very short time. It is also clear that this technique can also be used without any problems for the measurement of systems containing more than two components.

Acknowledgment

We thank Professor U. Onken for his great interest in this work and G. Schlensog for his technical assistance.

Glossary

A, B, C	Antoine constants
A _i	peak area of component /
A _{ij}	parameters used in the Margules, van Laar, Wilson, NRTL, and Uniquac equations
a	interaction parameter in the Unifac equation
f, ^{max}	substance-specific correction factor for component
\boldsymbol{g}_i	mass fraction of component i
\boldsymbol{q}_i	relative van der Waals surface area of component
r,	relative van der Waals volume of component i
V,	liquid molar volume of component i

Greek Letters

nonrandomness parameter in the NRTL equation α_{12}

Registry No. Benzene, 71-43-2; toluene, 108-88-3; n-butyraidehyde, 123-72-8; isobutyraldehyde, 78-84-2; valeraldehyde, 110-62-3; n-heptane, 142-82-5; n-octane, 111-65-9; n-decane, 124-18-5; tert-butyl alcohol, 75-65-0; 1-octene, 111-66-0.

Literature Cited

- Weidlich, U.; Gmehling, J. J. Chem. Eng. Data 1985, 30, 95.
 Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor-Llquid Equilibria Using Unifac; Elsevier: Amsterdam, 1977.
 Gmehling, J.; Weidlich, U. Chem.-Ing.-Tech. 1985, 57, 447.
- (4) Gmehling, J.; Weidlich, U. Proceedings of the International Meetings on Phase Equilibria, Paris, 1985.
- (5)
- Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 341. Margules, M. Sitzungsber. Akad. Wiss., Wien 1895, 104, 1243. Van Laar, J. J. Z. Phys. Chem. 1910, 72, 723. (6)
- (8)
- Wilson, G. M. J. Am. Chem. Soc. 1964, 86, 127. Renon, H.; Prausnitz, J. M. AIChE J. 1968, 14, 135. (9)
- Abrams, D. S.; Prausnitz, J. M. AIChE J. 1975, 21, 116. (10)
- Naumann, D. Ph.D. Thesis, Göttingen, 1963. (11)
- (12) Gmehling, J.; Rasmussen, P.; Fredenslund, A. Ind. Eng. Chem. Pro-
- (13) Macedo, E. A.; Weidlich, U.; Gmehling, J.; Rasmussen, P. Ind. Eng. Chem. Process Des. Dev. 1983, 22, 676.

Received for review October 3, 1985. Accepted January 7, 1986. We are grateful to Arbeitsgemeinschaft Industrieller Forschungsvereinigungen (AIF), Deutsche Forschungsgemeinschaft (DFG), and Fonds der Chemischen Industrie for financial support.

Viscosities of Solutions of Lithium Chloride in Water–Dimethyl Sulfoxide Mixtures at 25, 35, and 45 $^{\circ}$ C

David W. Osborne[†] and James F. O'Brien*

Department of Chemistry, Southwest Missouri State University, Springfield, Missouri 65804

The viscosities and densities of a wide range of lithium chloride concentrations in water-dimethyl sulfoxide mixtures have been determined at 25, 35, and 45 °C. Jones-Dole B coefficients were calculated from the less concentrated solutions for 0.1, 0.3, 0.5, 0.7, and 0.9 mole fraction dimethyl sulfoxide solutions. Plots of Jones-Dole B coefficients vs. mole fraction show a positive deviation from linearity.

Introduction

Since early work by Jacob and co-workers (1) concerning the therapeutic promise of dimethyl sulfoxide, this compound has been the center of considerable controversy (2, 3). However, it has been unequivocally shown that Me₂SO does enhance penetration through plant and animal membranes (4), and is particularly useful in enhancing percutaneous absorption (5, 6). This property of Me₂SO is of special importance for enhancing the transdermal delivery rate of drugs (7).

