| *                     | symbols with asterisks refer to isopiestic reference solution | (7)<br>(8)  | Rard, C<br>Rard, C |
|-----------------------|---------------------------------------------------------------|-------------|--------------------|
| B.                    | least-squares coefficients of eq.1                            | (9)<br>(10) | Rard, C            |
| <u>_</u> ,            | least-squares coefficients of eq 4 and 5                      | (,          | issue.             |
| ~/                    | newers of an 4 and 5                                          | (11)        | Libus, 2           |
| rį                    | powers of eq 4 and 5                                          |             | 11, 11             |
| Α                     | Debye-Hückel constant for 3-1 electrolytes                    | (12)        | Speddi             |
| M <sub>1</sub>        | molecular mass of water, g·mol <sup>-1</sup>                  | (13)        | 2440-2<br>Speddi   |
| M                     | molecular mass of solute, g·mol-1                             | (13)        | 78 11              |
| Q(0) Q(1)             | parameters for Pitzer's equations                             | (14)        | Speddi             |
| $\rho$ , $\rho$ ,     | parameters for ritzers equations                              |             | McDow              |
| - C+                  |                                                               |             | 1087-1             |
| $A^{\phi}$            | Debye-Hückel constant (1-1 charge type) for Pit-              | (15)        | Jeżows             |
|                       | zer's $\Phi$ equation                                         | (16)        | Siekier            |
| σ                     | standard deviation of fitting equations                       | (10)        | num ar             |
| -<br>                 | mean molal activity coefficient                               |             | ity Data           |
| Υ±                    |                                                               | (17)        | Kell, G.           |
| <b>a</b> <sub>1</sub> | water activity                                                | (18)        | Rard, J            |
| $\Phi_{f}$            | osmotic coefficient at the freezing temperature of            | (10)        | 1977, .            |
|                       | the solution                                                  | (19)        | Noyes,             |
| R                     | isopiestic molality ratio of La(NO <sub>2</sub> ), to CaCl-   | (20)        | Sneddi             |
|                       |                                                               | (21)        | 24.29              |
| Registry              | No. La(NO3)3, 10099-59-9; Eu(NO3)3, 10138-01-9.               | (22)        | Speddi             |

#### Literature Cited

- Spedding, F. H.; Weber, H. O.; Saeger, V. W.; Petheram, H. H.; Rard, J. A.; Habenschuss, A. J. Chem. Eng. Data 1978, 21, 341–360.
   Rard, J. A.; Weber, H. O.; Spedding, F. H. J. Chem. Eng. Data 1977,
- 22, 187-201. (3) Rard, J. A.; Shiers, L. E.; Heiser, D. J.; Spedding, F. H. J. Chem. Eng.
- Data 1977, 22, 337–347. (4) Rard, J. A.; Miller, D. G.; Spedding, F. H. J. Chem. Eng. Data 1979, 24, 348-354.
- (5) Rard, J. A.; Spedding, F. H. J. Chem. Eng. Data 1961, 26, 391-395.
- (6) Rard, J. A.; Spedding, F. H. J. Chem. Eng. Data 1962, 27, 454-461.

- J. A. J. Chem. Thermodyn. 1984, 16, 921–925. J. A. J. Solution Chem. 1985, 14, 457–471. J. A.; Miller, D. G. J. Chem. Eng. Data 1981, 26, 38–43.
- J. A.; Miller, D. G. J. Chem. Eng. Data, preceding paper in this
- Z.; Sadowska, T.; Trzaskowski, J. *J. Chem . Thermodyn* . **1979**, 151–1161. Z. Libuś supplied us with the original data.
- ng, F. H.; Pikal, M. J.; Ayers, B. O. J. Phys. Chem. 1966, 70, 2449
- ng, F. H.; Cullen, P. F.; Habenschuss, A. *J. Phys. Chem*. **1974**, 06-1110.
- ng, F. H.; Shlers, L. E.; Brown, M. A.; Baker, J. L.; Gutierrez, L.; all, L. S.; Habenschuss, A. J. Phys. Chem. 1975, 79, 1096
- ska-Trzebiatowska, B.; Ernst, S.; Legendziewicz, J.; Oczko, G. Acad. Pol. Sci., Sér. Sci. Chim. 1977, 25, 649–654. rski, S.; Mioduski, T.; Salomon, M. Scandium, Yttrium, Lantha -
- nd Lanthanide Nitrates; Pergamon: Oxford, U.K., 1983; Solubila Series, Vol. 13.
- S. J. Chem. Eng. Data 1975, 20, 97-105.
- A.; Habenschuss, A.; Spedding, F. H. J. Chem. Eng. Data 22, 180-186.
- A. A.; Johnston, J. *J. Am. Chem. Soc.* **1909**, *31*, 987–1010. E.; Harkins, W. D. *J. Am. Chem. Soc.* **1916**, *38*, 2658–2676. ng, F. H.; Baker, J. L.; Walters, J. P. *J. Chem. Eng. Data* **1979**,
- 8-305.
- (22) Spedding, F. H.; Derer, J. L.; Mohs, M. A.; Rard, J. A. J. Chem. Eng. Data 1976, 21, 474–488; 1985, 30, 242 (errata).
  (23) Yakimov, M. A.; Guzhavina, E. I. Russ. J. Inorg. Chem. (Engl.)
- Transl.) 1971, 16, 934-936.
- (24) Kirgintsev, A. N.; Luk'yanov, A. V. Russ. J. Phys. Chem. (Engl. Transl ) 1985, 39, 389-391.
- (25) Hamer, W. J.; Wu, Y.-C. J. Phys. Chem. Ref. Data 1972, 1, 1047-1099.
- (26) Pitzer, K. S.; Peterson, J. R.; Silvester, L. F. J. Solution Chem. 1978, 7, 45-56.

Received for review May 27, 1986. Accepted August 12, 1986. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract no. W-7405-ENG-48.

# Viscosities of Gaseous R13B1, R142b, and R152a

#### Mitsuo Takahashi, Chiaki Yokoyama, and Shinji Takahashi\*

Chemical Research Institute of Non-Aqueous Solutions, Tohoku University, Sendai, 980 Japan

The viscosities of gaseous bromitrifluoromethane (R13B1), 1-chloro-1,1-difluoroethane (R142b), and 1,1-difluoroethane (R152a) were measured with an oscillating disk viscometer of the Maxwell type at 273.15-448.15 K up to 10 MPa for R13B1 and at 298.15-423.15 K up to 5 MPa for R142b and R152a. Two empirical equations were obtained; one is for the viscosity at atmospheric pressure as a function of temperature, and the other is for the viscosity in the whole range of the present measurement as a function of temperature and density. The intermolecular force constants of Stockmayer 12-6-3 potential were determined from the temperature dependence of the viscosity at atmospheric pressure as follows:  $\epsilon/k = 235$  K,  $\sigma = 0.506$  nm, and  $\delta$ = 0.058 for R13B1;  $\epsilon/k$  = 362 K,  $\sigma$  = 0.499 nm, and  $\delta$  = 0.36 for R142b;  $\epsilon/k$  = 312 K,  $\sigma$  = 0.463 nm, and  $\delta$  = 0.62 for R152a.

