.00521	0.771	0.781×10^{-1}	237
45.1	105.0	0.013 00	1.225	0.493	6 5 5 0	55.1	81.1	0.00813	1.203	3.63	1 340
45.1	113.0	0.01372	1.293	0.561	7 950	55.0	110.9	0.01049	1.553	14.1	7 200
45.0	120.0	0.014 97	1.411	1.15	17 700	55.1	150.0	0.01179	1.745	22.0	14900
45.1	151.0	0.01692	1.595	1.98	37 300	55.1	202.7	0.01269	1.878	30.3	27 800
45.0	160.0	0.017 30	1.631	2.38	48 800	55.1	281.3	0.01354	2.004	42.3	54 000
45.0	200.0	0.01848	1.742	3.18	81 500	55.0	361.8	0.014 19	2.095	52.1	86,000
45.0	240.0	0.01930	1.819	4.21	129 000	70.1	66.0	0.003 82	0.565	0.662×10^{-4}	48
45.0	280.0	0.019.96	1.881	4.39	157 000	70.1	81.1	0.00575	0.851	3.00	268
44.9	282.3	0.020.00	1.885	4.01	145 000	70.1	111.2	0.008 85	1.310	16.1	1 980
45.0	302.5	0.020.24	1.908	4.444	170,000	70.1	151.0	0.01065	1.576	33.3	5540
45.0	363.1	0.020.93	1.973	4.87	225 000	70.0	203.0	0.011 87	1.757	55.1	12400
55 1	101.0	0.00775	0.730	0.140 X	643	69.9	281.2	0.01288	1.906	75.6	23 900
00.1	101.0	0.001.0	0.100	10-3	010	70.1	363.5	0.01368	2.025	96.9	38 800
55.0	105.0	0.008 58	0.809	0.22	1 070						
55.1	111.0	0.00971	0.915	0.30	1515		Solubi	lity of Benze	oic Acid i	in Fluoroform	
55.0	120	0.011 39	1.074	0.49	2700	45.1	65.5	0.005338	0.7078	0.704×10^{-4}	578
55.1	126	0.01230	1.159	0.75	4 300	45.1	83.2	0.008448	1.120	3.00	3140
55.1	151.2	0.014 93	1.407	1.94	13 300	45.1	131.0	0.011605	1.539	7.31	12000
55.0	160	0.01548	1.459	2.27	16800	45.1	211.4	0.01377	1.826	11.0	29200
55.0	200.4	0.01720	1.620	3.83	35300	45.1	341.0	0.01560	2.069	13.6	58 000
55.0	240	0.01825	1.720	5.16	57300	55.1	65.5	0.004240	0.5622	0.384×10^{-4}	114
55.1	281	0.01907	1.797	5.68	72 400	55.0	83.2	0.006600	0.8752	2.33	886
54.9	302.5	0.01942	1.830	6.38	89 200	55.1	131.0	0.01046	1.3870	9.34	5550
55.0	363.3	0.020 20	1.903	7.17	119000	55.0	211.4	0.01300	1.724	15.7	15200
70.1	101.0	0.00571	0.538	0.122 ×	136	55.1	341.0	0.01505	1.996	20.5	31700
				10-3		Sol	ubility of Be	nzoia Acidi	in Monoc	hlorotrifluorom	othana
70.0	111.0	0.006 87	0.648	0.222	274	45.1		0.006.608	1 102	1 06 ¥ 10-4	202
70.1	126.0	0.08877	0.827	0.550	763	40.1	79.9	0.000000	1 414	1.00 ~ 10	1 950
70.1	151.2	0.01163	1.096	1.54	2575	45.0	80.0	0.001830	1.414	2.03	2 4 7 0
69.9	200.9	0.01505	1.418	5.00	11150	45.0	190.9	0.0000000	1.004	3.07	6080
70.1	281.0	0.01753	1.652	9.02	27900	45.0	120.0	0.003330	2.040	5.69	12000
69.9	364.1	0.01897	1.788	12.8	51 800	40.1	257.0	0.01130	2.040	0.00	28000
						44.9 55 A	60.5	0.01317	2.337	0.20	191
	Solub	ility of Ben	zoic Aci	d in Ethane		55.0	79.9	0.004 963	1 1 90	0.000×10	667
35.1	61.7	0.01012	1.498	1.79×10^{-4}	4100	55.0	12.2	0.0000040	1 420	2.02	1 500
35.1	75.7	0.01118	1.655	3.53	9 900	55.0	190.9	0.001922	1.400	5.05	3 200
35.1	86.7	0.01163	1.721	5.44	17500	55.0	120.0	0.009278	1.0/0	0.74 9.91	3 200 7 200
35.1	111.0	0.01232	1.823	9.68	39 800	55.1	102.0	0.010 /0	1.940 0.100	0.01	15 500
35.1	150.2	0.01297	1.920	12.1	67500	00.0 40.0	201.0 257.0	0.01213	2.109	12.00	10 000
35.1	201.5	0.01361	2.014	14.3	106700	49.9	307.9	0.01283	2.310	19.97	22 000

solutes are complex organic molecules.) Second, even for those solutes where experimental critical data did exist, we found that the Peng-Robinson form did not correlate experimental solubility data particularly well over a wide range of pressures even with an optimized binary interaction parameter.

