- (21) LoSurdo, A.; Millero, F. J. *J. Solution Chem.* **1980**, *9*, 163.
 (22) Spedding, F. H.; Saeger, V. W.; Gray, K. A.; Boneou, P. K.; Brown, M. A.; Dekock, C. W.; Baker, J. L.; Shlers, L. E.; Weber, H. O.; Haben-schuss, A. J. Chem. Eng. Data 1975, 20, 72.
 (23) Spedding, F. H.; Shiers, L. E.; Brown, M. A.; Derer, J. L.; Swanson, D.
- L.; Habenschuss, A. J. Chem. Eng. Data 1975, 20, 82. (24) Söhonel, O.; Novotny, P.; Solc, Z. J. Chem. Eng. Data 1984, 29,
- 379.
- (25) Romankiw, L. A.; Chou, I-Ming J. Chem. Eng. Data 1983, 28, 300.
- (26) Gates, J. A.; Wood, R. H.J. Chem. Eng. Data 1985, 30, 44.
 (27) Ackerlof, G.; Kegeles, G. J. Am. Chem. Soc. 1938, 60, 1226.
 (28) Hershey, J. P.; Damesceno, R.; Millero, F. J. J. Solution Chem. 1984,
- 13, 825. (29) Vaslow, F. J. Phys. Chem. 1966, 70, 2286.
- (30) Fortier, J. L.; LeDuc, P. A.; Desnoyers, J. E. J. Solution Chem. 1974, 3. 323.
- (31) Isono, T. J. Chem. Eng. Data. 1984, 29, 45.
 (32) Kumar, A. J. Solution Chem. 1986, 15, 409.

- (33) Kumar, A. J. Chem. Eng. Data 1986, 31, 347.
 (34) Ackerlof, G.; Kegeles, G. J. Am. Chem. Soc. 1939, 61, 1027.

- (35) Tham, M. K.; Gubbins, K. E.; Walker, Jr., R. D. J. Chem. Eng. Data 1965, 12, 525.
- (36) LoSurdo, A.; Alzola, M.; Millero, F. J. J. Chem. Thermodyn. 1982, 14. 649. (37) Correla, R. J; Kestin, J.; Ezzat Khalifa, H. J. Chem. Eng. Data 1980,
- *25*, 201. (38) Hershey, J. P.; Satolongo, S.; Millero, F. J. J. Solution Chem. 1983, 12, 233
- Correla, R. J.; Kestin, J. J. Chem. Eng. Data 1981, 26, 43.
- (40) Fabuss, B. M.; Korosi, A.; Huq, A. K. M. J. Chem. Eng. Data 1966, 11, 325.
- (41) Habenschuss, A.; Spedding, F. H. J. Chem. Eng. Data 1976, 21, 95. (42) Gildseth, W. M.; Habenschuss, A.; Spedding, F. H. J. Chem. Eng. Data 1975, 20, 292.
- (43) Wakabayashi, T.; Takaizumi, K. J. Solution Chem. 1982, 11, 565. (44) Takaizumi, K.; Wakabayashi, T. J. Solution Chem. 1980, 9, 809.

Received for review February 6, 1986. Revised June 19, 1986. Accepted July 23, 1986.

Volume Properties of Aqueous Electrolytes. 2. Application of the Pitzer Model in Estimating Apparent Molal Compressibility and Expansibility

Anil Kumar

Institute of Physical Chemistry and Electrochemistry, University of Karlsruhe, D 7500 Karlsruhe, Federal Republic of Germany

The Pitzer model of virial coefficients is applied to the apparent molal compressibility and expansibility of aqueous single electrolyte solutions. Pitzer coefficients for several electrolyte solutions are given in the form of temperature-dependent equations. Also, these coefficients are applied for estimating the above properties in aqueous mixed electrolytes. The Pitzer equations can predict these properties with excellent accuracy.