Many halogenated hydrocarbons are commonly used as refrigerants and expected to be used as working fluids of turbines. However, the experimental data of gas viscosity needed for the design of related equipments are scarce and the reliability of the literature data is uncertain because of the large discrepancies among them. Therefore, the measurement of the gas viscosities of halogenated hydrocarbons under pressure is being continued by the present authors, and the viscosity data for chlorodifluoromethane (R22), dichlorodifluoromethane (R12),

#### Table I. Physical Properties of Refrigerants

|                                            | R13B1             | R142b                             | R152a                            |
|--------------------------------------------|-------------------|-----------------------------------|----------------------------------|
| chem formula                               | CBrF <sub>3</sub> | CClF <sub>2</sub> CH <sub>3</sub> | CHF <sub>2</sub> CH <sub>2</sub> |
| mol wt <sup>a</sup>                        | 148.910           | 100.496                           | 66.050                           |
| $T_{\rm b}^{\ a} {\rm K}$                  | 215.4             | 263.4                             | 248.2                            |
| $T_{c}^{a}$ K                              | 340.2             | 410.2                             | 386.6                            |
| P <sub>a</sub> <sup>b</sup> MPa            | 3. <b>9</b> 7     | 4.12                              | 4.50                             |
| $\rho_{\rm c},^{\rm b}$ kg·m <sup>-3</sup> | 760               | 435                               | 365                              |
| dipole moment, <sup>c</sup> D              | 0.7               | 2.1                               | 2.3                              |

<sup>a</sup>  $T_{b}$ , boiling point at atmospheric pressure;  $T_{c}$ , critical temperature;  $P_{c}$ , critical pressure;  $\rho_{c}$ , critical density. <sup>b</sup> Makita, T. Viscosity and Thermal Conductivity; Baifukan: Tokyo, 1975; p 224 and 225. °Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. The Properties of Gases and Liquids; McGraw Hill: New York, 1977; p 630 and 636.

chlorotrifluoromethane (R13), 1,2,2-trichloro-1,1,2-trifluoroethane (R113), 1,2-dichloro-1,1,2,2-tetrafluoroethane (R114), and chloropentafluoroethane (R115) were reported previously (1-4). The viscosities of gaseous bromotrifluoromethane (R13B1), 1-chloro-1,1-difluoroethane (R142b), and 1,1-difluoroethane (R152a) are described in the present paper.

The viscosity of gaseous R13B1 has been measured by Tsui (5), Reed et al. (6), Wilbers (7), Karbanov et al. (8), and Kletskii et al. (9). Figure 1 shows the temperatures and pressures at which the literature data were obtained. The present measurement covers the area with oblique lines. The point C.P. denotes the critical point. No experimental data for the viscosities of R142b and R152a could be found in the literature.

98



Figure 1. Temperatures and pressures at which the literature data were obtained for R13B1.



Figure 2. Viscosity vs. pressure plots for gaseous R13B1.



Figure 3. Viscosity vs. density plots for gaseous R13B1.



## **Experimental Section**

The viscosity measurement was made with an oscillating disk viscosmeter of the Maxwell type, as described in the previous report (3).



Figure 4. Viscosity vs. pressure plots for gaseous R142b.



Figure 5. Viscosity vs. density plots for gaseous R142b.



Figure 6. Viscosity vs. pressure plots for gaseous R152a.



Figure 7. Viscosity vs. density plots for gaseous R152a.

The samples, the purities of which were certified to be above 99.9%, were supplied by the Dalkin Kogyo Co. and used without further purification.

#### **Results and Discussion**

The viscosity values obtained in the present measurement are shown in Tables II, III, and IV, and in Figures 2-7. The

| Table II. | Viscosity | of Gaseou | s Bromotrifluoromethane | (R13B1) |
|-----------|-----------|-----------|-------------------------|---------|
|           |           |           |                         |         |