Third, when dealing with *solid* solutes, we suggest that the Peng–Robinson (or any other similar equation of state) is inappropriate since the original derivation and temperature-dependent functions are applicable only to a liquid–vapor system. The use of the Peng–Robinson equation assumes, in essence, that the solid phase is a (subcooled) liquid and the integration step used when equating fugacities proceeds from a vapor to a *liquid* phase.

For these reasons, an alternate correlation for binary solidfluid equilibria was proposed. In this technique, we leave the "pure-component" parameters of the solutes as variables, use the classic Peng-Robinson relations for evaluating the component parameters of the supercritical solvent, and eliminate the binary interaction parameter. Thus, with these assumptions, the relation for $\phi_{\rm 2}$ becomes

$$\ln \phi_2 = (b_2/b)(Z - 1) - \ln [P(V - b)/RT] - [a/8^{1/2}RTb] \{ [2(a_{12}y_1 + a_2y_2)/a] - b_2/b \} \times \ln [(V + 2.414b)/(V - 0.414b)]$$
(2)

and, for the supercritical solvent (component 1)

$$a_{1} = 0.4572R^{2}T_{c}^{2}/P_{c}[1 + (0.3746 + 1.5423\omega - 0.2699\omega^{2})(1 - T_{r}^{1/2})]^{2} (3)$$

$$b_1 = 0.07780RT_c/P_c$$
 (4)

while the solute parameters a_2 and b_2 are determined by nonlinear regression of the experimental data.

Figure 4. Solubility of 2-aminofluorene in four supercritical solvents.