Introduction

The Pitzer equations are proving to be very useful in estimating various thermodynamic properties of aqueous single and mixed electrolytes (1, 2). In our attempts to understand better their utility in predicting volume properties of electrolytic solutions, we (3) recently successfully fitted the apparent molal volumes of several single electrolytes and presented the Pitzer coefficients. We now apply these equations for estimating apparent molal compressibility ϕ_{K} and expansibility ϕ_{E} of single electrolytes. The Pitzer coefficients obtained from the singleelectrolyte analysis are used for calculating these properties in mixtures.

Pitzer Equations

The details of the Pitzer equations are given elsewhere (4). For immediate use, the system of Pitzer equations is given below. Since the equations used for $\phi_{\rm K}$ and $\phi_{\rm E}$ are analogous, we give them for general property ϕ . Apparent molal property of a single electrolyte $M_{\nu_{\mu}}X_{\nu_{\mu}}$ as a function of concentration m (mol kg⁻¹) is

$$\phi = \phi^{0} + \nu |Z_{M}Z_{X}|(A/2b) \ln (1 + bI^{1/2}) + 2\nu_{M}\nu_{X}RT [mB_{MX} + m^{2}(\nu_{M}\nu_{X})^{1/2}C_{MX}]$$
(1)

where

$$B_{\rm MX} = \beta_{\rm MX}^{(0)} + 2\beta_{\rm MX}^{(1)} / \alpha^2 I \left[1 - (1 + \alpha I^{1/2}) e^{-\alpha I^{1/2}} \right]$$
(2)

$$C_{\rm MX} = C_{\rm MX}^{\phi}/2 \tag{3}$$

Note that for $\phi_{\rm K}$, terms $\beta_{\rm MX}^{(0)}$ and $\beta_{\rm MX}^{(1)}$ are $(\partial^2\beta/\partial P^2)$ and $(\partial^2 \beta / \partial P^2)$, respectively. For $\phi_{\rm E}$, they are $(\partial^2 \beta^{(0)} / \partial P \partial T)$ and $(\partial^2 \beta^{(1)} / \partial P \partial T)$, respectively. Similarly, in eq 3, $(\partial^2 C^{\phi} / \partial P^2)_T$ and $(\partial^2 C^{\phi} / \partial P \partial T)$ are for $\phi_{\rm K}$ and $\phi_{\rm E}$, respectively. Terms $\beta_{\rm MX}^{(0)}$, $\beta_{\rm MX}^{(1)}$, and C_{MX}^{ϕ} are the Pitzer coefficients. A, the Pitzer-Debye-Hückel slope, can be taken from elsewhere (5-7). ϕ^0 , apparent molal compressibility or expansibility at infinite dilution, is equal to the partial molal compressibility or expansibility at infinite dilution.

Any of the Pitzer coefficients may be fitted with the temperature-dependent equation of the form

$$Y = A + BT + CT^2 \tag{4}$$

where A, B, and C are the coefficients.

Apparent molal property of an ion in mixture, ϕ_i , is given by

$$\phi_{i} = \phi_{i}^{0} + (Z_{i}A/2b) \ln (1 + bI^{1/2}) + RT \sum_{i} B_{ij}m_{j} + (RT/2|Z_{i}|^{1/2}) \sum_{i} C_{ij}m_{j}^{2}|Z_{j}|^{1/2} + RT \sum_{k} \theta_{k}m_{k}$$
(5)

in eq 5, the last term on the right-hand side expresses the mixing term recognizing explicitly the interactions among likecharged ions. θ_{ik} is the difference parameter and can be evaluated from the experimental ϕ and ϕ obtained from eq 5 minus last term. One notes that last term has the sum over k ions with the same charge ions and over i with the opposite charge ions. The equation for calculating θ_{ik} is

$$\theta_{\rm lk} = \frac{\Delta \phi^*(m_1 + m_2)}{RTm_1m_2(\nu_1 + \nu_k)} \tag{6}$$

where m_1 and m_2 are molalities of the electrolytes whose cations are under consideration for interactions and v_i and v_k are the moles of i and k in their respective electrolytes.