| P, MPa | $\rho$ , kg·m <sup>-3</sup> | η, μPa·s      | P, MPa | $\rho$ , kg·m <sup>-3</sup> | η, µPa·s | P, MPa | $\rho$ , kg·m <sup>-3</sup> | η, μPa·s | P, MPa | $\rho$ , kg·m <sup>-3</sup> | η, μPa·s |
|--------|-----------------------------|---------------|--------|-----------------------------|----------|--------|-----------------------------|----------|--------|-----------------------------|----------|
|        |                             | 273.          | 15 K   |                             |          |        |                             | 398.3    | 15 K   |                             |          |
| 0.1011 | 6.749                       | 14.16         | 0.3959 | 27.94                       | 14.21    | 0.1016 | 4.595                       | 20.28    | 4.699  | 290.3                       | 25.07    |
| 0.1021 | 6.819                       | 14.23         | 0.4971 | 35.85                       | 14.19    | 0.3445 | 15.78                       | 20.34    | 5.066  | 323. <del>9</del>           | 25.94    |
| 0.2002 | 13.60                       | 14.20         | 0.5796 | 42.56                       | 14.28    | 0.6029 | 28.00                       | 20.39    | 5.316  | 347.7                       | 26.61    |
| 0.2981 | 20.64                       | 14.21         | 0.6960 | 52.91                       | 14.25    | 0.8779 | 41.40                       | 20.52    | 5.608  | 377.3                       | 27.53    |
|        |                             |               |        |                             |          | 1.276  | 61.52                       | 20.74    | 5.859  | 404.0                       | 28.33    |
|        |                             | 298.          | 15 K   |                             |          | 1.659  | 81.91                       | 20.94    | 6.133  | 432.0                       | 29.32    |
| 0.1022 | 6.227                       | 15.43         | 0.8671 | 59.63                       | 15.61    | 2.051  | 103.7                       | 21.26    | 6.363  | 460.5                       | 30.40    |
| 0.1023 | 6.234                       | 15.44         | 0.9628 | 67.34                       | 15.69    | 2.387  | 123.4                       | 21.61    | 6.533  | 483.4                       | 31.28    |
| 0.1834 | 11.30                       | 15.44         | 1.061  | 75.76                       | 15.71    | 2.697  | 142.5                       | 21.90    | 6.639  | 494.6                       | 31.62    |
| 0.2794 | 17.44                       | 15.49         | 1.159  | 84.61                       | 15.78    | 3.184  | 174.2                       | 22.46    | 6.791  | 512.8                       | 32.36    |
| 0.3760 | 23.82                       | 15.50         | 1.260  | 94.04                       | 15.87    | 3.509  | 196.4                       | 22.83    | 6.849  | 520.3                       | 32.63    |
| 0.4746 | 30.50                       | 15.49         | 1.356  | 103.4                       | 15.95    | 3.788  | 216.9                       | 23.30    | 7.004  | 539.2                       | 33.41    |
| 0.5720 | 37.34                       | 15.50         | 1.460  | 115.0                       | 16.06    | 4.13   | 243.3                       | 23.89    | 7.119  | 553.6                       | 34.04    |
| 0.6697 | 44.43                       | 15.54         | 1.555  | 125.6                       | 16.13    | 4.448  | 269.1                       | 24.48    |        |                             |          |
| 0.7865 | 52.00                       | 15.58         |        |                             |          | -      |                             |          |        |                             |          |
|        |                             | 0.00          | 15 V   |                             |          |        |                             | 423.1    | 15 K   |                             |          |
| 0 1090 | 5 710                       | 323.<br>16 70 | 1.0 K  | 115.9                       | 17 47    | 0.1013 | 4.305                       | 21.43    | 5.009  | 272.3                       | 25.89    |
| 0.1020 | 17.01                       | 16.70         | 1.000  | 120.5                       | 17.47    | 0.3455 | 14.84                       | 21.47    | 5.357  | 297.3                       | 26.52    |
| 0.2973 | 17.01                       | 16.70         | 1.002  | 152.0                       | 17.00    | 0.5977 | 26.00                       | 21.56    | 5.650  | 319.0                       | 27.11    |
| 0.4919 | 20.70                       | 16.70         | 2.025  | 100.3                       | 10.50    | 0.9122 | 40.21                       | 21.69    | 5.951  | 342.3                       | 27.78    |
| 0.6909 | 41.41                       | 16.83         | 2.170  | 107.4                       | 10.10    | 1.280  | 57.35                       | 21.86    | 6.218  | 362.9                       | 28.46    |
| 0.8829 | 54.24                       | 16.90         | 2.299  | 182.0                       | 18.43    | 1.642  | 74.89                       | 22.08    | 6.525  | 388.1                       | 29.21    |
| 1.086  | 68.03                       | 17.00         | 2.397  | 195.8                       | 10.07    | 1.944  | 89.80                       | 22.30    | 6.819  | 412.2                       | 30.05    |
| 1.279  | 82.79                       | 17.13         | 2.472  | 206.8                       | 18.84    | 2.302  | 108.2                       | 22.57    | 7.112  | 437.3                       | 30.93    |
| 1.476  | 98.62                       | 17.29         | 2.570  | 222.8                       | 19.10    | 2.685  | 128.7                       | 22.89    | 7.442  | 465.4                       | 31.96    |
|        |                             | 348.          | 15 K   |                             |          | 3.093  | 151.4                       | 23.25    | 7.633  | 482.0                       | 32.44    |
| 0.1016 | 5.273                       | 17.90         | 2.443  | 163.4                       | 19.56    | 3.507  | 175.4                       | 23.71    | 7.860  | 502.2                       | 33.29    |
| 0.2983 | 15 73                       | 17.94         | 2.635  | 181.6                       | 19.82    | 3.871  | 197.4                       | 24.20    | 8.112  | 525.3                       | 34.17    |
| 0.4883 | 26.20                       | 17.98         | 2 797  | 198.4                       | 20.18    | 4.283  | 223.7                       | 24.75    | 8.373  | 571.8                       | 36.14    |
| 0.4000 | 37 47                       | 18.07         | 2.924  | 211 7                       | 20.40    | 4.661  | 248.7                       | 25.38    |        |                             |          |
| 0.8814 | 49.03                       | 18 14         | 3 083  | 230.4                       | 20.80    |        |                             | 440      | 1 5 12 |                             |          |
| 1.076  | 61 12                       | 18 23         | 3.314  | 260.2                       | 21.39    | 0 1010 | 4.075                       | 448.     | 15 K   | 000 7                       | 00.00    |
| 1.070  | 73 44                       | 18.37         | 3 451  | 280.4                       | 21.86    | 0.1016 | 4.075                       | 22.55    | 4.907  | 230.7                       | 26.29    |
| 1.469  | 86.54                       | 18.50         | 3 648  | 312.8                       | 22.64    | 0.1022 | 4.099                       | 22.53    | 5.209  | 254.3                       | 26.72    |
| 1.644  | 99.00                       | 18.63         | 3 899  | 364.2                       | 24.11    | 0.4157 | 16.81                       | 22.62    | 5.595  | 276.9                       | 27.30    |
| 1 800  | 110.2                       | 18.80         | 4 010  | 392.5                       | 24 94    | 0.7689 | 31.53                       | 22.77    | 5.971  | 299.9                       | 27.97    |
| 1.000  | 123.1                       | 18.94         | 4 095  | 417.3                       | 25.69    | 1.099  | 45.53                       | 22.90    | 6.336  | 322.8                       | 28.58    |
| 2 149  | 137.3                       | 19.15         | 4.000  | 434.6                       | 26.30    | 1.362  | 57.03                       | 23.04    | 6.732  | 348.3                       | 29.36    |
| 2.142  | 149.1                       | 19 30         | 4 216  | 459.5                       | 27 19    | 1.688  | 71.53                       | 23.20    | 7.129  | 374.1                       | 30.15    |
| 2.202  | 145.1                       | 10.00         | 4.210  | 400.0                       | 21.10    | 2.023  | 86.80                       | 23.42    | 7.521  | 400.3                       | 30.95    |
|        |                             | 373.          | 15 K   |                             |          | 2.346  | 101.9                       | 23.64    | 7.902  | 426.0                       | 31.84    |
| 0.1024 | 4.947                       | 19.10         | 3.519  | 229.5                       | 22.24    | 2.671  | 117.5                       | 23.88    | 8.312  | 454.6                       | 32.83    |
| 0.1018 | 4.918                       | 19.09         | 3.750  | 252.2                       | 22.72    | 3.063  | 136.5                       | 24.19    | 8.693  | 480.3                       | 33.84    |
| 0.3462 | 17.00                       | 19.14         | 3.960  | 274.4                       | 23.23    | 3.468  | 157.6                       | 24.58    | 9.063  | 506.2                       | 34.84    |
| 0.5861 | 29.27                       | 19.20         | 4.164  | 296.3                       | 23.74    | 3.839  | 177.1                       | 24.92    | 9.463  | 534.1                       | 35.96    |
| 0.8381 | 42.60                       | 19.27         | 4.367  | 320.2                       | 24.43    | 4.216  | 197.3                       | 25.35    | 9.847  | 561.0                       | 37.09    |
| 1.078  | 56.07                       | 19.41         | 4.567  | 346.9                       | 25.16    | 4.477  | 211.7                       | 25.69    |        |                             |          |
| 1.319  | 69.69                       | 19.60         | 4.751  | 371.7                       | 25.95    |        |                             |          |        |                             |          |
| 1.549  | 83.22                       | 19.79         | 4.930  | 399.1                       | 26.69    |        |                             |          |        |                             |          |
| 1.766  | 96.69                       | 19.85         | 5.154  | 344.7                       | 27.87    |        |                             |          |        |                             |          |
| 2.014  | 112.6                       | 20.14         | 5.273  | 455.1                       | 28.61    |        |                             |          |        |                             |          |
| 2.305  | 132.1                       | 20.44         | 5.423  | 483.5                       | 29.67    |        |                             |          |        |                             |          |
| 2.558  | 150.1                       | 20.77         | 5.557  | 509.3                       | 30.67    |        |                             |          |        |                             |          |
| 2.816  | 169.6                       | 21.03         | 5.681  | 535.2                       | 31.66    |        |                             |          |        |                             |          |
| 3.076  | 190.6                       | 21.43         | 5.826  | 565.8                       | 33.04    |        |                             |          |        |                             |          |
| 3.279  | 207.8                       | 21.77         |        |                             |          |        |                             |          |        |                             |          |

density values given in the tables were obtained by the present authors using the experimental method described previously (10).

