# Density and Electrical Conductance of Calcium Nitrate Tetrahydrate + Acetamide Melt

# S. K. Chettri, S. Dev, and K. Ismail\*

Department of Chemistry, North-Eastern Hill University, Laitumkhrah, Shillong 703003, India

Density and electrical conductance of the calcium nitrate tetrahydrate + acetamide melt were measured as functions of temperature and mole fraction of acetamide. On the basis of the additivity of molar volume, an alternative method has been suggested for estimating the densities of high- or low-melting anhydrous inorganic and organic salts using a suitable hydrate melt as solvent. Molar conductance data were analyzed by using the Vogel-Tammann-Fulcher equation. At ambient temperature the specific conductance of molten calcium nitrate tetrahydrate decreases by the addition of acetamide as was the case with the addition of KNO<sub>3</sub>.

## Introduction

A considerable amount of research in the field of molten salt chemistry deals with the development of room temperature molten electrolytes which are important for use as electrolytes for high-voltage batteries and as media for carrying out chemical reactions.

Hydrate melts are one kind of room temperature molten electrolyte which possess remarkable chemical properties. Due to the presence of aquometal complexes, hydrate melts have high acidic behavior and their acidity can be controlled by the addition of a second salt (1-3). Acetamide is reported to have very interesting acid-base properties and has become in recent times a potential salt in room temperature molten salt chemistry (4, 5). We aim at investigating the physicochemical properties of mixtures of hydrate melt and acetamide. Reported here are the density and electrical conductivity data of a mixture of molten calcium nitrate tetrahydrate and acetamide as functions of temperature and composition.

#### **Experimental Section**

Calcium nitrate tetrahydrate (Merck) was used without further purification. Acetamide (Thomas Baker) was recrystallized from its ethanol solution and then stored in a vacuum desiccator. The methods of sample preparation and density measurements were the same as described elsewhere (6). Electrical conductivity measurements were made at 1 kHz frequency using a B905 Wayne Kerr automatic precision bridge and dip-type cell of cell constant 120.6 m<sup>-1</sup>. A thermostated oil bath was used to regulate the temperature.

## **Results and Discussion**

With the help of the density vs concentration isotherm of the Ca(NO<sub>3</sub>)<sub>2</sub> + H<sub>2</sub>O system (7), the actual H<sub>2</sub>O/Ca<sup>2+</sup> mole ratio in the calcium nitrate tetrahydrate sample used was estimated to be  $4.26 \pm 0.01$ .

The experimental values of the density, d, of molten  $(1 - x) \operatorname{Ca}(\operatorname{NO}_3)_2$ '4.26H<sub>2</sub>O +  $x \operatorname{CH}_3\operatorname{CONH}_2$  system (Table 1) vary linearly with temperature, t, and were therefore least-squares-fitted to the expression

$$d/(\mathrm{kg}\cdot\mathrm{m}^{-3}) = a - b(t/\,^{\circ}\mathrm{C}) \tag{1}$$

The least-squares-fitted values of the constants a and b



**Figure 1.** (a) Molar volume and (b, A)  $\kappa/\kappa_0$  for (1 - x) Ca- $(NO_3)_2$ 4.26H<sub>2</sub>O + x CH<sub>3</sub>CONH<sub>2</sub> melts ( $\bullet$ ) versus x. (b, B)  $\kappa/\kappa_0$  for (1 - x) Ca $(NO_3)_2$ 4H<sub>2</sub>O + x KNO<sub>3</sub> melts ( $\times$ ) versus x (from ref 12).  $\kappa_0$  is the specific conductance of the hydrate melt medium.

for the melts of different x are given in Table 2. x denotes the mole fraction of acetamide.

Although addition of acetamide to molten calcium nitrate tetrahydrate causes the density to decrease nonlinearly, the molar volume, V, decreases linearly with increasing x (Figure 1a). Similar behavior of d and V was reported in a molten mixture of calcium nitrate tetrahydrate and urea also (8). It may be noted that this type of variation of d and V with the mole fraction of solute is a general observation made in molten mixtures consisting of a hydrate melt as the solvent and an anhydrous inorganic salt as the solute (6, 9-11).