With these applications in mind, an investigation of the transport properties of Me₂SO-water mixtures was considered of interest. This study reports on the viscosity measurements of a range of Me₂SO-water solutions with LiCl as an added electrolyte at 25, 35, and 45 °C. Viscosities of dilute electrolyte

$X_{\mathrm{Me}_2\mathrm{SO}}$	η	$X_{\rm Me_2SO}$	η
0.100	1.822	0.700	2.528
0.300	3.622	0.899	2.081
0.500	3.252		

solutions can be analyzed in terms of the Jones-Dole equation (8).

$$\eta_{\rm rel} = \eta / \eta_0 = 1 + AC^{1/2} + BC \tag{1}$$

where $\eta_{\rm rel}$ is the relative viscosity, η is the measured viscosity, η_0 is the viscosity of the pure solvent, C is the molarity of the electrolyte, and A and B are the Jones-Dole coefficients.

The Jones-Dole A coefficient has been related to ion-ion interactions, and its value calculated theoretically (9). The B coefficient is related to ion-solvent interactions and has been used to make inferences concerning size, structure, and orientation of the solvated ion (10-13). Although many studies have considerable single solvent systems (11-17), fewer have used mixed solvent systems (18, 19).

Experimental Section

Anhydrous LiCl (Fisher, Reagent) was dried at 125 °C for 2 h, cooled, and stored in a desiccator prior to sample preparation. Spectroscopic grade dimethyl sulfoxide was kept under nitrogen gas and used as received.

[†]Current address: Upjohn Co., Kalamazoo, MI 49001.

318	Journai o	f Chemical	and	Engineerir	ng Da	ata, 1	Voi	. 3	11,	No.	З,	198	36
-----	-----------	------------	-----	------------	-------	--------	-----	-----	-----	-----	----	-----	----

Table II.	Viscosities and	Densities of Solutions	of LiCl in Water	-Me ₂ SO at 298	3. 308. and 318 K
-----------	-----------------	------------------------	------------------	----------------------------	-------------------