The calculated ϕ_1 is converted to ϕ^* by using the relation

$$\phi^* = \frac{\sum_{J} m_{J} \phi_{J}}{\sum_{J} m_{J}}$$
(7)

where $\phi_{ij} = \sum_{i} \nu_i \phi_i$.

0021-9568/87/1732-0109\$01.50/0 © 1987 American Chemical Society

- 1/0

Table I. Pitzer Coefficients for $\phi_{\rm K}$ of Aqueous Single Electrolytes at 25 °C

	$(\partial^2 \beta^{(0)} /$	$(\partial^2 \beta^{(0)} /$	$(\partial^2 C^{\phi})$	$\sigma(\phi_{\rm K}) \times 10^4$, cm ³
electrolytes	∂P_2 × 10 ⁸	∂P^2) × 10 ⁸	∂P^2 × 10 ⁹	mol ⁻¹ bar ⁻¹
KCl (20) ^a	4.5	1.34	-1.93	0.05
KBr (21)	4.0	0.825	-0.968	0.04
NaBr (20)	8.4	0.930	-0.894	0.08
RbCl (20)	6.1	1.30	-1.79	0.10
CsCl (20)	9.3	1.08	-1.12	0.10
CsBr (20)	4.7	1.45	-2.99	0.09
CsI (20)	2.2	1.19	-4.02	0.05
$MnSO_4$ (22)	1.1	15.17	-133.7	0.18
$CoSO_4$ (22)	1.0	17.07	-164.7	0.10
$NiSO_4$ (22)	0.9	17.82	-181.0	0.10
$ZnSO_4$ (22)	1.0	16.98	-166.2	0.09
$CdSO_4$ (22)	0.8	17.19	-194.1	0.09
LaCl ₃ (23)	0.8	7.51	-46.36	0.16

^a Number in parentheses indicates the reference source of data.

General Equations

Experimental sound velocities u from the literature can be converted into adiabatic compressibility β as

$$\beta = 1/u^2 d \tag{8}$$

 β is then used to estimate the apparent molal compressibility $\phi_{\rm K}$ as

$$\phi_{\kappa} = \frac{1000(\beta d_0 - \beta_0 d)}{m d d_0} + \frac{\beta M}{d}$$
(9)

where β_0 and d_0 are the adiabatic compressibility and the density of pure water, taken from elsewhere (8, 9).

Mean apparent molal compressibility of the mixture ϕ_{κ} * can be calculated from

$$\phi_{\kappa}^{*} = \frac{1000(\beta^{*}d_{0} - \beta_{0}d^{*})}{\sum_{J}m_{J}d^{*}d_{0}} + \frac{\sum_{J}\beta_{J}M_{J}}{\sum_{J}m_{J}d^{*}}$$
(10)

The experimental $\phi_{\rm E}$ and $\phi_{\rm E}^*$ can be obtained from the slope of $\phi_{\rm V}$ or $\phi_{\rm V}^*$, the apparent molal volume of a single or mixed aqueous electrolytes. This is discussed in detail in our earlier work (4).

Results and Discussion

Single Electrolytes. We used the literature data on apparent molal compressibility and expansibility of single-electrolyte solutions in order to generate the Pitzer coefficients using eq 1 to 3. Following our earlier work (3) and that of Rogers and

Figure 1. $\Delta \phi_{\rm K}$ (experimental $\phi_{\rm K}$ – calculated $\phi_{\rm K}$) against m. \bullet , NaBr, 25 °C, ref 20; O, CsCl, 25 °C, ref 20; Δ , RbCl, 25 °C, ref 20; Δ , Na₂CO₃, 45 °C, ref 26; \blacksquare , MgCl₂, 35 °C, ref 31.

