Gas Solubilities, Vapor-Liquid Equilibria, and Partial Molal Volumes in Some Hydrogen-Hydrocarbon Systems

John F. Connolly ${ }^{\dagger}$ and George A. Kandalic
Research and Development Department, Amoco Oil Company, Naperville, Illinois 60566

Abstract

Gas solubllities were measured for hydrogen in n-pentane, 2,3-dimethylbutane, cyclohexane, n-decane, m-xylene, 1,4-diethylbenzene, and 1-methyinaphthalene. Vapor-liquid equillibrium ratios (K ' s) were measured for the second, third, filth, and slxth of these systems. Partial molal volumes of hydrogen dissolved in the llquid hydrocarbons were measured for all systems except methylnaphthalene. Temperatures and pressures fell in the ranges $35-320{ }^{\circ} \mathrm{C}$ and $200-2400 \mathrm{psil}$.

Introduction

Because hydrogen is used in petroleum processing, physical properties of hydrogen-hydrocarbon systems are often necessary for the design of refinery units. This paper adds to the previous data $(1,2)$ which we have reported on such systems. Gas solubilities for seven systems, vapor-liquid equilibrium ratios for four systems, and partial molal volumes for six systems are reported here.

Experimental Section

The hydrocarbons used were American Petroleum Institute standard samples with stated purities of $99.9+\mathrm{mol} \%$. The experimental method has been described in detail (1). Briefly, a small sample of known mass and composition was confined above mercury in a glass capillary. Then, as the liquid mixture was expanded at constant temperature, the pressures at which the first trace of gas appeared (bubble-point pressure) and the last trace of liquid disappeared (dew-point pressure) were measured. The bubble-point pressures yield gas solubillities, and in a two-component system the combination of bubble- and dew-point pressures yields the vapor-liquid equilibrium ratios (K 's) for the system.
Partial molal volumes were derived by measuring the expansion which occurs when hydrogen is mixed with liquid hydrocarbon in a glass capillary (3).

The temperature can be set from 35 to $370^{\circ} \mathrm{C}$, but it was usually kept below $300^{\circ} \mathrm{C}$ to avoid thermal decomposition. Pressure can be set from 100 to 3000 psi, but it was usually kept below 2500 psi to avoid frequent capillary replacement.

Gas Solubillties

Because gas solubilities are fairly linear with "partial pressure", the bubble points can be represented by equations of the form

$$
\begin{equation*}
S=a+b\left(p-p_{1}{ }^{0}\right)+c\left(p-p_{1}{ }^{0}\right)^{2} \tag{1}
\end{equation*}
$$

where a, b, and c are constants at each temperature and are given in Tabie I; S is a "solubility" defined by $S=\left(x_{2} / x_{1}\right) /(p$ $-p_{1}{ }^{0}$); x is a mole fraction in the liquid; p is a bubble pressure, $p_{1}{ }^{0}$ is a vapor pressure, and subscripts 1 and 2 denote hydrocarbon and hydrogen, respectively.
These definitions of "solubility" and "partial pressure" are, of course, only arbitrary devices to simplify the representation

[^0]of bubble pressure. As a definition of partial pressure, p $x_{1} p_{1}{ }^{0}$ works somewhat better than $p-p_{1}{ }^{0}$, but not enough better to warrant the added complexity in solving eq 1 for x_{2} (given p). $p_{1}{ }^{0}$ is an approximate vapor pressure which is calculated from Table II. Of course, this particular $p_{1}{ }^{0}$ must always be used in conjunction with the constants in Table I.
The experimental bubble pressures, along with the deviations from eq 1, are listed in Table III.

Vapor-Llquid Equilibrium Ratios

Vapor-liquid equilibrium ratios, or K 's, are defined by

$$
\begin{equation*}
K_{1}=y_{1} / x_{1} \quad K_{2}=y_{2} / x_{2} \tag{2}
\end{equation*}
$$

where y and x are mole fractions in the vapor and liquid, and subscripts 1 and 2 refer to hydrocarbon and hydrogen. For a binary system, K is a function of temperature and pressure only,
At each experimental dew point (listed under psi in Table IV) the vapor composition was known, and the corresponding liquid composition was calculated from eq 1. These compositions were then used to calculate the vapor-liquid equilibrium ratios listed in Table IV.
The function $p K$, where p is the pressure of the system, varies more slowly with pressure than does K. Therefore, interpolation to convenient values of pressure was accomplished by plotting $p K$ as a function or pressure at constant temperature on large-scale graph paper. Reduced versions of these plots are shown in Figures 1-8.

