IIId, 105335-91-9; IIIe, 105335-92-0; IIIf, 105335-93-1.

Literature Cited

- Haddadin, J. M.; Jarrar, A. A. *Tetrahedron Lett.* **1971**, *20*, 1651.
 Ibrahlm, M. R.; Jarrar, A. A.; Sabri, S. S. J. *Heterocycl. Chem.* **1975**, *12*, 11.
- (3) Fataftah, Z. A.; Ibrahim, M. R., Al-Sa'id, N. H. J. Mol. Struct. 1985,

127, 305. (4) Fabril, S.; Ludwigshafen, A. G. Chem. Ber. 1965, 98, 1282.

Received for review May 9, 1986. Revised July 21, 1986. Accepted August 25, 1986. We are grateful to Yarmouk University for financial support.

Reaction of 1-Benzyl-1*H*-triazole-4,5-dicarboxaldehyde with Cyclic Ketones

Sultan T. Abu-Orabi

Chemistry Department, Yarmouk University, Irbid, Jordan

Three

4-hydroxy-1-benzyl-4,5-dihydro-5,7-polymethyleno-6(2*H*)cycloheptatriazolones (IVa-c) and 1-benzyl-5,7-dodecano-6(2*H*)-cycloheptatriazolone (III) were synthesized by the aldol-type condensation reaction of 1-benzyl-1*H*-triazole-4,5-dicarboxaldehyde (I) with cyclododecanone (IIa), cycloundecanone (IIb), cyclododecanone (IIc), and cyclopentadecanone (IId), respectively.

Azides have been considered as one of the most important precursors for the synthesis of triazoles by their reactions with substituted acetylenes. As part of our continuous interest in the syntheses and reactions of triazole derivatives (1, 2). I report here details of the condensation reaction of 1-benzyl-1*H*-triazole-4,5-dicarboxaldehyde (I) with cyclic ketones (IIa–d) to form polymethylene-bridged 1-benzylcycloheptatriazolones. Bridged cycloheptatriazolone (III) was obtained when I was condensed under aldol condensation reaction condition with

Table I.	Physical	Data and	NMR	Spectra	of Prep	ared
Compour	ndsa					

		reflux	vield.	¹ H NMR ^b		
compd	mp, °C	time, h	% %	ppm	assignments	
III	205-207	8	60	7.75	(H ₄ , H ₈ , 2 H, S)	
				7.22	$(C_6H_k-, 5 H, S)$	
				5.75	$(C_6H_5-CH_2-, 2 H,$	
				2 603 0	$(C = C - CH_{a} + H_{a})$	
				2.00 0.0	(c c c c 2, 1 11, m)	
				0.85 - 1.65	$(-CH_2-, 20 \text{ H}, \text{m})$	
IVa	197-199	9	54	7.28	$(C_{\theta}H_{5}-, 5 H, S)$	
				6.85	(H ₈ , 1 H, S)	
				5.70	(- <i>OH</i> , 1 H, S)	
				5.55	(C ₆ H ₅ -CH ₂ -, 2 H,	
				1.90	S)	
				4.00	$(V((U\Pi)\Pi, I\Pi, III))$	
				0.0 1.00	(Π_5, Π, Π)	
WL	905 907	05	70	0.9-1.90	$(C \mathbf{U}_{2}^{-}, 14 \mathbf{\Pi}, \mathbf{\Pi})$	
IVD	205-207	2.0	12	6.00	$(U_{6}II_{5}, 0II, 0)$	
				6.90 E.C9	(Π_8, Π, Θ)	
				0.00 5 59	(-0H, 1H, 5)	
				0.02	$(C_{6}^{115} - C_{112}^{-7}, 2 11, S)$	
				4.60	(>C(OH)H, 1 H, m)	
				3.17	$(H_5, 1 H, m)$	
				2.36 - 2.63	$(-CH_2-, 2 \text{ H}, \text{m})$	
				2.0 - 2.20	$(-CH_2-, 2 \text{ H}, \text{m})$	
				1.0 - 1.35	$(-CH_2-, 12 \text{ H}, \text{ m})$	
IVc	217 - 218	2	71	7.20	$(C_6H_5-, 5 H, S)$	
				6.90	(H ₈ , 1 H, S)	
				5.70	(–OH, 1 H, S)	
				5.57	$(C_6H_5-CH_2-, 2 H, S)$	
				4.68	(>C(OH)H, 1 H, m)	
				3.25	$(H_5, 1 H, m)$	
				2.45 - 2.65	$(-CH_2-, 2 H, m)$	
				2.11 - 2.20	$(-CH_2^-, 2 \text{ H, m})$	
				0.90 - 1.30	$(-CH_2^-, 14 \text{ H}, \text{m})$	