Table IX. Solubility of 2-Naphthol in Four Supercritical Solvents

temp,	press.	ρ,		mole	enhance.	temp,	press.	ρ,		mole	enhance.
°C	(abs), bar	mol/cm ³	ρ_r	fraction	factor	°C	(abs), bar	mol/cm ³	ρ_{r}	fraction	factor
	Solubilit	y of 2-Napl	nthol in	Carbon Dioxide		45.0	187	0.0130	1.924	2.86	24 000
35.1	102.8	0.0163	1.539	1.10×10^{-4}	16500	45.0	277	0.0139	2.057	3.55	44100
34.9	118.5	0.0172	1.624	2.02	35000	45.0	363	0.0146	2.161	4.61	75100
35.1	143.7	0.0183	1.728	4.46	93 500	55.1	66.0	0.005 29	0.783	0.26×10^{-4}	262
35.1	200.5	0.0197	1.860	5.28	154000	55.2	76.0	0.00741	1.097	0.79	896
35.1	279.7	0.0209	1.974	6.38	260000	55.1	93.0	0.009 39	1.390	1.79	2500
35.1	362.0	0.0219	2.068	7.20	380 000	55.1	131.5	0.01125	1.665	3.15	6 200
45.1	102.8	0.0125	1.170	1.00×10^{-4}	4 700	55.1	192	0.0125	1.850	4.44	12800
44.9	118.5	0.0149	1.404	2.35	12800	55.0	280	0.0135	1.998	5.49	23 300
45.1	143.7	0.0166	1.565	4.77	31500	55.0	364	0.0142	2.102	6.28	34 700
45.1	200.5	0.0185	1.744	6.81	62700	70.1	66.0	0.00379	0.561	0.30×10^{-4}	66
45.0	279.7	0.0200	1.885	7.42	95200	70.0	76.0	0.00508	0.752	0.63	161
45.1	362.0	0.0211	1.989	9.50	158000	70.0	93.0	0.00730	1.080	1.95	608
54.9	105.2	0.00858	0.809	0.801×10^{-4}	1 300	70.0	131.5	0.009 95	1.473	5.04	2200
55.1	111.5	0.00982	0.926	1.10	1 900	70.0	192	0.01165	1.724	7.85	5 0 6 0
55.1	120.0	0.0114	1.074	1.89	3 500	70.0	280	0.01286	1.903	11.3	10600
55.0	145.7	0.0145	1.367	4.48	10100	70.0	364	0.01366	2.022	11.8	12022
55.1	201.0	0.0169	1.593	7.98	24800		~				
55.0	281.0	0.0191	1.800	12.0	52 200		Solubil	ity of 2-Naj	ohthol ir	fluoroform	
55.0	363.6	0.0204	1.923	13.9	78300	55.0	79.0	0.006 03	0.800	0.53×10^{-4}	657
69.9	105.2	0.00621	0.585	0.58×10^{-4}	209	55.0	9 5.0	0.007 97	1.057	1.51	2220
70.1	111.5	0.006 92	0.652	0.965	365	55.0	135.5	0.0107	1.415	3.27	6870
70.1	120.0	0.00804	0.758	1.36	558	55.0	241.0	0.0136	1.803	5.72	21300
70.1	145.7	0.0111	1.046	4.14	2100	55.0	364.0	0.0153	2.030	7.28	41000
70.0	201.0	0.0149	1.404	9.60	6600	70.1	79.0	0.00464	0.615	0.51×10^{-4}	137
69.9	281.0	0.0175	1.649	16.3	15700	70.1	95.0	0.00613	0.812	1.38	445
70.0	363.6	0.0192	1.810	20.0	25000	70.0	135.5	0.00906	1.202	4.65	2150
	~ • •					70.0	241.0	0.0125	1.665	10.4	8540
	Solu	bility of 2-1	Naphtho	l in Ethane		70.0	364.0	0.0145	1.925	13.9	17260
35.1	61.0	0.01010	1.495	0.134×10^{-4}	2960	Sol	ubility of 9 N	Janhthal in	Monook	lorotrifluorom	thene
35.0	73.5	0.0111	1.643	0.80	8410	55.0	720		1 102		etnane
35.0	92.5	0.0118	1.746	1.15	15100	55.0	101.5	0.00002	1.190	0.49 ~ 10	1 1 0 0
35.0	130.5	0.0127	1.880	1.47	27300	55.0	101.0	0.008 55	1 904	0.70	1 190
35.0	187	0.0134	1.983	1.77	47300	54.0	151.0	0.0101	0.141	1.14	2 000
35.0	277	0.0143	2.116	2.12	83 500	55.0	209.0	0.0119	2.141	1.00	10 200
35.0	363	0.0149	2.205	2.34	121000	70.0	72.0	0.0129	2.320	0.50 × 10-4	10 800
45.1	61.0	0.00606	0.897	0.28×10^{-4}	773	70.0	101.5	0.00303	1 202	0.02 × 10 -	130
45.0	73.5	0.00855	1.265	0.84	2770	70.0	151.0	0.00720	1.000	1.01	4/0
45.1	92.5	0.01080	1.598	1.51	6210	69.9	2500	0.00922	2 005	2.02	2 1 500
45.0	130.5	0.0120	1.776	2.22	13020	69.9	364.0	0.0113	2.023	4 31	5 4 20

Figure 5. Correlation of the benzoic acid/ethane solubility data with two equations of state.