Smoothed K's, listed in Table V, were read from the $p K$ plots. Those values in parentheses are dependent on short extensions of eq 1 (linear form only) to pressures higher than observed bubble pressures. Values of K for two other hydro-gen-hydrocarbon systems have been reported (2).

Partial Molal Volumes

Partial molal volumes of gases in liquid solutions are necessary in the calculation of thermodynamic properties of solutions from liquid-vapor-equilibrium and gas-compressibility data at high pressures (1). Because the literature usually reports only room-temperature partial molal volumes for gas-hydrocarbon systems, and because our apparatus easily combines these measurements with bubble points, we have made numerous high-temperature partial-molal-volume measurements. The volume-expansion method used has been described (3).

At gas concentration below 10 or $15 \mathrm{~mol} \%$, the volume expansion of liquid per mol of gas dissolved varies linearly with composition at constant temperature and pressure; i.e.

$$
\begin{equation*}
\Delta V / n_{2}=\bar{V}_{2}^{*}+c^{\prime} x_{2} \tag{3}
\end{equation*}
$$

where ΔV is the measured volume expansion of the liquid when n_{2} moles of gas are dissolved in pure hydrocarbon to give a mole fraction x_{2}, and \bar{V}_{2} " is the gas partial molal volume at infinite dilution. $\bar{V}_{2}{ }^{*}$ and c^{\prime} are functions of temperature and pressure only. That the intercept is $\bar{V}_{2}{ }^{*}$ follows from the definition

$$
\bar{V}_{2^{*}}=\lim _{n_{2} \rightarrow 0}\left(\Delta V / n_{2}\right)_{T \rho n_{1}}
$$

Flgure 1. $p K_{1}$ for 2,3 -dimethylbutane.

Figure 2. $p K_{1}$ for cyclohexane.
Values of c^{\prime} obtained from eq 3 are approximately related to the composition variation of partial molal volumes \bar{V}_{1} and \bar{V}_{2};

Flgure 3. $p K$, for m-xylene.

Figure 4. $p K_{1}$ for 1,4-diethylbenzene.
i.e., assume that the molal volume of the solution, V, can be represented as a Taylor series in the mole fraction of hydrogen, x_{2}, for small x_{2}. Then

$$
\begin{equation*}
V=V_{1}+b^{\prime} x_{2}+c^{\prime} x_{2}^{2}+\ldots \tag{4}
\end{equation*}
$$

where V_{1} is the molal volume of the pure hydrocarbon, b^{\prime} and c^{\prime} are functions of temperature and pressure, and we neglect cubic and higher terms. By definition we have

$$
\begin{equation*}
\bar{v}_{1}=\left(\partial n V / \partial n_{1}\right)_{T_{P n}} \tag{5}
\end{equation*}
$$

where $n=n_{1}+n_{2}$ is the total number of moles in solution and V, the solution molal volume, is given by $V=x_{1} \bar{V}_{1}+x_{2} \bar{V}_{2}$. Applying eq 5 to eq 4 we obtain

$$
\begin{align*}
& \bar{V}_{1}-V_{1}=-c^{\prime} x_{2}^{2} \tag{6}\\
& \bar{V}_{2}-\bar{V}_{2}^{*}=2 c^{\prime} x_{2} \tag{7}
\end{align*}
$$

Table 1. Solubilities of Hydrogen in Hydrocarbons ${ }^{a}$
 is pressure in ($\mathrm{lb} / \mathrm{in} .^{2}$) / 14.696, $p_{1}{ }^{0}$ is a vapor pressure (Table II).