Figure 2. $\Delta \phi_{\rm E}$ (experimental $\phi_{\rm E}$ – calculated $\phi_{\rm E}$) against m. \bullet , NaBr, 50 °C, ref 29; O, HCl, 40 °C, ref 27; Δ , KCl, 35 °C, ref 11; \blacktriangle , PrCl₃, 75 °C, ref 34; \Box , NdCl₃, 25 °C, ref 34; \blacksquare , LaCl₃, 50 °C, ref 34; *, MgCl₂, 25 °C, ref 31.

Pitzer (6), we fitted the entire array of the data without $\beta_{\rm MX}^{(1)}$ term for both the properties with good degree of accuracy. Table I lists the Pitzer coefficients for $\phi_{\rm K}$ of the single electrolytes at 25 °C together with the standard deviation (σ). Similarly, Table II lists the temperature dependence of the Pitzer coefficients as calculated by eq 4 for $\phi_{\rm K}$ of those electrolyte solutions for which $\phi_{\rm K}$ were known at more than three temperatures. Both the tables include the molality range used in the fits and source of experimental data. Figure 1 shows the difference (Δ) between the experimental and the predicted $\phi_{\rm K}$ as a function of molality. The fits were random throughout and the average standard deviation of the is 0.9×10^{-4} cm³ mol⁻¹ bar⁻¹ with slightly higher σ for sulfates. Carpio et al. (10) have recently measured the adiabatic compressibilities of aqueous

Table II. Temperature Dependence of Pitzer Coefficients for $\phi_{\mathbf{K}}$ of Aqueous Single Electrolytes $(\mathbf{F} = (\partial^2 \beta^{(0)} / \partial P^2), S = (\partial^2 C^{\phi} / \partial P^2))$

electrolyte, temp range, °C, $m_{\rm max}$, mol kg ⁻¹	term	10 ⁸ A	$10^{10}B$	$10^{12}C$	$10^4 \sigma(\phi_{ m K}), \ { m cm}^3 \ { m mol}^{-1} \ { m K}^{-1}$
HCl (24), ^a 0-45, 1.0	F	9.29	-3.37	1.22	0.03
	S	-9.91	6.87	-1.29	
NaOH (24), 0-45, 1.0	F	-105.1	754	-13.0	0.03
	S	73.33	-51.1	8.75	
Na ₂ SO ₄ (25), 0-50, 1.5	F	29.3	-7.77		0.18
	S	-8.39	2.16		
MgSO ₄ (25), 0–50, 2.2	F	225.1	-135.1	21.6	0.19
	s	-128.2	82.3	-13.5	
MgCl ₂ (25), 0–50, 5.2	F	10.96	3.08		0.09
	S	-1.434	0.410		
NaHCO ₃ (26), 0–50, 1.0	\mathbf{F}	14.4	-3.15		0.09
	S	73.4	-53.7	9.39	
Na ₂ CO ₃ (26), 0–50, 1.0	\mathbf{F}	230.4	-140.0	22.0	0.18
	S	-113.1	68.9	-10.9	

^a Number in parentheses indicates the reference source of data.

Table III. Temperature Dependence of Pitzer Coefficients for $\phi_{\rm E}$ of Aqueous Single Electrolytes ($F = (\partial^2 \beta^{(0)} / \partial P \partial T)$), $S = (\partial^2 C^{\circ} / \partial P \partial T)$)