Equation 1 was obtained for the present experimental viscosities at atmospheric pressure as a function of temperature.

$$\eta_1 = a_1 T + a_2 T^2 \tag{1}$$

Constants in eq 1 and deviations of the experimental viscosity values from those calculated by eq 1 are shown in Table V. Deviations of the literature values for R13B1 from those calculated by eq 1 are shown in Figure 8.

Force constants of Stockmayer 12-6-3 potential were determined from the temperature dependence of the viscosities at atmospheric pressure by using the collision integral values given by Monchik et al. (11). Force constants and deviations of the experimental viscosity values at atmospheric pressure from the theory (12) are shown in Table VI.

Equation 2 was obtained for the present experimental viscosities in the whole range of pressure as a function of temperature and density. Constants in eq 2 are given in Table VII,

$$\eta = b_0 + b_1 \rho + b_2 \rho^2 \tag{2}$$

$$b_0 = b_{01}T + b_{02}T^2 + b_{03}T^3 \tag{2.1}$$

$$b_1 = b_{10} + b_{11}T + b_{12}T^2 \tag{2.2}$$

$$b_2 = b_{20} \tag{2.3}$$

and deviations of the present experimental viscosity values from those calculated by eq 2 are shown in Table VIII. Deviations of the literature values for R13B1 from those calculated by eq 2 are shown in Figure 9.

| Table III. | Viscosity of Gaseous 1-Chloro-1,1-difluoroethane |
|------------|--------------------------------------------------|
| (R142b)    |                                                  |
|            |                                                  |

\_

Table IV. Viscosity of Gaseous 1,1-Difluoroethane (R152a)

| (1420)  |                             |                             |                   |                             |                        |
|---------|-----------------------------|-----------------------------|-------------------|-----------------------------|------------------------|
| P. MPa  | $\rho$ , kg·m <sup>-3</sup> | n. µPa·s                    | P, MPa            | $\rho$ , kg·m <sup>-3</sup> | $\eta, \mu Pa \cdot s$ |
|         |                             | 009.1                       | = V               |                             |                        |
|         | 4 000                       | 298.1                       | .5 K              | 0.000                       | 10.40                  |
| 0.1027  | 4.290                       | 10.56                       | 0.2103            | 9.082                       | 10.49                  |
| 0.1438  | 6.082                       | 10.52                       | 0.2488            | 10.87                       | 10.47                  |
| 0.1788  | 7.647                       | 10.51                       | 0.2818            | 12.44                       | 10.48                  |
|         |                             |                             |                   |                             |                        |
|         |                             | 323.1                       | .5 K              |                             |                        |
| 0.1023  | 3.914                       | 11.42                       | 0.3797            | 15.66                       | 11.37                  |
| 0.1025  | 3.923                       | 11.42                       | 0.4425            | 18.44                       | 11.35                  |
| 0.1719  | 6.686                       | 11.40                       | 0.5100            | 21.66                       | 11.33                  |
| 0.2468  | 9.773                       | 11.39                       | 0.5723            | 24.76                       | 11.35                  |
| 0.3202  | 12.91                       | 11.37                       | 0.6187            | 27.17                       | 11.31                  |
|         |                             |                             | -                 |                             |                        |
|         |                             | 348.1                       | .5 K              |                             |                        |
| 0.1019  | 3.598                       | 12.27                       | 0.7541            | 30.48                       | 12.28                  |
| 0.1025  | 3.619                       | 12.25                       | 0.8414            | 34.66                       | 12.29                  |
| 0.1774  | 6.346                       | 12.26                       | 0.9277            | 39.05                       | 12.33                  |
| 0.3537  | 13.07                       | 12 24                       | 1 014             | 43 61                       | 12.34                  |
| 0.4490  | 16.07                       | 10.07                       | 1 091             | 47.35                       | 10.28                  |
| 0.4455  | 10.55                       | 12.27                       | 1.001             | 47.00                       | 10.00                  |
| 0.5570  | 21.38                       | 12.27                       | 1.140             | 50.55                       | 12.39                  |
| 0.6649  | 26.32                       | 12.27                       |                   |                             |                        |
|         |                             | 979 1                       | 5 V               |                             |                        |
| 0 1010  | 2.240                       | 1010                        | 1 007             | 20.20                       | 10.00                  |
| 0.1019  | 3.349                       | 13.12                       | 1.027             | 39.32                       | 13.22                  |
| 0.1022  | 3.359                       | 13.10                       | 1.147             | 44.83                       | 13.27                  |
| 0.1748  | 5.811                       | 13.10                       | 1.268             | 50.62                       | 13.34                  |
| 0.2762  | 9.326                       | 13.09                       | 1.387             | 56.97                       | 13.40                  |
| 0.4012  | 13.81                       | 13.10                       | 1.512             | 63.71                       | 13.47                  |
| 0.5282  | 18.55                       | 13.11                       | 1.613             | 69.60                       | 13.55                  |
| 0.6601  | 23.69                       | 13.15                       | 1.703             | 75.32                       | 13.63                  |
| 0.7751  | 28.36                       | 13 15                       | 1 800             | 81.60                       | 13 71                  |
| 0.0011  | 33.80                       | 13.20                       | 1.000             | 87.82                       | 13 79                  |
| 0.3011  | 55.60                       | 10.20                       | 1.000             | 01.02                       | 10.10                  |
|         |                             | 398.1                       | 15 K              |                             |                        |
| 0.1017  | 3.128                       | 13.95                       | 1.744             | 66.94                       | 14.51                  |
| 0.1017  | 3.128                       | 13.96                       | 1.923             | 76.02                       | 14.61                  |
| 0.2134  | 6 646                       | 13.95                       | 2 1 2 2           | 87 15                       | 14.82                  |
| 0.2134  | 10.97                       | 12.00                       | 0.017             | 00.10                       | 15.02                  |
| 0.3440  | 17.01                       | 14.01                       | 2.317             | 110.0                       | 15.02                  |
| 0.5255  | 17.01                       | 14.01                       | 2.516             | 112.9                       | 15.33                  |
| 0.7310  | 24.29                       | 14.03                       | 2.690             | 126.2                       | 15.63                  |
| 0.9292  | 31.67                       | 14.08                       | 2.820             | 138.3                       | 15.92                  |
| 1.161   | 40.90                       | 14.18                       | 2.960             | 152.7                       | 16.34                  |
| 1.373   | 49.75                       | 14.26                       | 3.086             | 168.4                       | 16.80                  |
| 1.569   | 58.46                       | 14.39                       | 3.202             | 187.2                       | 17.38                  |
|         |                             |                             | F 77              |                             |                        |
|         |                             | 423.1                       | 5 K               | . =                         |                        |
| 0.1019  | 2.938                       | 14.80                       | 3.691             | 173.4                       | 18.09                  |
| 0.1025  | 2.957                       | 14.80                       | 3.90 <del>9</del> | 195.4                       | 18.79                  |
| 0.3961  | 11.77                       | 14.85                       | 4.091             | 216.0                       | 19.60                  |
| 0.6898  | 21.12                       | 14.92                       | 4.272             | 241.6                       | 20.63                  |
| 0.9209  | 28.88                       | 14.99                       | 4.383             | 260.7                       | 21.46                  |
| 1.176   | 37.92                       | 15.06                       | 4.507             | 286.0                       | 22.67                  |
| 1.424   | 47.19                       | 15.19                       | 4.677             | 333.7                       | 25.18                  |
| 1 665   | 56 56                       | 15 31                       | 4 746             | 358.0                       | 26.73                  |
| 1 0 0 1 | 67 19                       | 15.47                       | 4 824             | 296.0                       | 20.10                  |
| 0.170   | 79.00                       | 15.47                       | 4.004             | 401.4                       | 20.10                  |
| 2.170   | 78.26                       | 15.64                       | 4.888             | 421.4                       | 30.96                  |
| 2.454   | 91.91                       | 15.92                       | 4.942             | 447.2                       | 32.93                  |
| 2.731   | 106.5                       | 16.22                       | 5.011             | 480.2                       | 35.63                  |
| 3.017   | 123.4                       | 16.64                       | 5.049             | 495.4                       | 36.97                  |
| 3.277   | 140.6                       | 17.09                       | 5.092             | 511.0                       | 38.45                  |
| 3.478   | 155.6                       | 17.52                       |                   |                             |                        |
|         |                             |                             |                   |                             |                        |
|         | 0                           | : Reed et al. (6)           | e : Karb          | anov et al. (8)             |                        |
|         |                             | - 1801 (5)<br>:Willbers (7) | A : Pres          | ent study                   |                        |
|         | 8                           |                             | : ASH             | RAE (13)                    |                        |
|         | - +4                        |                             |                   |                             |                        |
|         | <sup>8</sup> ≓ +2           | <u>``</u> ^a                |                   |                             |                        |
|         |                             |                             |                   |                             |                        |
|         |                             |                             |                   |                             |                        |
|         | × -4                        | • •                         | • • •             | • • • •                     |                        |
|         | ÷                           | 50 300                      | 350 4             | 400 450                     |                        |
|         | -                           |                             |                   |                             |                        |
|         |                             |                             | LNJ               |                             |                        |