Table X. Solubility of Acridine in Four Supercritical Solvents

temp,	press.	ρ , mol/cm ³	<u>^</u>	mole	enhance.	temp,	press.	ρ ,		mole	enhance.
	(abs), bai		$\frac{\rho_{t}}{\rho_{t}}$				(abs), bar		μ _r	Traction	
05.4	Solubii	ity of Acria	ine in C	arbon Dioxide		44.9	209.8	0.01331	1.970	9.81	310 000
35.1	102.5	0.01618	1.528	2.06 × 10 *	101 000	45.0	292.1	0.014.06	2.081	11.52	501 400
35.2	122.2	0.01764	1.666	3.30	191 400	44.9	361.4	0.01453	21.50	12.78	696 100
35.1	151.6	0.01859	1.755	6.38	431000	55.0	56.1	0.00357	0.528	0.143×10^{-4}	422
35.1	200.0	0.01968	1.858	9.07	735000	55.0	61.0	0.00426	0.630	0.292	935
35.1	270.3	0.02079	1.963	10.6	1300000	55.2	65.9	0.00529	0.783	0.540	1800
35.1	350.4	0.02165	2.044	12.5	1 960 000	55.1	82.3	0.00827	1.224	2.62	11 100
45.0	101.8	0.01176	1.110	1.18×10^{-4}	28000	55.0	100.7	0.01002	1.482	6.41	33 800
45.0	110.6	0.01393	1.315	2.47	40 800	55.0	140.4	0.01153	1.705	11.55	84 600
45.1	122.8	0.01524	1.439	3.26	60 000	54.9	210.0	0.01279	1.893	16.8	186700
45.2	152.1	0.01701	1.606	6.81	150 000	55.0	279.0	0.0135	1.997	21.1	309 200
45.1	200.0	0.01847	1.744	11.3	330 000	55.1	364.0	0.0142	2.101	29.4	561 200
45.1	270.1	0.01976	1.866	15.1	605 000	70.0	61.0	0.00328	0.485	0.299×10^{-4}	223
45.1	279.4	0.01993	1.882	15.5	640 000	70.1	82.2	0.005 89	0.872	1.78	1779
45.1	352.2	0.02083	1.967	17.3	897 000	70.0	101.3	0.008.01	1.185	5.79	7 200
55.1	101.6	0.00794	0.749	0.40×10^{-4}	1 600	70.0	140.5	0.010.31	1.526	15.6	26 800
54.9	110.6	0.00971	0.917	0.96	5 600	70.0	210.0	0.011.98	1 773	26.7	68 900
55.1	122.5	0.011.81	1.115	1.94	12300	70.1	279.0	0.01258	1 901	37.0	127 900
55.1	151.0	0.01491	1 408	6.17	48100	70.1	364.0	0.0137	2 0 2 7	48.8	217 900
55.1	201.1	0.017.24	1.628	11.65	121 300	.0.1	004.0	0.0101	2.021	40.0	217 000
55.0	279.6	0.019.21	1.805	19.4	284 000		Solu	ibility of Ac	ridine in I	Fluoroform	
55.0	355.7	0 0 20 24	1 911	10.4 99 7	425,000	45.0	65.5	0.00534	0.7063	0.36×10^{-4}	3575
70.0	111.9	0.02024	0.652	0.60×10^{-4}	420 000	45.0	75.5	0.00732	0.968	0.60	6860
70.0	120.1	0.000 30	0.002	1.06	2100	45.0	92.5	0.009 41	1.245	1.81	25200
70.0	160.7	0.00933	1 1 9 9	1.30 6 15	19100	45.0	134.5	0.01174	1.553	5.67	115 000
70.0	100.7	0.012.02	1.102	12.0	20 400	45.0	217.0	0.01388	1.836	7.22	236100
70.0	155.7	0.01497	1.414	12.0	29400	45.0	353.0	0.01573	2.081	10.2	541 100
70.0	201.4	0.01079	1.000	19.0	105 000	55.0	65.5	0.004 24	0.5610	0.23×10^{-4}	814
70.0	300.1	0.01791	1.091	28.0	105000	55.0	75.5	0.005 55	0.7342	0.64	2 580
70.0	304.1	0.018 99	1.793	30.0	164 000	55.0	92.5	0.00771	1.020	1.79	8750
	Sol	ubility of A	cridine	in Ethane		55.0	134.5	0.0106	1.405	5 39	38400
35.1	61.7	0.01012	1 498	1.22×10^{-4}	33700	55.0	217.0	0.0131	1 736	9.22	106,000
35.1	76.0	0.011 20	1 658	3 42	116700	55.0	353.0	0.0152	2.009	14.0	261 200
35.1	100.5	0.012.05	1 783	4.91	221 100	00.0	000.0	0.010 2	2.000	14.0	201200
35.1	140.6	0.01251	1.851	6.03	380 200		Solubility of	Acridine in	Monochle	protrifluorometh	ane
35.1	200.0	0.012.01	2 014	6.83	642300	45.1	67.0	0.00738	1.330	1.05×10^{-4}	10 500
35 1	203.3	0.013 01	2.014	0.00	042 000	45.0	81.5	0.008 46	1.524	1.31	16100
45 1	200.4	0.014.07	0.579	0.124	1040	45.0	115	0.009 83	1.771	2.01	34 900
40.1	52.8	0.003 91	0.576	10-4	1040	45.0	216	0.011 79	2.124	3.02	98 300
45.0	56 1	0.004.67	0.600	0.250	9 000	45.0	341	0.01304	2.350	4.07	209 400
45.0	65.0	0.00407	1 1 47	0.200	2090	55.0	67.0	0.00593	1.068	0.93×10^{-4}	3 290
40.0	00.9	0.00770	1.14/	0.090	000 6	55.0	81.5	0.007 36	1.326	1.47	6360
40.1	10.0	0.00917	1.30/	1.00	20800	55.0	115	0.009.075	1.635	2.75	16760
40.1	04.4	0.010 20	1.010	2.10	20 000	55.0	216	0.01132	2.040	4.78	54 700
45.0	100.4	0.01114	1.649	5.41 2.50	80 900	55.0	341	0.01269	2 286	6 41	115 800
44.9	140.2	0.01222	1.808	b.53	138000	00.0	011	0.012.00	2.200	0.71	110,000