electrolyte,					$10^2 \partial(\phi_{\rm E}),$
temp range, °C,					cm ³ mol ⁻¹
$m_{\rm max}$, mol kg ⁻¹	term	$10^{5}A$	$10^{8}B$	10^9C	K-1
HCl (24, 27, 28), ^a 0-75,	F	-4.79	29.49	-0.453	0.01
3.0	s	1.190	-7.34	0.113	
HBr (27), 25-75	S	0.443	-2.77	0.043	
3.0	S	0.443	-2.77	0.043	
HI (27), 25-75, 3.0	F	-1.41	8.69	-0.1.35	0.02
,	S	0.9330	-1.99	0.031	
HClO ₄ (27), 25-75, 3.0	F	-14.46	89.52	-1.39	0.03
	S	14.06	-90.80	1.47	
NaBr (29), 15-55, 8.0	F	-2.05	12.23	-0.184	0.07
	S	0.151	-0.867	0.012	
	s	0.151	-0.867	-0.012	
NaNO ₂ (29), 15-55, 8.0	F	-3.99	24.17	-0.367	0.10
	ŝ	0.585	-35.59	0.054	0120
NaOH (24, 30), 0-70.	Ĩ	5.23	-10.34	1.35	0.08
25.0	ŝ	-10.25	6 35	1.00	0.00
Ne ₂ SO ₄ (37), 0-50, 1.5	F	-0.368	3 44	-0.080	0.01
1,42,004 (01), 0 00, 1.0	ŝ	-0.024	0.378	-0.011	0.01
KBr (29) 15-55 4.0	F	-619	38 75	-0.608	0.07
101 (20), 10 00, 40	ŝ	1 76	-11 94	0.000	0.01
KNO ₂ (29) 15–55 4 0	F	-8.12	51.99	-0.835	0.05
111103 (20); 10 00 1.0	ŝ	3.87	-25.10	0.000	0.00
$M_{\rm ff}Cl_{\rm c}$ (11 29 31)	Б Г	-0.144	-20.10	_0.403	0.15
0-55 5 2	S	_0.144	0.000	-0.033	0.15
S_{rCl} (29) 15-55 2.5	F	-19.7	87.9	0.014	0.17
51012 (20), 10 00, 2.0	ŝ	3.88	-24.8	0.014	0.17
BeCl. (29) 15-55 15	F	-16 1	101.0	-1 50	0.15
Bach ₂ (20), 10 55, 1.5	г С	8.050	50.16	0.794	0.15
MaSO (31) 0-508 2.2	5 F	-1.51	-30.10	0.764	0.09
$MgSO_4$ (51), 0-508, 2.2	r S	-1.51	1 02	-0.141	0.08
Cd(NO) (29, 22)	5 F	-0.481	1.92	-0.001	0.08
15-85 12.0	r c	-0.03	41.4	-0.049	0.08
SmC1 (22) 0-20 25	о Г	1.02	0.30	0.099	0.15
$SIIICI_3(33), 0=80, 3.5$	r C	-2.18	12.0	-0.190	0.15
CdC1 (22) 0 90 2 5	5 F	0.327	-1.90	0.029	0.10
$Gu(1_3 (33), 0=80, 3.5)$	r c	-2.20	13.9	-0.208	0.19
D-C1 (22) 0 90 2 5	ы Б	0.265	-1.00	0.025	0.15
$DyCI_3$ (33), 0–80, 3.5	r C	-2.35	13.7	-0.202	0.15
	<u>р</u>	0.404	-2.39	0.036	0.15
$EFC1_3$ (33), 0-80, 3.5	F	-2.80	10.0	-0.245	0.17
VLC1 (22) 0.00 9.5	P	5	0.287	-1.68	0.025
1001_3 (33), 0-80, 3.5	F	-2.47	14.4	-0.212	0.15
L-CL (24) 15 00 0 5	5	0.349	-2.05	0.036	0.15
$LaCl_3$ (34), 15–80, 3.5	F	-1.87	10.8	-0.157	0.15
D_{-C1} (24) 0.90 2.0	5	0.421	-2.52	0.038	0.10
$FTC1_3$ (34), 0–80, 3.9	r	-2.28	13.3	-0.197	0.19
NICI (24) 0 00 0 0	2	0.308	-1.84	0.028	0.15
$1 \times 13 (34), 0 = 80, 3.9$	L,	-2.24	13.5	-0.199	0.15
	3	0.674	-4.06	0.061	

^aNumber in parentheses indicates the reference source of data.

