

Figure 3. Constant B₁ in eq 1 vs. molar fraction of methyl isobutyl ketone.

listed in Table VI. By means of eq 4-15, density, viscosity, and refractive index data for the studied systems in this paper at any temperature and composition, within the experimental ranges, can be predicted. The calculated values through these equations compared well with the experimental data, and the average percent deviation (D) for each property and system is also listed in Table VI.

Glossary

A ₁ , B ₁	constants in eq 1
A ₂ , B ₂	constants in eq 2
43, B3	constants in eq 3
2	density of the mixture, g cm ⁻³
1	viscosity of the mixture, cP
1 D	refractive index of the mixture for the sodium D line
Х _{мік} , Х	molar fraction of the MIK
T	temperature, K
	temperature, °C
2	average percent deviation

Registry No. MIBK, 108-10-1; P1, 71-41-0; P2, 6032-29-7; IA, 123-51-3; TA, 75-85-4.

Literature Cited

- (1) Riddic, J. A.; Bunger, W. B. "Organic Solvents", 3rd ed.; Wiley-Interscience: New York, 1970; Vol II. (2)
- D'Aprano, A.; Donato, D. I.; Agrigento, V. J. Solution Chem. 1981, 10.673 (3) Raznjevic, K. "Handbook of Thermodynamic Tables and Charts";
- McGraw-Hill: New York. (4) Riggio, R.; Hernandez Ubeda, M.; Ramos, J. F.; Martinez, H. E. J.
- Chem. Eng. Data 1980, 25, 318. (5) Riggio, R.; Martinez, H. E.; Espindola, J. A.; Ramos, J. F. J. Chem. Eng. Data 1984, 29, 11.
- Dakshinamurty, P.; Veerabhadra Rao, K.; Venkateswara Rao, P.; Chi-(6)
- ranjivi, C. J. Chem. Eng. Data 1973, 18, 39.

Received for review July 29, 1985. Accepted October 14, 1985. We are grateful to the INENCO-CONICET-UNSa, República Argentina, which provided financial support for this work.

Isentropic Compressibilities of Binary Liquid Mixtures at 303.15 and 313.15 K

K. Subramanyam Reddy

Department of Chemistry, S. V. University, Tirupati 517 502, India

Isentropic compressibilities for the binary mixtures of methyl ethyl ketone with benzene, toluene, chlorobenzene, bromobenzene, and nitrobenzene have been determined at 303.15 and 313.15 K, using ultrasonic velocity and density data. Excess isentropic compressibility, k_*^{E} , values are negative over the entire range of composition for all the systems and at both temperatures. The behavior of k_*^E as a function of composition and temperature has been studied. The results have been discussed in terms of dipole-induced dipole and dipole-dipole interactions between dissimilar components.

Excess isentropic compressibilities have been determined for binary mixtures of methyl ethyl ketone with benzene, toluene, chlorobenzene, bromobenzene, and nitrobenzene in order to study the effect that group substitution on a benzene ring has on the molecular interaction in the presence of a polar component. A literature survey revealed that the excess isentropic compressibilities for these systems have not been reported.

Table I. Pure Component Parameters

com- ponent	T/K	V/ (cm ³ mol ⁻¹)	ТРа ⁻¹	$rac{10^3 \; lpha /}{ m K^{-1}}$	$C_p/$ (J K ⁻¹ mol ⁻¹)
MEK	303.15	90.77	915	1.256	162.2
	313.15	91.72	1002	1.271	169.1
C_6H_6	303.15	89.81	707	1.242	137.4
	313.15	91.08	770	1.258	140.6
C ₆ H ₅ CH ₃	303.15	107.44	699	1.079	159.9
	313.15	108.61	757	1.091	163.4
C ₆ H ₅ Cl	303.15	102.75	589	0.985	150.6
	313.15	103.76	634	1.005	152.2
C ₆ H ₅ Br	303.15	105.98	514	0.896	155.9
•••	313.15	106.95	554	0.992	157.3
C ₆ H ₅ NO ₂	303.15	103.16	395	0.818	177.3
	313.15	104.01	426	0.865	173.6