The combining and mixing rules are

$$a_{12} = (a_1 a_2)^{1/2}$$
 (5)

$$a = (a_1^{1/2}y_1 + a_2^{1/2}y_2)^2$$
 (6)

$$b = b_1 y_1 + b_2 y_2 \tag{7}$$

Finally, for most of the solutes studied, the values of y_2 were sufficiently small that eq 2, 6, and 7 could be simplified by eliminating terms with y_2 . Thus, eq 2 becomes

$$\ln \phi_2 \sim (b_2/b_1)(Z_1 - 1) - \ln [P(V_1 - b_1)/RT] - (a_1/8^{1/2}RTb_1)[2(a_2/a_1)^{1/2} - (b_2/b_1)] \ln [(V_1 + 2.414b_1)/(V_1 - 0.414b_1)] (8)$$

When written in this approximate form, ϕ_2 is the infinite-dilution fugacity coefficient for the binary and could be written as ϕ_2^{∞} . As shown elsewhere (19), ϕ_2^{∞} and ϕ_2 are related as

$$\phi_2 = \phi_2^{\infty} \exp(-Ky_2) \tag{9}$$

where K is a function of temperature and pressure and the maximum range of ϕ_2/ϕ_2^{∞} is from 1 to e^{-1} .

The experimental solubility data were regressed by using eq 2 to determine a_2 and b_2 for each binary studied. Over the temperature range of interest (ca. 35–70 °C), we found that a_2 and b_2 were essentially temperature-independent. An illustration of the use of these fitted parameters is shown in Figure 5 for the system benzoic acid-ethane. The fit of the predicted curve with experimental data is satisfactory over the entire pressure range. For comparison, on the same graph, the predictions of the classical Peng-Robinson equation are shown by the dashed curves. Here, a single binary interaction parameter, k_{12} (=0.0094) was used. Also, in the Peng-Robinson calculations, the a_2 and b_2 values were found by using the original relations given by Peng and Robinson with known critical properties of benzoic acid.

The temperature average a_2 and b_2 regressed parameters are given in Table XIII. The actual variation with temperature was usually only a few percent and the trends were such that a_2 and b_2 both decreased slightly with increasing temperature. Suprisingly, however, the ratio a_2/b_2 was remarkably constant for any given binary pair. It was found that the constants regressed from eq 2 (and given in Table XIII) could, in most cases, be used with the simplified fugacity-coefficient expres-