Ca(NO₃)₂, ZnCl₂, and Zn(NO₃)₂ solutions. On analyzing their data with the Pitzer equations, we obtained large systematic deviations. This may apparently be due to the structural changes occurring in the solutions. The similar behavior was observed by us (3) during the ϕ_{v} fit. We do not give the Pitzer coefficients for these solutions as they may not have physical significance. The Pitzer coefficients of aqueous CaCl₂ and problems associated with the fit are discussed elsewhere (4).

We list the temperature dependence of the Pitzer coefficients for $\phi_{\rm E}$ in Table III along with the standard deviation of the fit. Figure 2 depicts the difference (Δ) between experimental and predicted $\phi_{\rm E}$ as a function of molality. The average standard deviation of the fit for $\phi_{\rm E}$ is 0.10×10^{-2} cm³ mol⁻¹ K⁻¹. $\phi_{\rm E}$ of aqueous KCI (11) did not vary with temperature (5–45 °C). For KCI, the Pitzer coefficients ($\partial^{2}\beta/\partial P\partial T$) and ($\partial^{2}C^{\phi}/\partial P\partial T$) are 1.34 × 10⁻⁸ and -1.93 × 10⁻⁹, respectively. All the three tables do not include the work on aqueous NaCl as Rogers and Pitzer (δ) have discussed them in detail. During the singleelectrolyte fitting, first the attempts were made to treat ϕ^{0} unknown and evaluate it through the least-squares method as other Pitzer coefficients. Since ϕ^{0} thus obtained was in ex-

Figure 3. $\Delta \phi_{\mathsf{K}}^*$ (experimental – calculated) against *X* (mole fraction of second component) without and with θ_{lk} . NaCl–MgCl₂: O without, • with, ref *35*. Na₂SO₄–MgCl₂: Δ without, • with, ref *35*. MgSO₄–MgCl₂: I without, I with, ref *35*. KCl–KBr: • without, * with, ref *36*.

Table IV. Analysis of Mixture Data on Apparent Molal Compressibilities by Pitzer Equation

	temp.	std dev $\sigma \times 10^4$, cm ³ mol ⁻¹ bar ⁻¹		
system	°C	without θ_{ik}	with θ_{ik}	
NaCl-MgCl ₂ (35) ^a	30	0.60	0.19	
$Na_2SO_4-MgCl_2$ (35)	30	0.58	0.24	
$MgSO_4-MgCl_2$ (35)	30	0.64	0.21	
KCl-KBr (36)	25	0.25	0.09	

^aNumber in parentheses indicates the reference source of data.

Table V. Values of θ_{ik} Used in Mixture Calculations in Eq. 5 (Treated Independent of Ionic Strength)

$\theta_{i\mathbf{k}}$	values	
Na ⁺ -Mg ²⁺ SO₄ ²⁻ -Cl ⁻ Cl ⁻ -Br ⁻	-1.33×10^{-9} 4.32 × 10 ⁻⁹ 1.35 × 10 ⁻⁹	

cellent agreement with the literature data (given in the original papers of the experimental data), we directly used those values and evaluated the Pitzer coefficients for each electrolyte solution.

Mixed Electrolytes. The experimental data on mixtures for compressibility are not too many in the literature. A few data (12-16) are found in Russian literature, but they could not be analyzed due to the want of an easy access and lack of full information on experimental data. We have therefore tested the Pitzer equations only for accurate and accessible data. Equations 5-7 were used to calculate ϕ_{κ}^* without and with the mixing parameters θ_{ik} . Table IV lists these systems together with the standard deviations of the fit. Also listed are the standard deviations of the fit with the use of θ_{ik} . Figure 3 shows the effect of θ_{ik} on the fit for ϕ_{K}^{*} for few systems. As is apparent, the use of $\theta_{\mathbf{k}}$ brings a remarkable improvement in the fit of ϕ_{κ}^{*} and removes the systematic deviation. Table V lists the values of θ_{ik} . The magnitude of ternary interaction term similar to that derived for ϕ_V (17) was very small and hence was neglected. The Pitzer analysis for ϕ_{κ}^{*} of aqueous Na- $CI-CaCI_2$ system from 278.15 to 308.15 K and I = 0.3 to 20 mol kg^{-1} is given in our earlier work (4, 18).