Experimental Section

Ultrasonic velocities were measured by using a single-crystal interferometer at a frequency of 2 MHz, and the values were accurate to $\pm 0.1\%$. Density data for the pure components were measured by using a bicapillary pycnometer, and in the

Table II. Mole Fraction, \mathbf{x}_1 , of Methyl Ethyl Ketone, Density, ρ , Sound Velocity, u, Isentropic Compressibility, k_s , and Excess Isentropic Compressibility, k_s^E

	303.15 K			313.15 K	313.15 K					
<i>x</i> ₁	$ ho/({ m g~cm^3})$	u/ms^{-1}	k_{s}/TPa^{-1}	$k_{s}^{E}/\mathrm{TPa}^{-1}$	<i>x</i> ₁	$ ho/({ m g~cm^{-3}})$	u/ms^{-1}	$k_{\rm s}/{\rm TPa^{-1}}$	k_{s}^{E}/TPa^{-1}	
			N	Methyl Ethyl K	etone + Be	nzene				
0.0000	0.86851	1276	707		0.0000	0.85799	1230	770		
0.1126	0.86043	1269	722	-9	0.1126	0.85015	1226	783	-14	
0.2249	0.85236	1260	739	-16	0.2249	0.84223	1217	802	-22	
0.3113	0.84612	1253	753	-20	0.3113	0.836 09	1210	817	-27	
0.4163	0.83841	1244	771	-25	0.4163	0.828 59	1201	837	-32	
0 5232	0 830 42	1234	791	-27	0 5232	0.820.84	1191	859	-35	
0.6045	0 824 23	1225	809	-26	0.6045	0.814.96	1182	878	-35	
0.7148	0.815.65	1919	835	-20	0.7149	0.014.00	1160	008	-20	
0.7140	0.01000	1212	865	-22	0.7140	0.000 33	1154	900	-30	
1 0000	0.000 92	1170	000	-10	1.0000	0.797 71	1104	941	-22	
1.0000	0.79439	1173	915		1.0000	0.78441	1128	1002		
			1	Methyl Ethyl K	etone + To	luene				
0.0000	0.85770	1291	699		0.0000	0.848 44	1248	757		
0.1367	0.850 93	1281	716	-9	0.1367	0.84166	1240	773	-14	
0.2214	0.846 43	1274	728	-13	0.2214	0.837 09	1233	786	-19	
0.3435	0.83968	1263	746	-19	0.3435	0.830 33	1222	807	-25	
0.4318	0.83442	1255	761	-23	0.4318	0.82515	1214	822	-31	
0.5406	0 827 67	1243	782	-25	0 5406	0.818.47	1202	846	33	
0.6267	0.821.94	1232	801	-25	0.6267	0.819.89	1101	867	-34	
0.0201	0.02104	1910	894	_91	0.0201	0.012.02	1179	802	-0-2	
0.1122	0.01000	1213	955	-21	0.7122	0.000.00	1160	070	-30	
1 0000	0.00010	1203	000	-15	0.0178	0.79906	1102	927	-24	
1.0000	0.794.39	1173	915		0.0000	0.78441	1128	1002		
			Met	hyl Ethyl Keto:	ne + Chlore	obenzene				
0.0000	1.095 50	1245	589		0.0000	1.08468	1206	634		
0.1068	1.067 31	1238	611	9	0.1068	1.05711	1197	660	-9	
0.1972	1.043 19	1235	629	-19	0.1972	1.03314	1194	679	-21	
0.3202	1.00903	1229	656	-28	0.3202	0.999 33	1188	709	-33	
0.4174	0.98114	1224	680	-35	0.4174	0.97149	1183	736	-41	
0.5576	0 939 45	1218	718	-41	0.5576	0 929 81	1177	776	-52	
0.6242	0 919 87	1213	740	-43	0.6242	0.909.51	1179	801	-52	
0.7288	0.885.76	1210	799	-97	0.0242	0.976.99	1160	949	45	
0.7200	0.00070	1107	940	-07	0.7200	0.010 20	1140	040	~40	
1 0000	0.044 /0	1107	040	-22	0.0001	0.830 38	1140	911	-31	
1.0000	0.794.39	1173	915		1.0000	0.784 41	1128	1002		
	_		Met	hyl Ethyl Keto	ne + Brome	obenzene				
0.0000	1.48150	1146	514		0.0000	1.46803	1109	554		
0.1221	1.40917	1144	542	-14	0.1221	1.396 87	1104	587	-15	
0.1917	1.36704	1141	562	-20	0.1917	1.35469	1101	609	-21	
0.2946	1.30323	1139	591	-30	0.2946	1.29103	1099	641	-32	
0.4069	1.23075	1142	623	-41	0.4069	1.21899	1102	676	44	
0.5335	1.14512	1146	665	-48	0.5335	1.13402	1106	721	-55	
0.6748	1.04472	1152	721	-50	0.6748	1.03419	1112	782	-59	
0.8126	0 941 60	1155	796	-35	0.8126	0 931 72	1115	863	-14	
1.0000	0.794 39	1173	915	00	1.0000	0.784 41	1128	1002		
			Ма	had Eshad Veta		L				
0.0000	1 193 41	1456	395	inyi Etnyi Keto	ne + Initro	1 189 59	1408	196		
0.0000	1 150 00	1496	494	-10	0.0000	1 15066	1996	420	94	
0.0500	1 190 90	1900	424	-19	0.0300	1 111 04	1040	402	-24	
0.2030	1.120.39	1954	403	-30	0.2098	1,11194	1348	494	-44	
0.3268	1.077.87	1004	006	-00	0.3268	1.069.04	1314	542	-63	
0.4182	1.04339	1336	537	-66	0.4182	1.034 46	1296	575	-79	
0.5212	1.00311	1312	579	-77	0.5212	0.99451	1272	621	-92	
0.6458	0.95265	1277	642	80	0.6458	0.94313	1239	691	-94	
0.7512	0.90751	1241	715	-63	0.7512	0.89894	1201	771	-77	
0.8119	0.88061	1223	759	~52	0.8119	0.871 93	1183	819	-66	
1.0000	0.794 39	1173	915		1.0000	0.78441	1128	1002		