| P, MPa | $\rho$ , kg·m <sup>-3</sup> | η, μPa·s       | P, MPa         | $\rho$ , kg·m <sup>-3</sup> | η, μPa·s |
|--------|-----------------------------|----------------|----------------|-----------------------------|----------|
|        |                             | 298.           | 15 K           |                             |          |
| 0.1029 | 2.833                       | 10.29          | 0.3420         | 10.26                       | 10.19    |
| 0.1033 | 2.843                       | 10.30          | 0.4203         | 12.91                       | 10.18    |
| 0.1735 | 4.887                       | 10.28          | 0.4949         | 15.65                       | 10.15    |
| 0.2658 | 7.729                       | 10.23          | 0.5614         | 18.28                       | 10.15    |
|        |                             | 000            |                |                             |          |
| 0 1011 | 0 507                       | 323.           | 15 K           | 17.04                       | 11.00    |
| 0.1011 | 2.031                       | 11.10<br>11.17 | 0.0201         | 20.05                       | 11.09    |
| 0.1014 | 2.343                       | 11.17          | 0.7302         | 20.90                       | 11.00    |
| 0.2477 | 6 404                       | 11.10          | 0.0404         | 29.01                       | 11.07    |
| 0.3417 | 9.013                       | 11.14          | 1.052          | 32.68                       | 11.05    |
| 0.4394 | 11.84                       | 11 10          | 1.123          | 35.41                       | 11.09    |
| 0.5400 | 14.93                       | 11.09          |                | ••••                        |          |
|        |                             | 0.40           |                |                             |          |
| 0 1010 | 0.050                       | 348.           | 10 K           | 01.90                       | 10.10    |
| 0.1016 | 2.303                       | 12.09          | 1.100          | 31.60                       | 12.10    |
| 0.1021 | 2.303                       | 12.09          | 1,209          | 20.01                       | 12.13    |
| 0.1957 | 4.390                       | 12.00          | 1.000          | 42.01                       | 12.15    |
| 0.4252 | 10.35                       | 12.07          | 1.400          | 42.33                       | 12.10    |
| 0.5390 | 13.36                       | 12.00          | 1.681          | 51.58                       | 12.22    |
| 0.6578 | 16.63                       | 12.07          | 1.781          | 55.99                       | 12.28    |
| 0.7818 | 20.18                       | 12.06          | 1.857          | 59.67                       | 12.33    |
| 0.8930 | 23.49                       | 12.06          | 1.876          | 60.61                       | 12.32    |
| 1.022  | 27.50                       | 12.08          | 1.951          | 64.39                       | 12.37    |
|        |                             | 070            | 15 V           |                             |          |
| 0 1023 | 2 205                       | 3/3.<br>1998   | 10 K<br>1 741  | 46 59                       | 13.95    |
| 0.1023 | 2.203                       | 12.90          | 1.741          | 40.02                       | 13.20    |
| 0.2585 | 5.676                       | 13.01          | 2 139          | 60.95                       | 13.42    |
| 0.4426 | 9.941                       | 13.00          | 2.326          | 68.59                       | 13.57    |
| 0.6379 | 14.68                       | 13.02          | 2.526          | 77.53                       | 13.71    |
| 0.8334 | 19.68                       | 13.04          | 2.700          | 86.25                       | 13.87    |
| 1.022  | 24.74                       | 13.06          | 2.912          | 98.32                       | 14.14    |
| 1.228  | 30.63                       | 13.10          | 3.121          | 112.5                       | 14.49    |
| 1.421  | 36.32                       | 13.12          | 3.259          | 123.4                       | 14.80    |
| 1.570  | 40.90                       | 13.18          | 3.368          | 134.0                       | 15.14    |
|        |                             | 398            | 15 K           |                             |          |
| 0.1018 | 2.051                       | 13.85          | 3.475          | 103.6                       | 15.35    |
| 0.1020 | 2.055                       | 13.86          | 3.702          | 114.8                       | 15.62    |
| 0.1696 | 3.389                       | 13.85          | 3.895          | 125.4                       | 15.97    |
| 0.3314 | 6.823                       | 13.85          | 4.088          | 137.4                       | 16.31    |
| 0.5988 | 12.65                       | 13.87          | 4.324          | 154.0                       | 16.93    |
| 0.8440 | 18.27                       | 13.90          | 4.522          | 170.4                       | 17.50    |
| 1.158  | 25.87                       | 13.97          | 4.666          | 184.5                       | 18.07    |
| 1.531  | 35.60                       | 14.08          | 4.806          | 200.8                       | 18.78    |
| 1.851  | 44.44                       | 14.16          | 4.885          | 211.0                       | 19.26    |
| 2.144  | 53.13                       | 14.29          | 4.958          | 221.7                       | 19.77    |
| 2.379  | 60.70                       | 14.42          | 5.021          | 232.2                       | 20.31    |
| 2.037  | 09.43<br>79.64              | 14.00          | 5.074          | 241.0                       | 20.78    |
| 3215   | 91.89                       | 15.06          | 5 165          | 261.5                       | 21.85    |
| 0.210  | 01.00                       | 10.00          | 0.100          | 201.0                       | 21.00    |
| 0.1015 | 1 000                       | 423.           | 15 K           | <b>E0.00</b>                | 15 50    |
| 0.1015 | 1.920                       | 14.73          | 2.962          | 70.69                       | 15.59    |
| 0.1018 | 1.920                       | 14.74          | 3.201          | 00.00                       | 10.79    |
| 0.1901 | 0.704<br>7 010              | 14.70          | 3.004<br>3.890 | 00 13<br>20'00              | 16.03    |
| 0.8041 | 12.06                       | 14.70          | 5.029<br>4 044 | 99.40<br>107 5              | 16.20    |
| 0.9108 | 18.29                       | 14.81          | 4.252          | 115 7                       | 16.72    |
| 1.211  | 24.91                       | 14.87          | 4.452          | 124.2                       | 16.98    |
| 1.520  | 32.06                       | 14.95          | 4.644          | 132.8                       | 17.23    |
| 1.819  | 39.34                       | 15.07          | 4.832          | 141.6                       | 17.56    |
| 2.085  | 46.18                       | 15.15          | 5.012          | 150.5                       | 17.88    |
| 2.387  | 54.14                       | 15.28          | 5.175          | 158.9                       | 18.17    |
| 2.686  | 62.53                       | 15.41          | 5.282          | 164.9                       | 18.38    |