We are not aware of any experimental data on $\phi_{\rm E}^*$ except those of Kumar and Atkinson (4) and Krumgalz and Millero (19). The Pitzer analysis of Kumar and Atkinson data is given elsewhere (4). We only computed the $\phi_{\rm E}^*$ data on aqueous brines, i.e., NaCl-KCl-CaCl₂-MgCl₂, using the density of Krumgalz and Millero (19) in the ionic strength range 8.3–9.6 mol kg⁻¹ and temperature range 20–40 °C. The Pitzer coefficients from Table III, when used in eq 5–7 yield the prediction of $\phi_{\rm E}^*$ with a standard deviation of 0.48 × 10⁻² cm³ mol⁻¹ K⁻¹. No mixing parameters were needed for the fit.

In part 1 and this study, we attempted to demonstrate the

utility of the Pitzer model in estimating the volume properties of aqueous single and mixed electrolyte solutions. The Pitzer equations can fit the volume properties of 1-1 electrolytes up to 9.3 m (for NaOH 24 m), 2-2 electrolytes up to 2.2 m, 2-1 electrolytes up to 7.4 m and 1-3 electrolytes up to 3.9 m with excellent accuracy. The results prove that this model is a powerful tool for predicting these properties. A preliminary study of these results indicates the possibilities of correlations between the structure of electrolyte solutions and the Pitzer coefficients. The discussion on such correlation is beyond the scope of this paper and will be dealt in a seperate article. Also, modified sets of Pitzer equations accounting structural changes in electrolyte solutions like ZnCl₂ and Zn(NO₃)₂ will be presented.

Acknowledgment

My stay in West Germany is sponsored through a Humboldt scholarship from the Alexander von Humboldt Foundation, Bonn. West Germany.

Glossary

Α	Pitzer-Debve-	Hückel slope
2 L		

- 1.2, (kg/mol)^{1/2} Ь
- density in solution, g cm⁻³ d
- ionic strength = $1/2\sum_{i}m_{i}Z_{i}^{2}$ 1
- molecular weight of an electrolyte м
- molality, mol kg⁻ m
- R gas constant = 83.1441 cm³ mol⁻¹ bar⁻¹ K⁻¹
- Т temperature in kelvin
- u sound velocity
- Ζ charge on ion

Greek Letters

 β_{MX} , Pitzer coefficients

 C_{MX}^{φ}

apparent molal property at finite concentration đ

stoichiometric factor in an electrolyte, $\nu = \nu_{\rm M} + \nu_{\rm Y}$ ν 2.0, (kg/mol)^{1/2} α