case of mixtures the data were obtained from excess volumes (1) by using the relation

$$\rho = \frac{x_1 M_1 + x_2 M_2}{x_1 V_1 + x_2 V_2 + V^{\mathsf{E}}} \tag{1}$$

Density values obtained from both methods were accurate to $\pm 5 \times 10^{-5}$ g cm⁻³. All the analytical grade chemicals were further purified by the methods described earlier (1-3). The purity of the samples was checked by comparing the values of density, bolling point, and refractive index with those reported in the literature (4).

Results

The isentropic compressibilities were calculated indirectly by

using the ultrasonic velocity, u, and density, ρ , with the relation

$$k_s = 1/u^2 \rho \tag{2}$$

The values of k_s were accurate to ± 2 TPa⁻¹. The excess isentropic compressibilities were computed by using the equation

$$k_{s}^{E} = k_{s}^{mix} - k_{s}^{id}$$
(3)

where k_s^{mx} and k_s^{k} are isentropic compressibilities of the actual mixture and ideal mixture. The values of k_s^{k} were obtained by using the equation (5, 6)

$$k_{s}^{\text{id}} = \sum \phi_{i} [k_{s,i} + TV_{i}\alpha_{i}^{2}/C_{p,i}] - T(\sum x_{i}V_{i})(\sum \phi_{i}\alpha_{i}^{2})/(\sum x_{i}C_{p,i})$$
(4)

Figure 1. Mole fraction vs. excess isentropic compressibility at 303.15

Figure 2. Mole fraction vs. excess isentropic compressibility at 313.15

where ϕ_i , $k_{s,i}$, V_i , α_i , and $C_{p,i}$ are volume fraction calculated on the basis of ideal density, isentropic compressibility, molar volume, thermal expansivity, and heat capacity of component i, respectively. The values of these parameters are given in Table I. The values of ultrasonic velocity, density, isentropic compressibility, and excess isentropic compressibility at both the temperatures are given in Table II. The graphs of k_a^E vs. composition are also presented in Figures 1 and 2. The dependence of k_s^E on mole fraction has been represented by an empirical equation of the form

$$k_{s}^{E} = x_{1}x_{2}[a_{0} + a_{1}(x_{1} - x_{2}) + a_{2}(x_{1} - x_{2})^{2}]$$
 (5)

The parameters a_0 , a_1 , and a_2 are obtained by the method of least squares and are given in Table III along with the standard deviation $\sigma(k_s^{E})$.