temp, °C	press. (abs), bar	ρ , mol/cm ³	ρ_{r}	mole fraction	enhance. factor	temp, °C	press. (abs), bar	ρ , mol/cm ³	ρ _r	mole fraction	enhance. factor
	Solubility o	f Nanhthoo	uinone	n Carbon Diox	ide	55.0	112	0.010 55	1.551	6.65	3 800
45.0	101.0	0.0112	1.053	0.932 ×	13400	55.0	165	0.012.07	1.775	10.0	8430
10.0	101.0	0.0112	1.000	10-3	10 100	55.0	275	0.013 50	1.985	13.1	18 500
45.0	115.8	0.0141	1.325	1.55	25600	55.0	364	0.01418	2.085	15.1	27 900
45.0	145.0	0.166	1.560	2.62	53900	70.0	63.0	0.003 56	0.524	0.76×10^{-4}	56
45.0	200.5	0.0185	1.739	4.20	119 000	70.0	73.0	0.00472	0.694	1.39	121
45.0	274.5	0.0199	1.871	5.76	225 000	70.0	87.0	0.00645	0.949	4.08	423
45.0	363	0.0219	1.965	6.97	359 000	70.0	112	0.008 89	1.307	7.30	976
55.0	100.9	0.007 87	0.741	0.24×10^{-3}	1 250	70.0	165	0.011 07	1.628	14.0	2760
55.0	116.0	0.0106	0.996	0.72	4 270	70.0	271	0.01280	1.882	22.8	7 360
55.0	145.0	0.0145	1.363	2.12	15 700	70.0	364	0.01366	2.001	27.0	11700
55.0	200.5	0.0172	1.617	4.59	46 500		001	0.01000			
55.0	275.0	0.0189	1.778	6.96	96 500		Solubility	y of Naphth	oquinone	in Fluoroform	
55.0	364.0	0.0202	1.899	8.88	163 000	45.0	66.0	0.00543	0.7196	0.26×10^{-3}	2400
70.1	100.8	0.00572	0.538	0.18×10^{-3}	217	45.0	76.0	0.00740	0.9800	0.51	5 580
70.0	116.0	0.00749	0.000	0.37	508	45.0	92.5	0.00941	1.245	0.89	12000
70.0	145.0	0.0110	1 034	1.67	2 880	45.0	131.0	0.01160	1.535	2.57	48900
70.0	200.5	0.0110	1 4 1 9	5.34	12,800	45.0	228.0	0.01407	1.862	3.333	110200
70.0	275.0	0.0174	1.636	9.92	32,500	44.9	356.0	0.1576	2.085	4.57	239 000
70.0	364.0	0.0190	1.000	13.5	58 700	55.0	66.0	0.00430	0.5689	0.17×10^{-3}	587
10.0	004.0	0.0100	100	10.0	00100	55.0	76.0	0.00562	0.7433	0.37	1 450
	Solubil	ity of Naph	thoquin	one in Ethane		55.0	92.5	0.00771	1.020	1.12	5 300
35.0	63.0	0.01033	1.519	1.06×10^{-4}	2942	55.0	131.0	0.0105	1.383	2.53	16906
35.1	74.0	0.01112	1.635	2.02	6 550	55.0	228.0	0.0133	1.766	4.52	52600
35.0	91.0	0.01178	1.732	3.07	12350	55.0	356.0	0.0152	2.014	6.33	115000
35.0	141	0.01284	1.888	4.31	26850						
35.0	202	0.01361	2.001	5.03	45 000	Solub	oility of Napl	hthoquinone	e in Mono	ochlorotrifluoro	methane
35.0	283	0.01437	2.113	5.24	65 500	45.0	56.3	0.005 89	1.061	0.90×10^{-4}	735
35.1	364	0.01488	2.188	5.37	85 400	45.0	69.2	0.00759	1.368	1.88	1890
45.1	63.0	0.00694	1.021	0.91 × 10 ⁻⁴	820	45.0	91.0	0.00894	1.611	2.32	3064
45.1	74.0	0.00942	1.385	1.86	1980	45.0	141	0.01051	1.894	3.22	6 5 9 0
45.1	91.0	0.01074	1.579	3.54	4622	45.1	246	0.01215	2.189	3.90	13780
45.0	141	0.01224	1.800	5.97	12200	45.0	364	0.01321	2.380	4.31	22 800
45.0	202	0.01321	1.943	7.65	22400	55.0	56.3	0.004 30	0.775	0.56×10^{-4}	160
45.0	283	0.01397	2.054	8.99	36 900	55.0	69.2	0.006 20	1.117	1.25	440
45.0	364	0.01457	2.143	9.35	49 400	55.0	91.0	0.007 99	1.440	2.99	1 400
55.0	63.0	0.004 69	0.690	0.59×10^{-4}	190	55.0	141.0	0.009 87	1.778	4.75	3 4 2 0
55.0	73.0	0.006 94	1.021	2.00	745	55.0	246	0.01172	2.112	6.54	8 2 2 0
55.0	87.0	0.00885	1.301	4.14	1840	55.0	364	0.01288	2.321	7.56	14050