Table II. Vapor Pressure Constants ${ }^{a}$ (4)

	A	B	C	$T_{\mathrm{c}}, \mathrm{K}$
n-pentane	6.85221	1064.630	232.000	470
2,3-dimethylbutane	6.80983	1127.187	228.900	500
cyclohexane	6.84498	1203.526	222.863	554
n-decane	6.95367	1501.268	194.480	619
m-xylene	7.00908	1462.266	215.105	619
1,4-diethylbenzene	7.00054	1589.273	202.019	662
1-methylnaphthalene	7.06899	1852.674	192.716	787

${ }^{a} \log \left(760 p_{1}{ }^{0}\right)=A-B /(T+C)+0.50\left(T / T_{\mathrm{c}}-0.75\right)^{2}$. Omit last term when $T / T_{\mathrm{c}}<0.75 . p_{1}{ }^{0}$ is vapor pressure in (lb/in. ${ }^{2}$)/14.696.

Figure 5. $p K_{2}$ for 2,3-dimethylbutane.

Figure 6. $p K_{2}$ for cyclohexane.
and if we use $\Delta V=n V-n_{1} V_{1}$, the c^{\prime} in eq 6 and 7 can be identified with c^{\prime} of eq 3. It turns out that $c^{\prime}>0$ so that \bar{V}_{1} decreases slowly as H_{2} is added and \bar{V}_{2} increases fairly rapidly. The liquid-phase activity coefficients show this same asymmetry in behavior (1).

Experimental values for the solution dilation $\Delta V / n_{2}$, are available as supplementary material. Because there are sev-

Flgure 7. $p K_{2}$ for m-xylene.

Figure 8. $p K_{2}$ for 1,4-diethylbenzene.

Figure 9. Partial moial volumes of hydrogen, at infinite dilution, in liquid n-pentane.
eral thousand of these values, and because we wish to derive partial molal volumes, an analytical representation is desirable. Previous work (1) has shown that the reciprocals of the dilute solution partial molal volumes, $\bar{V}_{2}{ }^{*}$, are linear with pressure up to about 1600 psi. A small quadratic term is sufficient to take care of any curvature between 1600 and 2500 psi . The

 등드́g ç ccoiogog

 ○só

óóóóosoóócóoóóóóo

Figure 10. Partial moial volumes of hydrogen, at infinite dilution, in liquid 2,3-dimethylbutane.

Figure 11. Partial molal volumes of hydrogen, at infinite dilution, in liquid n-decane.
pressure variation of c^{\prime} is taken care of, between $p,{ }^{0}$ and 2500 psi, by a single term in reciprocal pressure. Thus, eq 3 may be rewritten as

$$
\begin{equation*}
\Delta V / n_{2}=100 /\left(a+b u-c u^{2}\right)+100 d x_{2} / u \tag{8}
\end{equation*}
$$

where $u=$ atmospheres $/ 100=p s i / 1469.6$, and a, b, c, and d are functions of temperature only.

A nonlinear regression program was used to fit eq 8 to each experimental set of $\Delta V / n_{2}$ in the supplementary material tables which corresponded to a system at a particular temperature (usually about 30 points). To obtain best values for \bar{V}_{2}^{*} a two-step procedure was used. With $c=0$, eq 8 was fitted by using only values of $\Delta V / n_{2}$ in the linear region (below 1600

Figure 12. Partial molal volumes of hydrogen, at infinite dilution, in liquid cyclohexane.

Figure 13. Partial molal volumes of hydrogen, at infinite dilution, in liquid m-xylene.
psi). Then a second fit was made by using the complete eq 8 with a, b, and d fixed at the values derived in the first fit, and with no restriction on pressure. a, b, and d, as derived in the first fit, and c, as derived in the second fit, are listed in Table VI. Deviations listed in Table VI and in the supplementary material refer to the second fit.

Partial molal volumes of hydrogen at infinite dilution in hydrocarbons, $\bar{V}_{2}{ }^{*}$, were calculated from constants of Table VI and plotted in Figures 9-14. The nearly vertical dashed lines represent vapor pressures of the pure hydrocarbons. Some lower pressure points are shown as open circles to indicate that they are the result of a double linear extrapolation, i.e., into regions of both composition and pressure which are below
Table IV. Measured Vapor-Liquid Equilibrium Ratios