The observation made in the present and previous studies (6, 8-11) regarding the molar volume of binary mixtures consisting of a hydrate melt as one of the components indicates the possibility of employing an alternative method to estimate the densities of high- or low-melting anhydrous inorganic and organic salts. The proper choice of a hydrate melt as the solvent medium is what is most important in this method. This alternative method will be quite useful to measure indirectly the density of molten salts both above and below (supercooled) the melting points especially when the salts either decompose on melting or have high melting points.

© 1995 American Chemical Society

| t/⁰C        | $\frac{10^{-3}d}{(kgm^{-3})}$ | t/°C         | $\frac{10^{-3}d}{(kgm^{-3})}$ | t/°C         | $10^{-3}d/$ |
|-------------|-------------------------------|--------------|-------------------------------|--------------|-------------|
|             | (16 11 )                      |              | (118 11 )                     | . 0          | (           |
|             |                               | x            | = 0.0                         |              |             |
| 26.1        | 1.7283                        | 53.2         | 1.7047                        | 80.4         | 1.6825      |
| 30.0        | 1.7248                        | 57.1         | 1.7016                        | 84.3         | 1.6793      |
| 34.0        | 1.7214                        | 61.0         | 1.6981                        | 88.2         | 1.6761      |
| 37.9        | 1.7177                        | 65.0         | 1.6951                        | 92.1         | 1.6728      |
| 41.8        | 1.7145                        | 68.8         | 1.6918                        | 96.0         | 1.6696      |
| 45.6        | 1.7114                        | 72.7         | 1.6888                        | 99.9         | 1.6664      |
| 49.4        | 1.7079                        | 76.5         | 1.6856                        |              |             |
|             |                               | <i>x</i> =   | = 0.111                       |              |             |
| 33.6        | 1.6952                        | 56.0         | 1.6762                        | 79.3         | 1.6569      |
| 37.4        | 1.6918                        | 59.8         | 1.6728                        | 83.1         | 1.6538      |
| 41.2        | 1.6889                        | 63.7         | 1.6697                        | 86.9         | 1.6507      |
| 45.0        | 1.6857                        | 67.6         | 1.6665                        | 90.6         | 1.6476      |
| 48.7        | 1.6825                        | 71.5         | 1.6633                        | 94.4         | 1.6443      |
| 52.4        | 1.6794                        | 75.4         | 1.6601                        | 98.2         | 1.6411      |
|             |                               |              | 0.000                         |              |             |
| 04.0        | 1 0100                        | X =          | = 0.300                       | 70.0         | 1 5905      |
| 34.0        | 1.0193                        | 07.0<br>CO 7 | 1.6004                        | 79.3         | 1.0020      |
| 38.4        | 1.0101                        | 00.7<br>C4 F | 1.0970                        | 82.9         | 1.5796      |
| 42.2        | 1.0127                        | 04.0         | 1.0942                        | 00.0         | 1.5766      |
| 40.9        | 1.6096                        | 08.3         | 1.5914                        | 90.4         | 1.5736      |
| 49.0        | 1.6067                        | 71.9         | 1.5883                        | 94.1         | 1.5704      |
| 53.2        | 1.6035                        | 75.6         | 1.5855                        | 97.9         | 1.5675      |
|             |                               | <i>x</i> =   | = 0.401                       |              |             |
| 21.7        | 1.5883                        | <b>47.4</b>  | 1.5665                        | 76.2         | 1.5422      |
| 25.3        | 1.5851                        | 51.1         | 1.5634                        | 79.9         | 1.5395      |
| 28.8        | 1.5826                        | 54.7         | 1.5601                        | 83.6         | 1.5365      |
| 32.4        | 1.5791                        | 62.0         | 1.5543                        | 87.3         | 1.5338      |
| 36.4        | 1.5757                        | 65.5         | 1.5512                        | 91.0         | 1.5309      |