Table XI. Solubility of 1,4-Naphthoquinone in Four Supercritical Solvents

Table XII. Solubility of 2-Aminofluorine in Four Supercritical Solvents

temp, °C	press. (abs), bar	$\rho, mol/cm^3$	ρ,	mole fraction	enhance. fractor	temp, °C	press. (abs), bar	$\rho, mol/cm^3$	ρ	mole fraction	enhance. fractor
Solubility of 2-Aminofluorene in Carbon Dioxide					45.0	96.2	0.0108	1.599	5.98	121 500	
45.0	116.0	0.0141	1.330	0.17×10^{-4}	42 700	45.0	136.5	0.0121	1.797	9.19	265 000
45.0	139.5	0.0163	1.538	0.40	118 800	45.0	182.0	0.0128	1.908	11.1	426 800
45.0	181.0	0.180	1.698	0.95	363 900	45.1	262.0	0.0138	2.041	15.2	841 000
45.0	270.0	0.198	1.868	1.70	973 100	45.0	362.0	0.0145	2.145	18.6	1423000
45.0	364.0	0.210	1.981	2.92	2245000	55.0	66.1	0.005 26	0.778	0.35×10^{-5}	1 480
55.0	116.0	0.01067	1.007	0.15×10^{-4}	11500	55.1	76.7	0.007 41	1.096	2.09	10 200
55.0	139.5	0.01393	1.314	0.47	41 400	55.0	95.6	0.009 62	1.423	5.90	35 800
55.0	181.0	0.01645	1.552	0.94	108 200	55.0	136.5	0.0114	1.686	12.3	106700
55.0	270.0	0.01890	1.783	3.19	544800	55.0	182.0	0.0124	1.834	18.6	215200
55.1	364.0	0.0202	1.906	5.07	1158000	55.1	261.0	0.0133	1.967	21.8	361 700
70.0	116.5	0.00755	0.712	0.12×10^{-4}	2200	55.0	362.0	0.0142	2.101	34.5	793 900
70.0	140.0	0.01044	0.985	0.40	6 6 5 0	70.1	66.1	0.003 83	0.567	0.37×10^{-5}	290
70.0	181.0	0.0140	1.321	1.58	33 900	70.0	76.9	0.00524	0.775	1.09	1 000
70.0	272.0	0.0173	1.632	4.05	130 200	70.1	95.0	0.00745	1.102	5.32	5 980
70.0	364.0	0.0190	1.792	8.01	344 900	70.1	138.5	0.0102	1.509	8.78	14 400
~						70.0	182.0	0.0115	1.701	29.0	62 400
Solub	ility of 2-Am	inofluorene	in Mon	ochlorotrifluor	omethane	70.1	260.0	0.0127	1.879	43.5	133 800
55.0	79.5	0.007 21	1.299	0.83×10^{-5}	4 150	70.1	364.0	0.0137	2.027	61.3	264000
55.0	140.0	0.00984	1.774	3.78	33 500		a 1 1 11	60 A .			
55.0	241.0	0.0117	2.101	6.10	93 000		Solubility	y of 2-Amin	ofluorene	in Fluoroform	10.000
70.0	79.5	0.00566	1.021	1.69×10^{-6}	1 590	55.1	91.3	0.00758	1.006	3.38×10^{-5}	19600
70.0	140.0	0.00888	1.601	9.30	15400	55.0	136.0	0.0107	1.418	11.8	102000
70.0	241.0	0.0110	1.984	22.0	62700	55.0	240.0	0.0136	1.801	25.1	383 000
Solubility of 2-Aminofluorene in Ethene					55.0	364.0	0.0153	2.030	31.5	729000	
45 1	65.9	0.007.75	1 146	1.18×10^{-5}	16400	70.2	91.3	0.00578	0.7672	2.27×10^{-5}	2450
45.1	76.4	0.009.69	1.433	1.78	28 700	70.0	136.0	0.009.09	1.206	10.1	25 900
-0.1		0.00000	2.100		20100	70.1	240.0	0.0125	1.062	43.1	122 400
						70.0	304.0	0.014 0	1.925	60.3	209700

Table XIII. Regressed Solute Parameters a_2 and b_2 in Eq 2^a

	solvent								
	CO2		C_2H_6		CHF ₃		CC	lF ₃	
solute	a_2	b_2	a_2	b_2	a_2	b_2	a_2	b_2	
naphthalene	6.25	123	7.18	129	7.03	145	7.00	145	
phenanthrene	13.2	194	13.9	183	12.9	191	13.4	200	
anthracene	11.6	174	12.8	172	12.0	190			
biphenyl	9.40	169	10.5	174					
benzoic acid	9.23	136	9.00	126	10.0	157	8.58	133	
1,4-naphthoquinone	9.90	145	9.21	155	12.2	175	9.00	157	
acridine	13.2	190	15.1	217	15.5	225	14.1	215	
2-naphthol	9.90	155	9.00	145	10.5	169	8.0	144	
2-aminofluorene	11.2	142	13.7	177	17.8	231	14.2	195	

^a a_2 is expressed in Pa m⁶/mol² and b_2 is in m³/mol × 10⁶. Temperature range: 35-70 °C.

sion (eq 8) to model the solubilities with nearly the same accuracy as is achieved by using eq 2. The error introduced by using eq 8 over eq 2 was typically less than 5% for solutes of low and medium volatility, but rose to approximately 40% error when highly soluble solutes such as naphthalene were modeled. However, when the experimental solubilities of naphthalene were regressed by using the simplified form of the fugacity coefficient, a different set of a₂ and b₂ parameters were obtained which did improve the correlation considerably.

Finally, it can be seen from Table XIII that the a_2 and b_2 "solute" parameters are not actually constants for a given solute, but do vary somewhat depending on the solvent used. It is hoped that a method of correlating the constants for use in an a priori predictive method will be found.

Conclusions

The solubilities of the model solutes were found to be dependent on the choice of the supercritical solvent used to dissolve the compound. Carbon dioxide was a very encompassing solvent, performing especially well with polar compounds, while ethane was better for simple aromatic hydrocarbons. Fluoroform was a poor solvent for hydrocarbons, but a good solvent for those molecules containing potential hydrogen-bonding sites, such as C==O, NH₂, and to a lesser extent -N==. Chlorotrifluoromethane was consistently the poorest of the four solvents. A modified Peng-Robinson equation of state, in which two parameters are required to fit experimental data, was used to correlate solubilities over a wide range of supercritical pressures. The model correlates the solubilities better than the classical Peng-Robinson equation and alleviates some of the problems associated with application of equations of state to solid-fluid equilibria.