Table V. Smoothed Vapor-Liquid Equilibrium Ratios

	$0^{\circ} \mathrm{C} \quad 130^{\circ} \mathrm{C}$																		psi						
psi	k_{1}	K_{2}	K_{1}	K_{2}	${ }^{1} 1$	K_{2}		K_{2}	$\mathrm{K}_{1}{ }^{160}$	K_{2}	$\mathrm{K}_{1}{ }^{170}$	${ }_{\text {K }}^{2}$	$\mathrm{K}_{1} \quad \mathrm{~K}_{2}$		$\begin{aligned} & 190^{\circ} \mathrm{C} \\ & \mathrm{~K}_{1} \quad \mathrm{~K}_{2} \end{aligned}$		$\mathrm{K}_{1} \quad \mathrm{~K}_{2}$								
300	. 298	37.1	. 373	34.0	. 447	31.3	. 533	28.3											300						
400	. 234	28.4	. 291	26.1	. 351	24.0	. 427	21.8	. 506	19.6									400						
500	. 194	23.1	. 242	21.3	. 293	19.6	. 358	17.8	. 430	16.1	. 514	14.2							500						
600	. 167	19.5	. 210	18.0	. 255	16.6	. 311	15.1	. 377	13.7	. 450	12.2	. 532	10.6					600						
800	. 135	14.9	. 169	13.8	. 206	12.8	. 252	11.7	. 309	10.6	. 371	9.46	. 445	8.27	. 526	7.07	. 6205	. 75	800						
1000	. 115	12.1	. 144	11.3	(.178)	(10.4)) . 217	9.59	(.266)	(8.8)	. 323	7.82			. 468	5.85	. 5624	. 84100	000						
1200	. 101	10.2	. 128	9.53	(.158)	(8.8)) 193	8.15	(.239)	(7.5)	. 290	6.68			. 428	5.07			200						
1400 ((.092)	(8.9)	(.116)	(8.3)	(.144)	(7.7)			(.219)	(6.5)	(.258)	(5.9)							400						
1600			(.107)	(7.3)	(.134)	(6.8)			(.204)	(5.8)									600						
1800	(.100) (6.6)										clohe	exane	(1)	hydrog	en				800						
	$140^{\circ} \mathrm{C}$		$150^{\circ} \mathrm{C}$		$160^{\circ} \mathrm{C}$		$170{ }^{\circ} \mathrm{C}$		$180^{\circ} \mathrm{C}$		$190^{\circ} \mathrm{C}$		$200{ }^{\circ} \mathrm{C}$		$210^{\circ} \mathrm{C}$		$220^{\circ} \mathrm{C}$		$230^{\circ} \mathrm{C}$		$240^{6} \mathrm{C}$		$250^{\circ} \mathrm{C}$		psi
psi	K_{1}		K_{1}	K_{2}	K_{1}	K_{2}			K_{1}	K_{2}	K_{1}	K_{2}		K_{2}		K_{2}	${ }^{K}{ }_{1}$	K_{2}	${ }_{1}$	K_{2}	K_{1}	K_{2}	${ }^{1} 1$	K_{2}	
200					. 536	73.2	. 645	67.2	. 750	59.6															200
300			. 307	54.2	. 377	50.0	. 455	46.2	. 537	42.2	. 630	38.1	. 727	33.7											300
400			. 240	41.1	. 294	38.1	. 354	35.3	. 424	32.4	. 505	29.6	. 582	26.5	. 671	23.5	. 762	20.4							400
500			. 198	33.2	. 242	30.8	. 293	28.6	. 354	26.3	. 420	24.3	. 490	21.9	. 569	19.5	. 652	17.1	. 732	14.7					500
600	. 139	30.0	. 170	28.0	. 208	26.0	. 253	24.2	. 305	22.3	. 365	20.6	. 425	18.6	. 498	16.7	. 577	14.7	. 652	12.7	. 738	10.7			600
800	. 110	22.8	. 135	21.3	. 165	19.8	. 201	18.5	. 244	17.2	. 291	15.9	. 344	14.5	. 405	13.0	. 475	11.6	. 546	10.2	. 624	8.59	. 710		800
1000	. 092	18.4	. 116	17.3	. 140	16.2	. 171	15.0	. 207	14.0	. 246	13.0	. 294	11.9	. 347	10.8	. 410		. 477	8.43	. 550	7.22	. 636		1000
1200			. 100	14.5	. 123	13.6	. 150	12.7	. 182	11.9	. 217	11.0	. 262	10.1	. 309	9.17	. 366	8.22	k.429)	(7.2)	. 499	6.23	. 583	5.15	1200
1400			(.090)	(12.6)	. 110	11.8	(.136)	(11.0)	. 163	10.3	. 196	9.61	. 238	8.81	. 281	. 801	1.334	7.20			. 462	5.48	. 546	4.58	1400
1600					. 100	10.4	(.125)	(9.8)	. 150	9.10	. 181	8.53	. 220	7.82			. 310	6.42							1600
1800 2000					. 094	9.36	(.116)	(8.8)				7.65	. 207	7.03			. 292	5.79							1800
2000							(.109)	(8.0)				6.93	. 195	6.38											2000
2200 2400							(.104)	(7.3)																	2200
240							(.099)	(6.8)																	2400