	- ind Dom					010 11	
 <i>C</i> , M	$C^{1/2}$	η ₂₉₈ , cP	η ₃₀₈ , cP	η ₃₁₈ , cP	$d_{298}, g/mL$	$d_{308}, { m g/mL}$	$d_{318}, { m g/mL}$
				(1) $0.100 X_{\text{Me}_2\text{SO}}$			
0.0		1.822	1.406	1.130			
0.1169	0.3419	1.867	1.436	1.156	1.045	1.039	1.033
0.1953	0.4419	1.926	1.486	1.192	1.047	1.041	1.036
0.3949	0.6284	2.007	1.556	1.241	1.052	1.046	1.040
0.5046	0.7104	2.036	1.586	1.264	1.055	1.050	1.044
0.8893	0.9430	2.251	1.736	1.385	1.063	1.058	1.051
1 3083	1 1438	2 443	1 890	1 509	1 074	1.068	1 061
2 2204	1.5905	2.440	2 4 2 7	1 029	1.004	1.000	1.086
2.0004	1 9620	4.975	2.407	9.549	1,000	1,001	1 109
3.4743	1.0039	4.275	0.220	2.042	1.120	1.115	1.100
				(2) $0.300 X_{Me_2SO}$			
0.0		3.662	2.704	2.093			
0.1172	0.3423	3.834	2.844	2.187	1.090	1.082	1.074
0.2356	0.4854	4.038	3.022	2.305	1.094	1.086	1.078
0.3665	0.6054	4.337	3.207	2.471	1.098	1.090	1.082
0.5526	0.7434	4.728	3.459	2.639	1.103	1.095	1.088
0 7411	0.8609	5 505	4 019	3 036	1 112	1 105	1.096
1 9589	1 3634	10.71	7 342	5 366	1 1 4 1	1 1 3 3	1 1 2 5
2.0000	1.0004	20.57	12 50	0.409	1.141	1.155	1.120
2.0410	1.0000	42 53	26.27	17 19	1.104	1.157	1.150
3.1343	1.5475	42.00	20.21	17.15	1.100	1.176	1.100
				(3) $0.500 X_{Me_2SO}$			
0.0		3.252	2.496	1.972			
0.07944	0.2819	3.464	2.648	2.109	1.101	1.092	1.083
0.1062	0.3259	3.544	2.706	2.147	1.102	1.093	1.084
0.1583	0.3979	3.659	2.791	2.205	1.104	1.095	1.086
0.2073	0.4553	3.798	2.893	2.270	1.105	1.096	1.087
0.3532	0.5943	4.234	3.169	2.490	1.109	1.100	1.091
0 4723	0.6872	4 514	3 4 2 7	2 655	1 113	1 104	1 095
1 91 91	1 1014	7 844	5 793	4 316	1 1 3 4	1 1 2 5	1 117
1 9/02	1 2500	13 10	9 106	6 609	1 1 50	1 149	1 194
0.6021	1.5055	24.96	16 12	11.07	1.100	1,142	1.104
2.0921	1.0400	24.00	10.13	15.00	1.107	1.109	1.101
3.1000	1.7001	30.90	40.97	10.02	1.177	1,109	1.101
3.6291	1.9050	69.02	40.27	20.40	1.191	1.165	1.170
				(4) $0.700 X_{\text{Me}_2\text{SO}}$			
0.0		2.528	2.019	1.662			
0.06141	0.2478	2.677	2.139	1.760	1.101	1.091	1.082
0.1432	0.3784	2.805	2.230	1.832	1.104	1.094	1.085
0.2180	0.4669	3.033	2.397	1.957	1.106	1.096	1.087
0.3271	0.5719	3.281	2.576	2.097	1.109	1.099	1.090
0.5865	0 7658	4 1 3 9	3.198	2.552	1 1 1 9	1 109	1 099
1 1356	1.0656	6.815	5 069	3 915	1 1 3 5	1 1 2 7	1 118
1.7733	1 2217	12 24	9 330	6 823	1 1 5 9	1 1 4 5	1 1 2 2
0 5557	1.5517	10.04	19.000	19.79	1,100	1.140	1.132
2.0007	1.5567	20.09	10.09	12.70	1.172	1.104	1.100
				(5) 0.899X _{Me2SO}			
0.0		2.081	1.713	1.439			
0.02127	0.1458	2.137	1.753	1.477	1.097	1.088	1.078
0.02732	0.1653	2.168	1.791	1.514	1.098	1.088	1.078
0.04288	0.2071	2.172	1.782	1.497	1.098	1.088	1.079
0.07365	0.2714	2.223	1.836	1.527	1.099	1.089	1.079
0.1226	0.3501	2.318	1 896	1.589	1 101	1 091	1 081
0.1521	0.0001	2.010	1 0/0	1 615	1 109	1 003	1 082
0.1021	0.0000	2.011	1.742 0 1 0 0	1.015	1 102	1.070	1.000
0.2001	0.0000	2.019	2.100	1.//1	1,100	1 100	1.00/
0.3740	0.0110	2.190	2,200	1.89/	1.109	1.100	1.090
1.0728	1.0358	0.035	4.724	3.311	1.133	1.123	1.114
1.4361	1.1984	8.046	5.927	4.537	1.144	1.135	1.126
2.0937	1.4470	17 .49	11.87	8.536	1.162	1.154	1.145

Table III. Jones-Dole B Coefficients for LiCl in Water-Me₂SO at 298, 308, and 318 K

			$X_{\rm Me_2SO}$		
<i>Т</i> , К	0.1	0.3	0.5	0.7	0.9
298	0.25	0.59	0.75	0.93	1.10
308	0.24	0.54	0.72	0.79	0.92
318	0.24	0.51	0.68	0.71	0.88

Viscosities were measured in Ostwald viscometers with flow times being read to ± 0.1 s. The viscometers were calibrated with distilled, deionized water and absolute ethanol. Temperatures were maintained to 25.00 \pm 0.01 °C, 35.00 \pm 0.02 °C, and 45.00 \pm 0.05 °C.

Densities were measured in 10-mL Weld pycnometers using 0.99707 g/mL as the calibrating density of water.