This study has shown that chemical effects are important in determining the solubility of solutes in supercritical fluids. In the same way as one searches for appropriate liquid solvents, employing the broad concepts of polar-nonpolar, hydrogenbonding-non-hydrogen bonding, acid-base, etc., one can apparently use the same rules in choosing appropriate supercritical fluid solvents to affect desired separations and to maximize yields.

Glossary

а	parameter in the Peng-Robinson equation of state
b	parameter in the Peng-Robinson equation of state
κ	parameter in eq 9, $f(T,P)$ but not of composition
Ρ	pressure
_	

- gas constant R
- Т temperature
- mole fraction У
- Ζ compressibility factor

Greek Letters

fugacity	coefficient
	fugacity

acentric factor ω

Subscripts

1 component 1; the supercritical solvent

2 component 2; the solute

12 interaction parameter of 1 and 2

reduced property r

Superscripts

S	solid	solute
-		

- vapor pressure vp
- ω infinite dilution

Registry No. CO2, 124-38-9; CHF3, 75-46-7; CCIF3, 75-72-9; naphthalene, 91-20-3; biphenyl, 92-52-4; phenanthrene, 85-01-8; anthracene, 120-12-7; benzoic acid, 65-85-0; 1,4-naphthoguinone, 130-15-4; acridine, 260-94-6; 2-naphthol, 135-19-3; 2-aminofluorene, 153-78-6; ethane, 74-84-0.

Literature Cited

- (1) Johnston, K. P.; Ziger, D. H.; Eckert, C. A. Ind. Eng. Chem. Fundam. 1982, 21, 191.
- Kurnik, R. T.; Holla, S.; Reld, R. C. *J. Chem. Eng. Data* **1981**, *26*, 47. McHugh, M. A.; Paulaitis, M. E. *J. Chem. Eng. Data* **1980**, *25*, 326. Stahl, E.; Willig, E. *Mikrochim. Acta* **1980**, *2*, 465. Chrastil, J. *J. Phys. Chem.* **1982**, *86*, 3016.
- (3)
- (4) (5)
- Schmitt, W. J. Ph.D. Dissertation, Department of Chemical Engineer-(6) ing, Massachusetts Institute of Technology, Cambridge, MA, 1984.
- Fowler, L.; Trump, W.; Vogler, C. J. Chem. Eng. Data 1968, 13, 209.
 de Kruif, C. G.; van Ginkel, C. H. D.; Voogel, J. "Torsion-Effusion Vapor Pressure Measurements of Organic Compounds", Quatrieme Conference Internationale de Thermodynamique Chemique, Aout, Montellier, France, 1975
- (9) de Kruif, C. G. Smit, E. J.; Govers, H. A. J. J. Chem. Phys. 1981, 74, 5838
- (10) Bradley, R. S.; Cleasby, T. G. J. Chem. Soc. (London) 1953, 1690.
 (11) Colomina, M.; Roux, M. V.; Turrion, C. J. Chem. Thermodyn. 1974, 6,
- 571. (12)Johnston, K. P.; Eckert, C. A. AIChE J. 1981, 27, 773
- (13) Tsekhanskaya, Yu. V.; Iomtev, M. B.; Mushkina, E. V. Russ. J. Phys. Chem. 1964, 38, 1173.
- Van Welle, G. S. A.; Diepen, G. A. M. J. Phys. Chem. 1963, 67, 755.
- (15) Stahl, E.; Schiz, W.; Schutz, E.; Willig, E. Agnew. Chem., Int. Ed. Engl. 1976, 17, 731.
 (16) Izatt, R. M.; Schofield, R. S.; Faux, P. W.; Harding, P. R.; Christensen, S. P.; Christensen, J. J. Thermochim. Acta 1983, 68, 223.
- (17) Prausnitz, J. M. "Molecular Thermodynamics of Fluid-Phase Equilibria";
- Prentice-Hall: New York, 1969; Chapter 5. (18) Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 15,
- (19) Debendetti, P.; Kumar, S. AIChE J., in press.

Received for review March 13, 1985. Accepted September 18, 1985. This research was supported by the National Science Foundation and their grant is gratefully acknowledged. W.J.S. also wishes to acknowledge the Upjohn Co. for the use of their facilities during the preparation of this work.