Discussion

Excess isentropic compressibilities are negative for all the

Table III. Values of the Parameters in Eq 5 and Standard Deviation $\sigma(\mathbf{k},\mathbf{E})$

methyl ethyl	T/V	$a_0/$	$a_1/$	$a_2/$	$\sigma(k_s^{\rm E})/T$	
Ketone -	1/K	IFa-	IFa-	IFa-	IPa -	
benzene	303.15	-109.8	-9.4	25.5	1.2	
	313.15	-137.6	-10.6	0.6	1.2	
toluene	303.15	-99.1	-15.2	11.6	0.8	
	313.15	-137.5	-26.9	17.4	1.4	
chlorobenzene	303.15	-163.7	-46.8	59.1	1.9	
	313.15	-197.2	-86.7	56.3	1.7	
bromobenzene	303.15	-194.6	-65.6	46.3	2.6	
	313.15	-222.7	-99.1	23.5	2.9	
nitrobenzene	303.15	-302.4	-92.8	67.6	3.9	
	313.15	-363.8	-110.9	58.8	4.1	

Table IV. Comparison of the Maximum Values of Excess Isentropic Compressibilities k_{i}^{E} and Excess Volumes V^{E} , at 303.15 and 313.15 K

	303	.15 K	313.15 K		
methyl ethyl ketone +	k_{s}^{E}/TPa^{-1}	V ^E / (cm ³ mol ⁻¹)	k_{s}^{E}/TPa^{-1}	$V^{\mathbb{E}/}$ (cm ³ mol ⁻¹)	
benzene	-27	-0.161	-35	-0.168	
toluene	-26	-0.256	-34	-0.245	
chlorobenzene	-43	-0.362	-52	-0.376	
bromobenzene	-50	-0.405	-59	-0.419	
nitrobenzene	-80	-0.601	-94	-0.644	

systems over the entire range of composition. The results are attributed to the induced dipole and dipole interaction between π electrons of the benzene ring and carbonyl group of methyl ethyl ketone in the systems methyl ethyl ketone with benzene and toluene. In addition to the above effect a dipole-dipole interaction between the groups CO with -CI, -Br, and $-NO_2$ may be responsible for the large negative values of k_s^{E} in the other three systems. The algebraic values of k_s^E fall in the order benzene \approx toluene < chlorobenzene < bromobenzene < nitrobenzene, at both temperatures.

This order is parallel to the dielectric constant values of the noncommon components. A similar trend is also observed with respect to excess volumes, reported in our earlier paper (1). The two properties are compared in Table IV and a remarkable similarity has been observed in their behavior with respect to these systems and at both temperatures. A negative temperature coefficient is observed in all the systems.

Registry No. MEK, 78-93-3; CeHe, 71-43-2; CeH5CH3, 108-88-3; CeH5CI, 108-90-7; C₈H₅Br, 108-86-1; C₈H₅NO₂, 98-95-3.

Literature Cited

- (2)
- (3) (4)
- Jayalakshmi, T.; Reddy, K. S. J. Chem. Eng. Data 1985, 30, 51. Reddy, K. S.; Naklu, P. R. Aust. J. Chem. 1976, 31, 2145. Reddy, K. S.; Naklu, P. R. Can. J. Chem. 1977, 55, 76. Timmermans, J. "Physico-chemical Constants of Pure Organic Compounds"; Elsevier: Amsterdam, 1950, 1965; Vol. I and II. Kiyohara, O.; Benson, G. C. J. Chem. Thermodyn. 1979, 11, 861.
- (6) Benson, G. C.; Kiyohara, O. J. Chem. Thermodyn. 1979, 11, 1061.

Received for review December 31, 1984. Revised manuscript received November 7, 1985. Accepted November 22, 1985.