^a Elemental analysis, (C, H, N) in agreement with theoretical values were obtained and submitted for review. ^bCDCl₃-Me₂SO-d₆ was used as the NMR solvent for all compounds except CDCl₃ used for compound III. 4-Hydroxy-1-benzyl-4,5-dihydro-5,7-heptano-6(2H)-cycloheptatriazolone (IVa). 4-Hydroxy-1-benzyl-4,5-dihydro-5,7-octano-6(2H)-cycloheptatriazolone (IVb). 4-Hydroxy-1-benzyl-4,5-dihydro-5,7-nonano-6(2H)-cycloheptatriazolone(IVc).

cyclopentadecanone (IId). But when I was condensed with IIa-c under the same condition, the corresponding hydroxy-cycloheptatriazolones (IVa-c) were obtained (Scheme I). This I:I cyclic addition is closely analogous to known cycloaddition between phthalaldehyde and cyclic ketones (3, 4).

Experimental Section

1-Benzyl-1H-triazole-4,5-dicarboxaldehyde (I) was prepared according to the procedure reported by Henkel and Weygand (5). The cyclic ketones were prepared according to the methods of Blomquist (6, 7). Melting points were determined with a Thomas-Hoover Unimelt instrument and are uncorrected. NMR spectra were recorded on a Varian A-60 spectrometer using tetramethylsilane as an internal reference and shifts (δ) are reported in ppm.

1-Benzyl-5,7-dodecano-6(2H)-cycloheptatriazolone (III). A solution of 2.15 g (0.01 mol) of 1-benzyl-1H-triazole-4,5-dicarboxaldehyde and 2.24 g (0.01 mol) of cyclopentadecanone in 0.3 g of KOH and 50 mL of methanol was heated under reflux. After the mixture was cooled, the product was collected and then recrystallized from ethanol.

4-Hydroxy-1-benzyl-4,5-dlhydro-5,7-polymethyleno-6-(2H)-cycloheptatriazolones (IVa-c). In the same manner 2.15 g (0.01 mol) of 1-benzyl-1H-triazole-4,5-dicarboxaldehyde and 0.01 mol of the corresponding cyclic ketones in 0.4 g of KOH and 60 mL of methanol was heated under reflux. The

solvent was removed under pressure and the resulting product was recrystallized from chloroform-petroleum ether.

The melting points, reflux time, yields, and NMR data for compounds III and IVa-c are listed in Table I.

Registry No. I, 103532-75-8; IIa, 1502-06-3; IIb, 878-13-7; IIc, 830-13-7; IId, 502-72-7; III, 105309-39-5; IVa, 105309-40-8; IVb, 105309-41-9; IVc, 105309-42-0.

Literature Cited

- Abu-Orabi, S. T.; Harmon, R. E. J. Chem. Eng. Data 1986, 31, 379.
 Abu-Orabi, S. T.; Harmon, R. E. J. Chem. Eng. Data 1986, 31, 504.
 Kloster-Jensen, V. E.; Tarköy, N.; Eschenmoser, A.; Heilbronner, E. Helv. Chim. Acta 1956, 39, 786.
 Heilbronner, B. E. Sudas, B. Curte, C. K. Cham. Commun. 1953, 1172
- (4) Harmon, R. E.; Suder, R.; Gupta, S. K. Chem. Commun. 1969, 1170.
 (5) Henkel, H.; Weygand, F. Chem. Ber. 1943, 76, 812.
- Blomquist, A. T.; Spencer, R. D. J. Am. Chem. Soc. 1948, 70, 30.
- Blomquist, A. T.; Prager, J.; Wolinsky, J. J. Am. Chem. Soc. 1955, (7) 77, 1804.

Received for review May 13, 1986. Revised July 25, 1986. Accepted August 25, 1986. I thank Yarmouk University for financial support of this work.

Synthesis of Some New 2,4,6-Triarylpyridines Using **Phenacylidenedimethylsulfuranes**

Komal C. Gupta,* Pankaj K. Pathak, Brijesh K. Saxena, Nirupma Srivastava, and Kalpna Pandey

Department of Chemistry, D.V. (P.G.) College, Orai 285 001, U.P., India

Phenacylidenedimethylsulfurane and

p-chlorophenacylidenedimethylsulfurane were reacted with α,β -unsaturated ketones in the presence of ammonium acetate in glacial acetic acid to give 2,4,6-triarylpyridines in 45-70% yields. The structures of the pyridines were confirmed by IR and NMR spectra.