which were determined by the present authors using the density data are given in Table II and III for R13B1 and R142b.

P =

$$\begin{array}{l} RT\rho + (B_0RT - A_0 - C_0/T^2 + D_0/T^3 - E_0/T^4)\rho^2 + \\ (bRT - a - d/T - e/T^4 - f/T^{23})\rho^3 + \alpha(a - d/T + \\ e/T^4 + f/T^{23})\rho^6 + \\ (c/T^2 + g/T^8 + h/T^{17})\rho^3(1 + \gamma\rho^2) \exp(-\gamma\rho^2) \ (3) \end{array}$$

Figure 8. Deviations of the experimental viscosity values of gaseous R13B1 at atmospheric pressure from eq 1.

The density values used in eq 2 are calculated conveniently by use of the following equation of state (14), the constants in

Table V. Constants in Eq 1 and Deviations of the Experimental Viscosity Values at Atmospheric Pressure from Those Calculated by Eq 1

|                                         |                                                                               | <b>-</b>                                                                                                   |                                                                                                         |
|-----------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|                                         | R13B1                                                                         | R142b                                                                                                      | R152a                                                                                                   |
| $a_1$ $a_2$ $T range, K$ $n^a$ $devn^b$ | $5.47521 \times 10^{-2}$<br>-9.74815 × 10 <sup>-6</sup><br>273.15-423.15<br>8 | $\begin{array}{c} 3.63417 \times 10^{-2} \\ -3.22163 \times 10^{-6} \\ 298.15 \\ -423.15 \\ 6 \end{array}$ | $\begin{array}{c} 3.38791 \times 10^{-2} \\ 2.32458 \times 10^{-6} \\ 298.15 - 423.15 \\ 6 \end{array}$ |
| av<br>bias<br>max                       | 0.12<br>+0.03<br>0.20                                                         | 0.04<br>+0.03<br>0.11                                                                                      | 0.11<br>-0.03<br>0.19                                                                                   |

<sup>a</sup>n = number of data. <sup>b</sup>Deviation, av =  $100\sum\{|\eta_{exptl} - \eta_{calcd}|/\eta_{calcd}/n$ . Deviation, bias =  $100\sum\{(\eta_{exptl} - \eta_{calcd})/\eta_{calcd}/n$ . Deviation, max = maximum of  $100|\eta_{exptb} - \eta_{calcd}|/\eta_{calcd}$ .

Table VI. Force constants of Stockmayer 12-6-3 Potential and Deviations of the Experimental Viscosity Values at Atmospheric Pressure from the Theory (12)

|                      | R13B1 | R142b | R152a |  |
|----------------------|-------|-------|-------|--|
| <br>$\epsilon/k, K$  | 235   | 362   | 312   |  |
| $\sigma$ , nm        | 0.506 | 0.499 | 0.463 |  |
| δ                    | 0.058 | 0.36  | 0.62  |  |
| $n^a$                | 8     | 6     | 6     |  |
| devn, <sup>ø</sup> % |       |       |       |  |
| av                   | 0.12  | 0.33  | 0.44  |  |
| bias                 | -0.02 | +0.01 | +0.02 |  |
| max                  | 0.24  | 0.73  | 0.77  |  |
|                      |       |       |       |  |

 ${}^{a}n$  = number of data.  ${}^{b}$  Definition of deviations is the same as in Table V.

Table VII. Constants in Eq 2

|               | R13B1                     | R142b                     | R152a                     |
|---------------|---------------------------|---------------------------|---------------------------|
| $b_{01}$      | $5.50785 \times 10^{-2}$  | $4.20227 \times 10^{-2}$  | $3.46108 \times 10^{-2}$  |
| $b_{02}$      | $-1.11377 \times 10^{-5}$ | $-3.33786 \times 10^{-5}$ | $3.25497 \times 10^{-7}$  |
| $b_{03}$      | 0                         | $3.93484 \times 10^{-8}$  | 0                         |
| $b_{10}$      | $-3.49981 \times 10^{-2}$ | $-7.50116 \times 10^{-2}$ | $-2.47301 \times 10^{-1}$ |
| $b_{11}^{20}$ | $1.74849 \times 10^{-4}$  | $3.16220 \times 10^{-4}$  | $1.19717 \times 10^{-3}$  |
| $b_{12}^{11}$ | $-1.74610 \times 10^{-7}$ | $-3.00990 \times 10^{-7}$ | $-1.41875 \times 10^{-6}$ |
| $b_{20}^{12}$ | $3.52934 \times 10^{-5}$  | $7.99536 \times 10^{-5}$  | $1.01762 \times 10^{-4}$  |
|               |                           |                           |                           |

Table VIII. Deviations of the Experimental Viscosity Values from Those Calculated by Eq 2