ß adiabatic compressibility, bar-1

Superscripts

- 0 property at infinite dilution
- mean property in mixture

Subscripts

-	
<u> </u>	CADOHAIDIIII

- i ion
- an electrolyte . 1
- compressibility κ

- M cation
- х anion
- ٥ property in pure water

Literature Cited

- (1) Pitzer, K. S. J. Phys. Chem. 1973, 77, 268.
- (2) Pitzer, K. S.; Kim, J. J. J. Am. Chem. Soc. 1974, 96, 5701.
- Kumar, A. J. Chem. Eng. Data, preceding paper in this issue. Kumar, A.; Atkinson, G. J. Phys. Chem. **1983**, 87, 5504. Bradley, D. J.; Pitzer, K. S. J. Phys. Chem. **1979**, 83, 1599. (3) (4)
- (5)
- (6) Rogers, P. S. Z.; Pitzer, K. S. J. Phys. Chem. Ref. Data 1982, 11, 15.
- (7)
- (8)
- Ananthaswamy, J.; Atkinson, G. J. Chem. Eng. Data **1984**, 29, 81. Del Grosso, V. A.; Mader, C. W. J. Acoust. Soc. Am. **1972**, 52, 961. Haar, L.; Gallaghar, J. S.; Kell, G. S. NBS /NRC Steam Tables; Hemi-sphere: New York, 1984. Carpio, R.; Mehicic, M.; Borsay, F.; Petrovic, C.; Yeager, E. J. Phys. ίei
- (10) Chem. 1982, 86, 4980.
- Romankiw, L.; Chou-Ming, I. J. Chem. Data 1983, 28, 300. Kanatova, R. F.; Kudryavtsev, B. B. Primen. Ul'traakust. Issled. Veshchestva 1960, 11, 181. (11)
- (12)
- (13) Chimitdorzhiev, D. B. Uch. Zap .- Buryat. Gos. Pedagog. Inst. 1967, 28.79.
- (14) Devdariani, A. K.; Kolobov, N. P.; Marenina, K. N. Russ. J. Phys. Chem. (Engl. Transl.) 1973, 47, 653.
- (15) Kuznetsov, V. V.; Trostin, V. N.; Khrenova, L. A. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* 1983, 26, 1505.
 (16) Janenas, V.; Abrosimov, V. K. *Izv. Vyssh, Uchebn. Zaved. Khim.*
- Khim. Tekhnol. 1983, 26, 698.
- Kumar, A. J. Am. Eng. Data. 1986, 31, 19
- (18) Kumar, A.; Atkinson, G.; Howell, R. D. J. Solution Chem. 1982, 11, 857
- (19) Krumgalz, B. S.; Millero, F. J. Mar. Chem. 1982, 11, 477. (20) Gucker, F. T.; Stubley, D.; Hill, D. J. J. Chem. Thermodyn. 1975, 7,
- 865. (21)
- (22)
- Weissler, A. J. Acoust. Soc. Am. 1951, 23, 219. Lo Surdo, A.; Millero, F. J. J. Solution Chem. 1980, 9, 163. Chen, C.-T.; Millero, F. J. J. Solution Chem. 1977, 6, 589. (23)
- (24) Hershey, J. P.; Damesceno, R.; Millero, F. J. J. Solution Chem. 1984, 13, 825
- (25) Millero, F. J.; Ricco, J.; Schreiber, D. R. J. Solution. Chem. 1982, 11, 671.
- (26) Hershey, J. P.; Satolongo, S.; Millero, F. J. J. Solution Chem. 1983, 12, 233.
- Harrington, T. M.; Pathybridge, A. D.; Roffey, M. G. J. Chem. Eng. Data 1985, 30, 264. (27)
- (28)
- (29)
- (30)
- Data 1995, 50, 204.
 Akerlöf, G.; Kegeles, G. J. Am. Chem. Soc. 1938, 60, 1226.
 Isono, T. J. Chem. Eng. Data 1984, 29, 45.
 Akerlöf, G.; Kegeles, G. J. Am. Chem. Soc. 1939, 61, 1027.
 Lo Surdo, A.; Alzola, M.; Millero, F. J. J. Chem. Thermodyn. 1982, (31)14.649.
- (32) Söhonel, O.; Novotny, P.; Solc, Z. J. Chem. Eng. Data 1984, 29, 379.
- Habenschuss, A.; Spedding, F. H. *J. Chem. Eng. Data* **1976**, *21*, 95. Gildseth, W. M.; Habenschuss, A.; Spedding, F. H. *J. Chem. Eng. Data* **1975**, *20*, 292. (33) (34)
- Shikheeva, L. V.; Savina, L. I. Russ. J. Phys. Chem. (Engl. Transl.) (35) 1982, 56, 1356
- (36) Vilcu, R.; Simion, A. Rev. Roum. Chem. 1976, 21, 3.

Received for review February 28, 1986. Revised July 7, 1986. Accepted August 18, 1986.