In continuation of our earlier researches (1-6) on the synthetic potentialities of ylides, we now report herein the aza ring closure reaction of two phenacylidenedimethylsulfuranes with a wide variety of α , β -unsaturated ketones with a view to test the domain of applicability of these ylides.

Experimental Section

Phenacyldimethylsulfonium bromide (1a) and p-chlorophen-

Table I. Physical and Spectral Data of Compounds^a

				vield.	recryst		IR (KBr), ^{b} cm ⁻¹			NMR ^e data (CDCl _a)	
compd	R_1	\mathbf{R}_2	\mathbf{R}_3	%	solvent	mp, °C	ν (Ar–H)	$\nu(C=C)$	$\nu(C=N)$	$\phi(C-H)$	δ, ppm
5a	Н	Н	$4-FC_6H_4$	45	a	150-52	3150	1605	1500	995	
5b	Н	$3,4-O_2CH_2$	$4 - FC_6H_4$	60	b	160 - 62	3010	1610	1508	995	5.95 (s, 2H, $-O_2CH_2$);
											6.40-8.00 (m, 14 H,
5c	н	3.4-di-OCH	4-FC _e H ₄	60	я	120 - 22	3000	1608	1500	992	Ar = n 3 70 - 7 75 (d ($J = 5 H_7$)
		o,. a. o o		00	<u>u</u>	120 22	0000	1000	1000	002	6 H, diOCH_{3}
											6.58–7.95 (m, 14 H, ArH)
5 d	4-Cl	Н	$4-FC_6H_4$	55	b	168 - 70	3060	1600	1505	1005	,
5e	$4-ClC_6H_4$	$4-CH_3OC_6H_4$	C_6H_5	50	c	95–96	3030	1510	1520	986	3.70 (s, 3 H, OCH ₃);
											6.40–8.20 (m, 15 H, ArH)
5 f	$4-ClC_6H_4$	$3-NO_2-C_6H_4$	C_6H_5	65	d	90-92	3060	1595	1005	1005	
5g	4-ClC ₆ H ₄	4-CH ₃ O–C ₆ H ₄	$4-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	60	a	82-85	3040	1598	1510	988	3.75 (s, 3 H, OCH ₃); 6.50-8.30 (m, 14 H, ArH)
5h	4-ClC ₆ H₄	3-NO ₂ C ₆ H ₄	4-CH ₃ OC ₆ H ₄	65	с	140 - 42	3030	1585	1510	985	
5i	$4-ClC_6H_4$	$2-C_4H_3S$	3-CH ₃ OC ₆ H ₄	70	f	70-72	3045	1590	1520	975	
5j	4-ClC ₆ H ₄	$2 - C_4 H_3 S$	$4-ClC_6H_4$	60	е	128 - 30	3015	1588	1510	1010	
$5\mathbf{k}$	$4-ClC_6H_4$	$2 - C_4 H_3 O$	$4-ClC_6H_4$	60	а	126 - 28	3050	1615	1500	980	
51	$4-ClC_6H_4$	$3-NO_2C_6H_4$	$4-ClC_6H_4$	65	с	84-85	3080	1600	1520	985	
5 m	$4-ClC_6H_4$	$4-CH_3OC_6H_4$	$2-C_4H_3O$	60	с	96-98	3025	1618	1516	990	3.85 (s, 3 H, OCH ₃); 7.15–8.25 (m, 13 H,
5n	4-CIC H	4.FC H	2048	60		50-55	2050	1500	1500	090	ArH)
JIL			2°U1100	00	<u>a</u>	00-00	0000	1000	17000	200	

^a All compounds gave satisfactory elemental analysis for C, H, N. ^bIR spectra were recorded on Perkin Elmer Infracord spectrometer using KBr phase. $^{\circ}NMR$ spectra were run on Varian A-60 spectrometer using Me₄Si as internal standard. ν = stretching vibratioins, ϕ = bending vibrations (out-of-plane vibrations), s = singlet, m = multiplet. Recrystallization solvent: $a = C_5H_5N-MeOH$; b = EtOH; $C = C_5H_5N-MeOH$; $b = C_5H_5N-MeOH$; b = EtOH; $C = C_5H_5N-MeOH$; $b = C_5H_5N-MeOH$; b = C_5H_5N -EtOH; d = C_6H_6 -AcOEt; e = C_5H_5N -CHCl₃, f = CHCl₃- C_6H_6 .