\footnotetext{
$\frac{\text { 1,4-dietylbenzene (1) - hydrogen (2) }}{280^{\circ} \mathrm{C}}$药

	$240^{\circ} \mathrm{C}$		$250^{\circ} \mathrm{C}$		$260^{\circ} \mathrm{C}$		$270^{\circ} \mathrm{C}$		$280^{\circ} \mathrm{C}$		$290^{\circ} \mathrm{C}$		$300^{\circ} \mathrm{C}$		$310^{\circ} \mathrm{C}$		$320^{\circ} \mathrm{C}$
psi	${ }_{1}$	K_{2}	K_{1}	K_{2}	$\mathrm{K}_{1} \mathrm{~K}_{2}$												
200																	
300	. 482	39.0	. 560	35.5	. 648	32.1	. 743	28.3									
400	. 379	30.1	. 442	27.6	. 517	25.1	. 597	22.4	. 680	19.6							
500	. 314	24.6	. 370	22.7	. 433	20.7	. 504	18.6	. 578	16.5	. 659	14.3	. 739	12.0			
600	. 270	20.9	. 320	19.2	. 376	17.6	. 438	16.0	. 506	14.2	. 583	12.4	. 660	10.6	. 742	8.67	
800	. 215	16.1	. 255	14.9	. 301	13.7	. 355	12.4	. 415	11.2	. 482	9.85	. 555	8.50	. 636	7.12	. $720 \quad 5.60$
1000	. 180	13.1	. 217	12.2	. 256	11.2	. 303	10.2	. 357	9.30	(.417)	(8.2)	. 485	7.15	. 565	6.03	. 6454.80
1200	. 158	11.1	(.191)	(10.3)	. 227	9.54	(.268)	(8.8)	. 317	7.9?	(.374)	(7.1)	. 440	6.21			
1400	. 143	9.64	(.173)	(9.0)	. 205	8.32	(.244)	(7.7)	. 288	7.00	(.343)	(6.2)					
1600	. 131	8.54	(.159)	(8.0)			(.225)	(6.8)			(.320)	(5.6)					
1800			(.148)	(7.2)			(.211)	(6.2)			(.302)	(5.1)					
2000			(.139)	(6.6)													

Table VI. Liquid Volume Dilations on Mixing Hydrogen and Hydrocarbons ${ }^{\boldsymbol{a}}$