| temp   | P range | a range.           |       |      | devn, <sup>b</sup> % |      |  |  |  |  |
|--------|---------|--------------------|-------|------|----------------------|------|--|--|--|--|
| K      | MPa     | kg•m <sup>−3</sup> | $n^a$ | av   | bias                 | max  |  |  |  |  |
|        | R13B1   |                    |       |      |                      |      |  |  |  |  |
| 273.15 | 0.7     | 53                 | 8     | 0.22 | -0.16                | 0.38 |  |  |  |  |
| 298.15 | 1.55    | 126                | 17    | 0.17 | -0.15                | 0.29 |  |  |  |  |
| 323.15 | 2.57    | 223                | 16    | 0.10 | +0.02                | 0.21 |  |  |  |  |
| 348.15 | 4.22    | 460                | 26    | 0.09 | +0.05                | 0.27 |  |  |  |  |
| 373.15 | 5.83    | 566                | 29    | 0.18 | +0.08                | 0.36 |  |  |  |  |
| 398.15 | 7.12    | 554                | 27    | 0.12 | +0.06                | 0.41 |  |  |  |  |
| 423.15 | 8.62    | 572                | 28    | 0.13 | -0.03                | 0.39 |  |  |  |  |
| 448.15 | 9.85    | 561                | 29    | 0.11 | +0.03                | 0.31 |  |  |  |  |
|        |         | R14                | 2b    |      |                      |      |  |  |  |  |
| 298.15 | 0.28    | 12                 | 6     | 0.41 | -0.41                | 0.60 |  |  |  |  |
| 323.15 | 0.62    | 27                 | 10    | 0.16 | -0.10                | 0.49 |  |  |  |  |
| 348.15 | 1.14    | 51                 | 13    | 0.10 | +0.10                | 0.24 |  |  |  |  |
| 373.15 | 1.89    | 88                 | 18    | 0.09 | +0.00                | 0.29 |  |  |  |  |
| 398.15 | 3.20    | 187                | 20    | 0.15 | -0.04                | 0.39 |  |  |  |  |
| 423.15 | 5.09    | 511                | 29    | 0.17 | -0.07                | 0.62 |  |  |  |  |
|        |         | <b>R</b> 15        | 2a    |      |                      |      |  |  |  |  |
| 298.15 | 0.56    | 18                 | 8     | 0.20 | +0.16                | 0.68 |  |  |  |  |
| 323.15 | 1.12    | 35                 | 13    | 0.17 | -0.10                | 0.43 |  |  |  |  |
| 348.15 | 1.95    | 64                 | 20    | 0.09 | +0.00                | 0.23 |  |  |  |  |
| 373.15 | 3.37    | 134                | 20    | 0.17 | +0.03                | 0.67 |  |  |  |  |
| 398.15 | 5.17    | 262                | 28    | 0.28 | -0.26                | 0.34 |  |  |  |  |
| 423.15 | 5.28    | 165                | 24    | 0.19 | -0.09                | 0.42 |  |  |  |  |
|        |         |                    |       |      |                      |      |  |  |  |  |

 ${}^{a}n$  = number of data.  ${}^{b}$  Definition of deviations is the same as in Table V.

The units of *P*, *T*, and  $\rho$  in eq 3 are atm, K, and mol·L<sup>-1</sup>, respectively. Constants in eq 3 are given in Table IX, and



Figure 9. Deviations of the literature viscosity values of R13B1 from eq 2.

| Table | IX. | Constants | in | Eq | 3 |
|-------|-----|-----------|----|----|---|
|-------|-----|-----------|----|----|---|

|       | _                           |                             |  |
|-------|-----------------------------|-----------------------------|--|
|       | R13B1                       | R142b                       |  |
| $A_0$ | 2.2767733                   | 5.1911889                   |  |
| $B_0$ | $3.6079451 \times 10^{-2}$  | $1.0857300 \times 10^{-1}$  |  |
| $C_0$ | $1.0169748 \times 10^{6}$   | $1.8166956 \times 10^{6}$   |  |
| $D_0$ | $1.4895405 \times 10^{8}$   | $1.7744227 \times 10^{8}$   |  |
| $E_0$ | $8.6656266 \times 10^{9}$   | $5.9726111 \times 10^{9}$   |  |
| a     | 1.4029387                   | 2.3033661                   |  |
| Ь     | $2.9431270 \times 10^{-2}$  | $3.2457400 \times 10^{-2}$  |  |
| с     | $9.5090836 \times 10^4$     | $2.7865687 \times 10^{5}$   |  |
| d     | $-1.3073586 \times 10^{2}$  | $-2.4298043 \times 10^{2}$  |  |
| е     | $2.8918960 \times 10^{8}$   | $3.8007168 \times 10^{8}$   |  |
| f     | $1.0115291 \times 10^{38}$  | $-4.5621683 \times 10^{48}$ |  |
| g     | $-3.3200057 \times 10^{14}$ | $-6.8531196 	imes 10^{16}$  |  |
| ĥ     | $-2.3494151 \times 10^{31}$ | $-7.6400906 \times 10^{33}$ |  |
| α     | $4.5958429 \times 10^{-4}$  | $7.4438000 \times 10^{-4}$  |  |
| γ     | $2.1169121 \times 10^{-2}$  | $2.5041108 \times 10^{-2}$  |  |
|       |                             |                             |  |

Table X. Deviations of the Experimental Density Values from Those Calculated by Eq 3

| temp.  | P range. | o range.           |       |      | devn, <sup>b</sup> % |      |
|--------|----------|--------------------|-------|------|----------------------|------|
| ĸ      | MPa      | kg•m <sup>−3</sup> | $n^a$ | av   | bias                 | max  |
|        |          | R13I               | 31    |      |                      |      |
| 273.15 | 0.7      | 53                 | 8     | 0.56 | -0.56                | 1.12 |
| 298.15 | 1.55     | 126                | 17    | 0.57 | -0.57                | 1.41 |
| 323.15 | 2.57     | 223                | 16    | 0.55 | -0.55                | 1.01 |
| 348.15 | 4.22     | 460                | 26    | 0.59 | -0.56                | 2.00 |
| 373.15 | 5.83     | 566                | 29    | 0.30 | -0.18                | 0.88 |
| 398.15 | 7.12     | 554                | 27    | 0.16 | -0.11                | 0.46 |
| 423.15 | 8.62     | 572                | 28    | 0.22 | +0.22                | 0.42 |
| 448.15 | 9.85     | 561                | 29    | 0.25 | +0.20                | 0.57 |
| R142b  |          |                    |       |      |                      |      |
| 298.15 | 0.28     | 12                 | 6     | 0.13 | -0.13                | 0.37 |
| 323.15 | 0.62     | 27                 | 10    | 0.17 | +0.17                | 0.81 |
| 348.15 | 1.14     | 51                 | 13    | 0.38 | +0.30                | 1.45 |
| 373.15 | 1.89     | 88                 | 18    | 0.75 | +0.75                | 1.56 |
| 398.15 | 3.20     | 187                | 20    | 0.94 | +0.80                | 1.72 |
| 423.15 | 5.09     | 511                | 29    | 1.85 | +1.38                | 5.51 |

<sup>a</sup>n = number of data. <sup>b</sup>Deviation, av =  $100\sum \{|\rho_{exptl} - \rho_{calcd}|/\eta_{calcd}\}/n$ . Deviation, bias =  $100\sum \{(\eta_{exptl} - \eta_{calcd})/\eta_{calcd}\}/n$ . Deviation, max = maximum of  $100|\eta_{exptl} - \eta_{calcd}|/\eta_{calcd}$ .

deviations of the experimental density values from those calculated by eq 3 are shown in Table X. The equation of state for R152a has not been obtained. Therefore, the density of R152a should be interpolated by using the density data given in Table IV.