| 40.3        | 1.5724                        | 69.0         | 1.5482                        | 94.5         | 1.5280      |
| <b>44.2</b> | 1.5697                        | 72.7         | 1.5454                        | 98.2         | 1.5251      |
|             |                               | ~ -          | - 0 597                       |              |             |
| 23.3        | 1 4704                        | 50 9         | 1 4471                        | 78 1         | 1 4252      |
| 26.0        | 1 4680                        | 54.2         | 1 4444                        | 81.5         | 1 4227      |
| 30.1        | 1 4648                        | 57.6         | 1 4418                        | 84.9         | 1 4201      |
| 33.8        | 1 4617                        | 61.0         | 1 4389                        | 88.2         | 1 4174      |
| 37.3        | 1 4586                        | 64.5         | 1 4361                        | 91.5         | 1 4147      |
| 40.5        | 1.4560                        | 67.9         | 1.4335                        | 94.9         | 1.4121      |
| 43.9        | 1.4531                        | 71.3         | 1.4306                        | 98.3         | 1.4092      |
| 47.4        | 1.4502                        | 74.7         | 1.4281                        | 00.0         | 1.1.00      |
|             |                               |              | 0.001                         |              |             |
| 04 5        | 1.0007                        | x =          | = 0.801                       | 00.0         | 1.05.45     |
| 24.5        | 1.2987                        | 52.6         | 1.2764                        | 80.3         | 1.2047      |
| 27.0        | 1.2904                        | 00.8<br>#0.0 | 1.2737                        | 83.3         | 1.2524      |
| 30.7        | 1.2938                        | 09.0<br>60.1 | 1.2710                        | 00.3<br>00.5 | 1.2000      |
| 00.9<br>971 | 1.2912                        | 65.0         | 1.2090                        | 09.0<br>02.5 | 1.2470      |
| 100         | 1.2000                        | 60.2         | 1.2000                        | 92.5         | 1.2402      |
| 40.2        | 1.2000                        | 71 4         | 1.2044                        | 95.0         | 1.2420      |
| 40.4        | 1.2007                        | 74.4         | 1.2020                        | 50.0         | 1.2405      |
| 40.0        | 1.2011                        | (4.4<br>77 / | 1.2090                        |              |             |
| 49.0        | 1.2707                        | ( ( .+±      | 1.2070                        |              |             |
|             |                               | <i>x</i> =   | = 0.900                       |              |             |
| 25.7        | 1.1779                        | 52.2         | 1.1574                        | 77.6         | 1.1379      |
| 28.7        | 1.1756                        | 55.2         | 1.1553                        | 80.4         | 1.1358      |
| 31.7        | 1.1732                        | 58.1         | 1.1530                        | 83.2         | 1.1336      |
| 34.6        | 1.1707                        | 61.0         | 1.1510                        | 86.0         | 1.1314      |
| 37.5        | 1.1685                        | 63.9         | 1.1489                        | 88.9         | 1.1293      |
| 40.4        | 1.1664                        | 66.7         | 1.1467                        | 91.7         | 1.1271      |
| 43.4        | 1.1641                        | 69.3         | 1.1446                        | 94.4         | 1.1250      |
| 46.3        | 1.1618                        | 71.9         | 1.1424                        | 97.2         | 1.1229      |
| 49.3        | 1.1598                        | 74.7         | 1.1401                        | 100.0        | 1.1206      |
| x = 1.0     |                               |              |                               |              |             |
| 58.3        | 1.0163                        | 70.2         | 1.0069                        | 81.9         | 0.9975      |
| 60.8        | 1.0148                        | 72.4         | 1.0050                        | 84.1         | 0.9956      |
| 63.1        | 1.0125                        | 74.9         | 1.0031                        | 86.3         | 0.9938      |
| 65.5        | 1.0107                        | 77.3         | 1.0012                        |              |             |
| 67.9        | 1.0088                        | 79.5         | 0.9993                        |              |             |