	n-pentane					2,3 dimethyl butane					cyclohexane					n- decane					m-xylene					1,4-diethyl benzene			
${ }^{0} \mathrm{C}$	a	b	-	d	$\begin{gathered} \text { SD,MD } \\ \text { Cc/mole } \end{gathered}$	-	b	c	d	$\begin{aligned} & \text { SD,MD } \\ & c c / \text { mole } \end{aligned}$	a	b	c	d	$\begin{gathered} \text { SD,HD } \\ \text { Cc/mole } \end{gathered}$	a	b	c	d	$\begin{aligned} & \hline \text { SD,MD } \\ & \text { cc/mole } \end{aligned}$	a	b	c	d	SD, HD	a	b	d	$\begin{gathered} \text { SD, MD } \\ \text { cc/mole } \end{gathered}$
35	1.88	. 27			1,4	2.02	. 22			1,2	2.74				2,4	2.73										2.91			2,3
40	1.58	. 39			3,5	2.12	. 14			1,3																2.86			1,3
50	1.61	. 32			3,6	1.88	. 20			1,3	2.54				2,5											2.69			1,2
60	1.41	. 37			3,5	1.79	. 19			2,3	2.31	. 29			3,5											2.86			1,4
70	1.35	. 32			2,4	1.54	. 30			1,3	2.25	. 18			2,5											2.71			2,3
80	1.20	. 34			3,6	1.42	. 31			2,4	1.84	. 26			2,5											2.63			2,4
90	1.14	. 31			3,6	1.36	. 25			2,3	1.93	. 20			2,4											2.51			2,3
100	1.02	. 35			2,4	1.29	. 27			2,4	1.76	. 31			3,6														
110	. 88	. 37			2,4	1.17	. 30			3,5	1.63	. 25			2,5	1.95	. 18			2,4									
120	. 75	. 39			2,7	1.02	. 31			2,5	1.61	. 21			2,4														
130	. 62	. 42			3,5	. 90	. 32			2,5	1.56	. 13			1,3														
140	. 57	. 47		1.3	2,6	. 78	. 38		. 5	3,7	1.35	. 21			2,6	1.56	. 23			2,5	1.95	. 24			3,6				
150	. 40	. 56	. 03	1.6	2,5	. 67	. 42		. 8	3.6	1.25	. 23			2,4											1.97	. 11		2,6
160	. 24	. 64	. 04	2.0	3,6	. 58	. 44		1.0	3,6	1.12	. 30			3,6	1.29	. 24			2,3	1.56	. 27			2,4				
170						. 45	. 43		1.0	3,6	1.01	. 33		. 8	1,3														
180						. 33	. 56	. 04	1.9	3.6	. 93	. 32		. 9	2,5	1.27	. 25		. 6	2,4	1.44	. 23			3,6	1.61	.16		2,4
190						. 20	. 62	. 05	2.4	3,7	. 77	. 37		. 9	2,6											1.49	. 20		2,4
200											. 69	. 36		1.1	3,8	1.10	. 32		1.0	2,6	1.27	. 26		1.1	1,3	1.29	. 24		2,4
210											. 56	. 44		2.1	2,4														
220											. 42	. 54	. 04	2.4	2,6	. 89	. 30		. 7	2,4	. 98	. 36		1.3	1,3	1.13	. 25		2.3
230											. 30	. 58	. 04	3.0	2,6											1.11	. 30	1.0	2,5
240											. 17	. 63	. 05	3.6	3,9	. 82	. 33		1.5	2,6	. 82	. 30		. 9	2,6	1.16	. 28	1.6	3,5
250																. 63	. 37		1.2	2,7	. 72	. 32		1.3	1,5	. 97	. 29	1.2	2,4
260																. 53	. 53	. 05	2.0	2.6	. 60	. 39		1.8	2,4	. 84	. 29	. 9	2,5
270																. 42	. 53	. 06	1.7	2,8	. 49	. 43		2.2	2,8	. 81	. 31	1.4	2,5
280																. 35	. 58	. 05	2.5	3,7	. 36	. 49	. 04	2.2	3,7	. 70	. 35	1.6	2,5
290																. 26	. 61	. 06	2.8	4,10	. 28	. 52	. 03	3.1	2,5	. 60	. 35	1.5	2,5
300																. 18	. 61	. 03	3.2	3,9	. 15	. 60	. 04	3.9	3,5	. 51	. 41	2.2	2,6

${ }^{\mathbf{a}} \mathrm{a}, \mathrm{b}, \mathrm{c}$, and d are parameters in eq 8. SD and MD are standard and maximum deviations.

Figure 14. Partial molal volumes of hydrogen, at inflinite dilution, in liquid 1,4-diethylbenzene.
those covered by experimental data. The filled-in circles involve only linear extrapolations to $x_{2}=0$, at a constant pressure, within the pressure range of the measurements. Surprisingly, at the lower pressures and higher temperatures, the partial
molal volumes of hydrogen are often larger than those of hydrocarbons.

Reglatry No. Hydrogen, 1333-74-0; n-pentane, 109-66-0; 2,3-dimethylbutane, 79-29-8; cyclohexane, 110-82-7; n-decane, 124-18-5; m-xylene, 108-38-3; 1,4-diethylbenzene, 105-05-5; 1-methyinaphthylene, 90-12-0.