### Glossary

 $A_0, B_0$ , constants in eq 3

- C<sub>0</sub>,
- D<sub>0</sub>,
- E<sub>0</sub> pressure, MPa or atm
- P pressure, MPa or atm R gas constant (=0.0820568 L•atm•K<sup>-1</sup>•mol<sup>-1</sup>)
- T temperature, K
- a constant in eq 3
- $a_i$  constant in eq 1 (i = 1, 2)
- b constant in eq 3

103

| b <sub>i</sub>  | constants in eq 2 ( $i = 0, 1, 2$ )                                              |
|-----------------|----------------------------------------------------------------------------------|
| b <sub>oi</sub> | constants in eq 2.1 ( $i = 1, 2, 3$ )                                            |
| b 1/            | constants in eq 2.2 ( $i = 0, 1, 2$ )                                            |
| b 20            | constant in eq 2.3                                                               |
| c, d, e,        | constants in eq 3                                                                |
| f,g,            |                                                                                  |
| h               |                                                                                  |
| k               | Boltzmann constant (= $1.380622 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$ ) |
| α, γ            | constants in eq 3                                                                |
| δ               | force constant of Stockmayer 12-6-3 potential                                    |
| £               | force constant of Stockmayer 12-6-3 potential, J                                 |
| η               | viscosity, µPa·s                                                                 |
| $\eta_1$        | viscosity at atmospheric pressure, µPa·s                                         |
| ρ               | density, kg·m <sup>-3</sup>                                                      |
| σ               | force constant of Stockmayer 12-6-3 potential, nm                                |
| Registry        | No. R13B1, 75-63-8; R142B, 75-68-3; R152A, 75-37-6.                              |
|                 |                                                                                  |

# Literature Cited

(1) Takahashi, M.; Takahashi, S.; Iwasaki, H. Kagaku Kogaku Ronbunshu 1983, 9, 482.

- (2) Takahashi, M.; Takahashi, S.; Iwasaki, H. Kagaku Kogaku Ronbunshu 1984. 10.
- Takahashi, M.; Takahashi, S.; Iwasaki, H. J. Chem. Eng. Data 1985, (3) 30. 10.
- (4) Takahashi, M.; Yokoyama, C.; Takahashi, S. Kagaku Kogaku Ronbunshu 1985, 11, 155. Tsui, C. Y. M. S. Thesis, Purdue University, West Lafayette, IN, 1958. (5)
- (6) Reed, J. F.; Rabinovitch, B. S. J. Chem. Eng. Data 1958, 2, 75.
   (7) Wilbers, O. J. M. S. Thesis, Purdue University, West Lafayette, IN,
- 1961. (8)
- Karbanov, E. M.; Geller, V. Z. Neft' i Gaz 1974, No. 11, 22, 104. Kletskii, A. V.; Sagaidakova, N. G.; Tsuranova, T. N. Thermophysical (9) Properties of Substances and Materials; Izd-vo Standartov: Moscow, 1978; Vol. 12, p 18.
- (10) Iwasaki, H.; Takahashi, M. Proceedings of the 4th Conference on High Pressure, Kyoto 1974; Physicochemical Society of Japan: Kyoto, 1974; p 523.
- Monchick, L.; Mason, E. A. J. Chem. Phys. 1961, 35, 1676.
- (12) Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids; Wiley: New York, 1954, p 528. (13) Thermophysical Properties of Refrigerants; American Society of Heat-
- ing, Refrigerating, and Air-Conditioning Engineers, Inc.: New York, 1976; p 17.
- (14) Nishiumi, H. J. Chem. Eng. Jpn. 1980, 13, 178.

Received for review May 12, 1986. Accepted August 29, 1986. We thank the Dalkin Kogyo Co. for supplying the samples.

# Infinite-Dilution Activity Coefficients for Alkanals, Alkanoates, Alkanes, and Alkanones in 4-Methyl-2-pentanone

#### David W. Arnold,\* Robert A. Greenkorn, and Kwang-Chu Chao

School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907

Infinite-dilution activity coefficients are determined in a gas-liquid partition chromatograph for three alkanais, two alkanoates, four alkanes, and three alkanones in 4-methyl-2-pentanone (MIBK) as the stationary phase. The three temperatures observed are 55, 75, and 115 °C with column operating pressures up to 7.0 atm. The measured values are compared to those from two group contribution methods.

Activity coefficients are a fundamental thermodynamic property of liquid mixtures. They provide a measure of the deviation from ideality of a component's behavior in a mixture. Activity coefficients at infinite dilution ( $\gamma_A^{\infty}$ ) are important because solution effects are usually at a maximum at infinite dilution. Data are reported in this work for 12 solutes in the stationary phase 4-methyl-2-pentanone (MIBK) at 55, 75, and 115 °C, with the column pressures from 4.5 to 7.0 atm. The solutes are alkanals, alkanoates, alkanes, and alkanones. Additionally benzene is studied for comparison with literature values.

The experimental apparatus, procedure, and data reduction have been described (1-3). The chemicals used are presented in Table I. To check our experiment at the two higher temperatures of interest, we determined data in the solvent of this work for comparison with data in the literature. Table II shows that the present result is practically identical with the literature value for the first and last points. The divergence of the second point seems not excessive in view of the extrapolation that has to be made on the literature data.

\* Address correspondence to this author at the following address: Department of Chemical Engineering, P.O. Drawer G, University, AL 35486.

| Ladie I. Unemicals Used in Experimental wor | fable I. | Chemicals | Used | in | Experimental | Worl |
|---------------------------------------------|----------|-----------|------|----|--------------|------|
|---------------------------------------------|----------|-----------|------|----|--------------|------|

| compound                        | source                            | purity                      |
|---------------------------------|-----------------------------------|-----------------------------|
| helium                          | Airco (purified,<br>Grade 4.5)    | 99.995                      |
| argon                           | Airco (prepurified,<br>Grade 4.8) | 99.998                      |
| <i>n</i> -propanal              | Fluka AG, Buchs<br>SG             | >99%                        |
| <i>n</i> -butanal               | Eastman                           | research grade              |
| <i>n</i> -pentanal              | Aldrich                           | 99%                         |
| ethyl ethanoate                 | Fluka AG, Buchs<br>SG             | spectrophotometric<br>grade |
| ethyl propanoate                | Fluka AG, Buchs<br>SG             | >99%                        |
| <i>n</i> -hexane                | Aldrich                           | spectrophotometric<br>grade |
| <i>n</i> -heptane               | Aldrich                           | 99+%                        |
| 2,2,4-trimethyl-<br>pentane     | Fluka AG, Buchs<br>SG             | spectrophotometric<br>grade |
| n-octane                        | Phillips                          | 99.5% by GC                 |
| 2-propanone                     | Fisher                            | 99.5%                       |
| 2-butanone                      | Baker                             | 99.8%                       |
| 2-pentanone                     | Aldrich                           | 97%                         |
| 4-methyl-2-<br>pentanone (MIBK) | Aldrich                           | 99.5%                       |
| benzene                         | Mallinckrodt                      | spectrophotometric grade    |

Each of Tables III, IV, and V presents the new results at one temperature of this work. For each solute we show  $V_{o}^{\infty}$ ,  $K_{A}^{\infty}, P_{A}^{0}, \phi_{A}^{0}$ , Poynting term,  $\phi_{A}$ , and finally  $\gamma_{A}^{\infty}$ . The specific retention volume,  $V_g$ , is defined as the volume of gas, measured at the column temperature and pressure, needed to elute one-half of the solute from a GLPC column containing 1 g of the liquid stationary phase. This definition assumes that the peaks are symmetrical. The K value is  $K_A = y_A/x_A$ , where  $y_A$ and x<sub>A</sub> are the mole fractions of the solute A in the vapor and