Table 1. Experimental Values of the Density, d, of (1 - x) Ca $(NO_3)_2$ '4.26H<sub>2</sub>O + x CH<sub>3</sub>CONH<sub>2</sub> Melts

The experimental values of the specific conductance,  $\kappa$ , of (1 - x) Ca(NO<sub>3</sub>)<sub>2</sub>·4.26H<sub>2</sub>O + x CH<sub>3</sub>CONH<sub>2</sub> melts are given in Table 3 as functions of temperature t and x. The variation of the molar conductance,  $\lambda$ , with temperature T is non-Arrhenius and is illustrated in Figure 2. The molar conductance data were therefore least-squares-fitted to the



Figure 2. Arrhenius plots for the molar conductance of (1 - x)Ca(NO<sub>3</sub>)<sub>2</sub>·4.26H<sub>2</sub>O + x CH<sub>3</sub>CONH<sub>2</sub> melts: A, x = 0.0; B, x = 0.111; C, x = 0.300; D, x = 0.401; E, x = 0.597; F, x = 0.801; G, x = 0.900.

Table 2. Parameters of Eq 1 for (1 - x) Ca(NO<sub>3</sub>)<sub>2</sub>·4.26H<sub>2</sub>O + x CH<sub>3</sub>CONH<sub>2</sub> Melts

| x     | 10 <sup>-3</sup> a | Ь       | corr coef |
|-------|--------------------|---------|-----------|
| 0.0   | 1.7495             | -0.8340 | -0.9999   |
| 0.111 | 1.7231             | -0.8349 | -0.9999   |
| 0.300 | 1.6471             | -0.8152 | -0.9999   |
| 0.401 | 1.6059             | -0.8291 | -0.9998   |
| 0.597 | 1.4890             | -0.8140 | -0.9999   |
| 0.801 | 1.3177             | -0.7838 | -0.9999   |
| 0.900 | 1.1978             | -0.7678 | -0.9999   |
| 1.0   | 1.0637             | -0.8094 | -0.9998   |
|       |                    |         |           |

Table 3. Specific Conductance  $\kappa$  of (1 - x) Ca(NO<sub>3</sub>)<sub>2</sub>. 4.26H<sub>2</sub>O + x CH<sub>3</sub>CONH<sub>2</sub> Melts

|       | $10\kappa/(S\cdot m^{-1})$ |            |            |            |            |            |        |
|-------|----------------------------|------------|------------|------------|------------|------------|--------|
|       | x =                        | <i>x</i> = | <i>x</i> = | <i>x</i> = | <i>x</i> = | <i>x</i> = | x =    |
| t/°C  | 0.0                        | 0.111      | 0.300      | 0.401      | 0.597      | 0.801      | 0.900  |
| 25.0  | 5.9193                     | 4.3714     | 4.3976     | 4.0483     | 3.6102     | 3.1513     | 2.9369 |
| 30.0  | 7.8255                     | 5.8092     | 5.8073     | 5.3603     | 4.7237     | 4.0049     | 3.6767 |
| 35.0  | 10.098                     | 7.5614     | 7.5120     | 6.9007     | 6.0157     | 5.0137     | 4.5687 |
| 40.0  | 12.757                     | 9.5763     | 9.3146     | 8.7540     | 7.4927     | 6.1350     | 5.5477 |
| 45.0  | 15.799                     | 12.022     | 11.636     | 10.882     | 9.1748     | 7.4288     | 6.6426 |
| 50.0  | 19.095                     | 14.654     | 14.200     | 13.098     | 10.915     | 8.8371     | 7.8279 |
| 55.0  | 22.854                     | 17.661     | 16.870     | 15.724     | 13.296     | 10.365     | 9.1410 |
| 60.0  | 26.813                     | 20.823     | 19.906     | 18.495     | 15.441     | 11.964     | 10.477 |
| 65.0  | 31.101                     | 24.263     | 22.955     | 21.533     | 18.018     | 13.707     | 11.950 |
| 70.0  | 35.692                     | 28.080     | 26.388     | 24.794     | 20.695     | 15.576     | 13.520 |
| 75.0  | 40.424                     | 32.183     | 29.930     | 28.313     | 23.446     | 17.469     | 15.120 |
| 80.0  | 45.419                     | 36.370     | 33.906     | 31.948     | 26.352     | 19.470     | 16.776 |
| 85.0  | 50.725                     | 40.929     | 37.869     | 35.827     | 29.380     | 21.504     | 18.490 |
| 90.0  | 56.088                     | 45.406     | 41.628     | 39.646     | 32.441     | 23.602     | 20.250 |
| 95.0  | 61.495                     | 53.539     | 45.973     | 43.729     | 35.397     | 25.795     | 22.102 |
| 100.0 | 67.295                     | 58.614     | 49.748     | 47.949     | 38.904     | 28.038     | 23.932 |