Lilerature Cited

(1) Connolly, J. F. J. Chem. Phys. 1962, 36, 2897.
(2) Connolly, J. F. Proc. Am. Pet, Inst. 1985, 45, III, 62.
(3) Connolly, J. F.; Kandalic, G. A. Chem. Eng. Prog. Symp. Ser . 1963, 59, 8.
(4) Rossini, F. D.; Pitzer, K. S.; Arnett, R. L.; Braum, R. M.; Pimentel, G. C. Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Reiated Compounds; Carnegie: Pittsburgh, 1953.

Received for review May 8, 1985. Accepted April 28, 1986.

Supplementary Maierlal Avallable: Experimental values for solution dilation (13 pages). Ordering information is given on any current masthead page.

Solidification Behavior of the Cinnamic Acid-p-Nitrophenol Eutectic System

N. Bahadur Singh* and P. Kumar
Chemistry Department, Gorakhpur University, Gorakhpur 273 009, India

Abstract

The solid-liquid equilibrium of the cinnamic acld-p-nlitrophenot (CA-pNP) eutectic system has been investigated. Heat of fusion, microstructure, and strength measurements have been made. Infrared spectral studies Indicate molecular association in the formation of the outectic. Thermodynamic functions such as h^{E}, g^{E}, and $\boldsymbol{S}^{\mathbf{E}}$ have been calculated and were found to be negative except $g^{\mathbf{E}}$. Statistical mechanical treatment shows that the surface nucleation theory holds good in the solldification of the present eutectic.

Introduction

Solid materials are of considerable interest both from the fundamental and from the technological point of view. Eutectic materials also come in this category. In order to control the properties of such materials, studies of phase diagram, linear velocity of crystallization, microstructure, compressive strength, and thermodynamic properties are essential (1). The present paper describes the chemistry of the cinnamic acid- p-nitrophenol (CA-pNP) eutectic system with reference to the above properties.

Experimental Sectlon

Materlals and Purflcation. p-Nitrophenol (BDH) and cinnamic acid (BDH) were purified by repeated distillation under reduced pressure. The purity was checked by determining the melting points with the help of a mercury thermometer correct to $\pm 0.1^{\circ} \mathrm{C}$. The melting points are 112.0 and $133.0^{\circ} \mathrm{C}$, respectively. Cinnamic acid is represented as CA and p-nitrophenol is represented as pNP.

Phase Dlagram and Undercooling Study. The phase diagram of the CA-pNP system has been studied by the thaw melt method (2). Mixtures of various compositions were prepared
in glass test tubes by repeated heating, chilling, and grinding in a glass mortar. The melting points and thaw points were determined with a mercury thermometer correct to $\pm 0.1^{\circ} \mathrm{C}$. The undercooling study was made in a manner described by Rastogi and Bassi (3).

Study of Microstructures. A microscopic method was used for the study of microstructures of components and eutectic. A glass slide was kept in an oven at a temperature higher than the melting points of the eutectic, and a very small amount of the sample was placed on it. As the sample metted completely, the coverslip was glided on it. The slide was allowed to cool and nucleations were started from one side and this was then photographed with a camera under a microscope of desired magnification. The effect of $0.1 \% 8$-hydroxyquinoline and 4chloroaniline on the microstructure of the eutectic has also been investigated.
Heat of Fusion Measurements. The heats of fusion of the pure components and the eutectic were determined by differential thermal analyzer (Paulik-Paulik-Erdey MOM derivatograph, Hungary) using the method of Vold (4). The heating rate was maintained at $2^{\circ} \mathrm{C} / \mathrm{min}$, and the temperature was measured by a Pt-Rh thermocouple. From this method only the relative value of the heat of fusion could be determined.

Compressive Strength Measurements. Compressive strengths of components and eutectic in the form of pellets were determined by an universal testing machine. The pellets were prepared by solidifying the molten materials in glass test tubes of uniform diameter and the surfaces were smoothened by rubbing on emery paper. True stress was obtained by dividing the maximum load applied on the pellet (which was capable of breaking the pellet) by the area of the pellet. For calculating true strain, the total number of divisions on the graph (which indicates the maximum compression) was divided by the magnification (magnification was obtained by dividing chart speed by cross head speed) and the value thus obtained was finally divided by the original length of the pellet.

[^0]: ${ }^{\dagger}$ Presently at Amoco Corporation Corporate Research Department, P. O. Box 400. Naperville. IL 60566.