Results

The viscosities of the water-Me₂SO mixtures show a dramatic increase until approximately $0.3X_{Me_2SO}$, and then decrease in magnitude until reaching the value for pure Me₂SO (Figure 1). These results agree well with literature values (20-23). Figure 2 shows the Jones-Dole plots for the data at 25 °C. As seen, these plots are linear for LiCi concentrations below 0.36 M ($C^{1/2} = 0.6$). The Jones-Dole *B* coefficient is given by the slope of this linear region. Values of the *B* coefficients are plotted against X_{Me_2SO} for 25, 35, and 45 °C in Figure 3. For ideal behavior, the *B* coefficient should vary linearly with the change in mole fraction of Me₂SO. For LiCi in the water-Me₂SO system, a positive deviation exists that becomes less predominant as temperature increases.

Figure 1. Viscosities of water-Me₂SO mixtures at 25 °C (O), 35 °C (\bullet), and 45 °C (Δ).

Square Root Molar Salt Concentration

Figure 2. Jones–Dole plots for the data at 25 °C. The plot parameter is $(\eta/\eta_0 - 1)/C^{1/2}$: O, 0.1 mole fraction Me₂SO; Δ , 0.3 mole fraction Me₂SO; \odot , 0.5 mole fraction Me₂SO; \Box , 0.7 mole fraction Me₂SO; \times , 0.9 mole fraction Me₂SO.

Tables I and II give the viscosities and densities measured in this investigation.

Discussion

The maximum in viscosity for the water-Me₂SO solvent system can be attributed to the strong interaction of dimethyl sulfoxide with water. It has been estimated that the hydrogen bond between Me₂SO and water is $1^{1}/_{3}$ times as strong as the hydrogen bond between water and water (24). It is also noteworthy that this maximum occurs at a water/Me₂SO mole ratio of 2/1. There is abundant evidence for maxima in the deviation of several H₂O-Me₂SO properties from average values. Such maxima in "excess" properties have been found in viscosity (21-23), density (22, 23), ΔH_{mix} (22, 25), surface

Figure 3. Jones-Dole *B* coefficients for LiCi in the binary solvent system water-Me₂SO: O, 25 °C; Φ, 35 °C; Δ, 45 °C.

tension (23), dielectric constant (23), and ESR splitting constant (26). Often the maximum deviation occurs near mole fraction of Me₂SO = 0.33 (27). Our H₂O-Me₂SO viscosities (no salt added) are given in Table I. They compare well with previously reported results. A table listing additional literature values is available as supplementary material.

As seen in Table II, measurements were made at concentrations which exceed the traditional maximum for the Jones– Dole treatment (C = 0.1). The *B* coefficients were obtained from the linear regions of the plots shown in Figure 2. Other systems have exhibited linear Jones–Dole plots at concentrations above 0.1 M (28, 29). Figure 3 also demonstrates the possibility of extrapolating binary systems data to obtain *B* values for pure solvents. Such an extrapolation could be useful in cases where measurements in the pure solvent are difficult (17), or when an electrolyte has limited solubility.

The values of the Jones–Dole *B* coefficients (Table III) reflect changes in solution structure brought about by addition of the LiCI. All *B* values are positive, indicating that LiCI is a structure maker in all compositions of H_2O-Me_2SO .

Positive deviations from linearity are found in the *B* vs. *X* plots of Figure 3. Minima in such plots have been interpreted as suggesting that the mixed solvent H₂O–MeOH has even more structure than pure H₂O (*19*). That interpretation would imply that the maximum found here is due to less solvent structure in the mixed solvent. Yet the viscosity of the mixed solvent is greater than that of either component. Such a result is possible if the very strong interaction between H₂O and Me₂SO results in a breaking up of the network structure found in H₂O. Data on additional salts in H₂O–Me₂SO are needed. The effect of molar volume on viscosity may also play an important role. The molar volume of Me₂SO is much larger than that of H₂O or MeOH. NMR studies have indicated that the Li⁺ ion shows a preference for H₂O over Me₂SO. Work with activity coefficients indicated no preference by Li⁺ for either solvent (*30*).