Vogel-Tammann-Fulcher (VTF) equation of the form

$$\lambda/(\text{S·m}^2 \cdot \text{mol}^{-1}) = A \exp\{(B/K)/(T - T_0)\}$$
 (2)

The least-squares-fitted values of the three constants A, B, and  $T_0$  are listed in Table 4. The ideal glass transition temperature,  $T_0$ , of the molten mixture decreases with the addition of acetamide. The variation of  $\kappa/\kappa_0$ , where  $\kappa_0$  is the specific conductivity of the hydrate melt, with x is shown in Figure 1b. A similar plot has also been drawn in Figure 1b for the Ca(NO<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O + KNO<sub>3</sub> melt on the basis of its reported specific conductivity data (12). These

Table 4. Values of the Parameters of Eq 2 for (1 - x)Ca(NO<sub>3</sub>)<sub>2</sub>4.26H<sub>2</sub>O + x CH<sub>3</sub>CONH<sub>2</sub> Melts and Standard Deviation  $\sigma$  of  $\ln \lambda$ 

|       | • • • • • • • |        |                          |                       |
|-------|---------------|--------|--------------------------|-----------------------|
| x     | $\ln A$       | В      | <i>T</i> <sub>0</sub> /K | $\sigma(\ln \lambda)$ |
| 0.0   | -4.0597       | 470.50 | 210.4                    | 0.0028                |
| 0.111 | -4.0993       | 509.42 | 209.0                    | 0.0195                |
| 0.300 | -4.4690       | 489.49 | 208.2                    | 0.0058                |
| 0.401 | -4.4384       | 524.08 | 205.1                    | 0.0028                |
| 0.597 | -4.7963       | 535.89 | 201.6                    | 0.0071                |
| 0.801 | -5.5399       | 501.79 | 200.6                    | 0.0029                |
| 0.900 | -5.8014       | 513.37 | 196.7                    | 0.0025                |
|       |               |        |                          |                       |

plots indicate that  $\kappa$  of a hydrate melt decreases with the addition of a solute, whether the solute is an inorganic or organic salt.

## **Literature Cited**

- Duffy, J. A.; Ingram, M. D. In *Ionic Liquids*; Inman, D., Lovering, D. G., Eds.; Plenum Press: New York, 1981.
   Duffy, J. A.; Ingram, M. D. *Inorg. Chem.* 1978, 17, 2798.

- (3) Dyer, R. D.; Frono, R. M.; Schiavelli, M. D.; Ingram, M. D. J. Phys. Chem. 1980, 84, 2338.
   (4) Reid, D. S.; Vincent, C. A. J. Electroanal. Chem. 1968, 18, 427.
   (5) Narayan, R.; Phani, K. L. N. In Molten Salt Techniques; Gale, R. J., Lovering, D. G., Eds.; Plenum Press: New York, 1991; Vol. 4.
   (6) Islam, N.; Ismail, K. J. Phys. Chem. 1975, 79, 2180.
   (7) Ewing, W. W.; Mikovsky, R. J. J. Am. Chem. Soc. 1950, 72, 1390.
   (8) Jain, S. K.; Kulshrestha, N. P.; Singh, V. V. J. Chem. Eng. Data 1984, 29, 14

- 1984, 29, 14.
- (9) Braunstein, J.; Orr, L.; MacDonald, W. J. Chem. Eng. Data 1967,
- 12, 415.
  (10) Mahiuddin, S.; Ismail, K. Bull. Chem. Soc. Jpn. 1981, 54, 2525.
  (11) Bhattacharjee, C.; Ismail, S.; Ismail, K. J. Chem. Eng. Data 1986,
- 31, 117.
- (12) Angell, C. A. J. Electrochem. Soc. 1965, 112, 1224.

Received for review July 20, 1994. Revised September 15, 1994. Accepted September 28, 1994.<sup>®</sup> The donation of the B905 Wayne Kerr automatic precision bridge to us by the Alexander Von Humboldt Foundation, Germany, is gratefully acknowledged.

JE940145J

\* Abstract published in Advance ACS Abstracts, November 15, 1994.