Glossary

Α	Jones-Dole A coefficient
В	Jones-Dole B coefficient

- C concentration in moles/liter
- d density in grams/milliliter
- T temperature in kelvin
- X mole fraction
- η absolute viscosity of solution in centipoise
- η_0 absolute viscosity of pure solvents in centipoise

Registry No. Me₂SO, 67-68-5; LiCl, 7447-41-8; H₂O, 7732-18-5.

Literature Cited

- (1) Jacob, S. W.; Bischel, M.; Herschler, R. J. Curr. Ther. Res. 1964, 6, 134.
- Kilgman, A. M. J. Am. Med. Assoc. 1965, 193, 796.
 Kilgman, A. M. J. Am. Med. Assoc. 1965, 193, 151.
 Jacob, S. W.; Bischel, M.; Herschler, R. J. Curr. Ther. Res. 1964, 6, (4)
- 193. Stoughton, R. B.; Fritsch, W. Arch. Dermatol. 1964, 90, 512.
- Scheuplein, R.; Ross, L. J. Soc. Cosmet. Chem. 1970, 21, 853. Sanders, H. J. Chem. Eng. News 1965, 63 (13), 30. Jones, G.; Dole, M. J. Am. Chem. Soc. 1929, 51, 2950. Falkenhagen, H.; Vernon, E. L. Phys. Z. 1932, 33, 140. (6)
- (7)
- (8)
- (10) Erdey-Gruz, T. Transport Phenomena in Aqueous Solutions; Wiley: New York, 1974; Chapter 2.
- (11) Kaminsky, M. Discuss. Faraday Soc. 1957, 24, 171.
 (12) Krumgalz, B. S. J. Chem. Soc., Faraday Trans. 1, 1980, 76, 1275.
 (13) Feakins, D.; Lawrence, K. G. J. Chem. Soc. A 1966, 212.
- (14) Kay, R. L.; Vituccio, T.; Zawoyski, C.; Evans, D. F. J. Phys. Chem. 1966, 70, 2336.
- (15) Breslow, B. R.; Miller, I. F. J. Phys. Chem. 1970, 74, 1056.
 (16) Yao, N. P.; Bennion, D. N. J. Phys. Chem. 1971, 75, 1727.
- (17) Bicknell, R. T. M.; Lawrence, K. G.; Feakins, D. J. Chem. Soc., Fara-(17) *day Trans. 1*, **1980**, *76*, 637. (18) Feakins, D.; Freemantie, D. J.; Lawrence, K. G. *J. Chem. Soc., Fara*-
- day Trans. 1, 1974, 70, 795.

- (19) Stairs, R. A. In Thermodynamic Behavior of Electrolytes in Mixed Sol-(15) Statis, n. A. In *Hermodynamic behavior of Electrolytes in Muce Solvents*; Further, W. F., Ed.; *Adv. Chem.* Ser. No. 155; American Chemical Society: Washington, DC, 1976; p 332.
 (20) Schichman, S. A.; Amey, R. L. *J. Phys. Chem.* 1971, *75*, 96.
 (21) Fort, R. J.; Moore, W. R. *Trans. Faraday Soc.* 1966, *62*, 1112.
 (22) Cowle, J. M. G.; Toporowski, P. M. *Can. J. Chem.* 1961, *39*, 2240.
 (23) Combell A. N. Kotzmark, F. M. J. *Chem. Fag.* 2042.

- (23) Campbell, A. N.; Kartzmark, E. M. J. Chem. Eng. Data 1984, 29,
- 168. (24)
- (25)
- MacGregor, W. S. Ann. N.Y. Acad. Sci. 1967, 141, 3.
 Tommila, E.; Murto, M. Acta Chem. Scand. 1963, 17, 1947.
 Watts, M. T.; VanReet, R. E.; Eastman, M. P. J. Chem. Educ. 1973, (26) 50. 287
- (27)
- (28)
- Wolford, R. K. J. Phys. Chem. 1964, 68, 3392. LoSurdo, A.; Wirth, H. E. J. Phys. Chem. 1979, 83, 879. Harned, H.; Owen, B. B. The Physical Chemistry of Electrolyte Solu-tions, 3rd ed.; Reinhold: New York, 1958; p 238. (29)
- (30) Burgess, J. Metal Ions in Solution; Wiley: New York, 1978; p 169.

Received for review August 29, 1985. Accepted December 30, 1985. Support of this work by the Southwest Missouri State University Faculty Research Fund is gratefully acknowledged.

Supplementary Material Available: Table entitled "Viscosity of Water-Me₂SO Mixtures at 25 °C"; it reports viscosities of 38 different mole fractions and is compiled from four separate works (1 page). Ordering information is given on any current masthead page.

Densities and Apparent Molar Volumes of Aqueous Magnesium Sulfate and Sodium Sulfate to 473 K and 100 bar

Ramesh C. Phutela and Kenneth S. Pitzer*

Department of Chemistry and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

Densities of aqueous solutions of MgSO4 and Na2SO4 have been measured up to 473 K, 100 bar, and 1 m lonic strength. The derived apparent molar volumes along with the available literature data on these substances have been analyzed by using the ion-interaction (Pitzer) approach. \bar{V}_2^0 for MgSO₄ is obtained indirectly from values for MgCl₂, Na₂SO₄, and NaCl. The term in $\beta^{(2)}$ represents adequately the ion-association effect in MgSO4 up to 473 K. The present results yield the pressure effect on various thermodynamic properties.

Introduction

Recently we (1) completed a study which yielded a comprehensive equation for the thermodynamic properties of aqueous magnesium sulfate at low pressure based on our own heat capacity measurements and heats of dilution and osmotic coefficients from the literature. In the present study we present the measurements of densities of aqueous magnesium sulfate and sodium sulfate to 473 K. 100 bar, and 1 m ionic strength. In addition to the intrinsic interest of the volumetric properties, they also yield the pressure dependence of the thermodynamic properties already determined for low pressure.

Sodium sulfate behaves as a normal strong electrolyte and the present results are readily fitted to the same form of ioninteraction (Pitzer) equations used earlier by Rogers and Pitzer (2) for the heat capacity of aqueous Na₂SO₄. Magnesium sulfate, however, shows significant electrostatic ion-pairing. Our study of the heat capacity (1) showed that it was possible to use the ion-interaction equations up to 473 K provided that a special binary interaction term was included. Also, one cannot unambiguously extrapolate the MgSO4 data to zero molality to obtain \bar{V}_{2}^{0} ; rather this quantity for Mg²⁺ + SO₄²⁻ is obtained indirectly from the values of \overline{V}_2^{0} for MgCl₂, Na₂SO₄, and NaCl. Values for NaCl are taken from the recent comprehensive studies (3, 4) from this laboratory. For Na₂SO₄, we have generated equations based on Pitzer's equations using our measurements and literature values (5-15). For MgCl₂, we have fitted the recent measurements of Saluja (15) along with the other available literature data to the same equations. The details of the MgCl₂ calculations will be presented separately (16) along with the similar results for CaCl₂ and SrCl₂, and their heat capacities.

With the infinitely dilute values fixed, our measurements along with literature data (5, 7-10, 12, 13) on aqueous MgSO₄ were satisfactorily fitted by the ion-interaction equations. This type of equation has been very successful for mixed electrolytes. Thus it is valuable to have the required parameters for Na₂SO₄ and MgSO4 since these ions are prominent in sea water and in other natural or industrial waters.

Experimental Method

A dilatometer has been used to measure the changes in the volume of a solution as a function of temperature. The volume at room temperature is known from the literature. The constructional details and operation of the dilatometer are described elsewhere (17).

The pressure vessel, which contains about 5.75 cm³ of solution, was modified in design and rebuilt to stand higher pressures. The pressure vessel is connected through a stainlesssteel capillary to a mercury reservoir made of a coil of stainless-steel tubing which in turn is connected to a glass capillary column. The entire system can be pressurized with nitrogen das.