Viscosities and Densities of Hexane + Butan-1-ol, + Hexan-1-ol, and + Octan-1-ol at 298.15 K

Carlos Franjo, Eulogio Jiménez,* Teresa P. Iglesias,
† Jose Luis Legido,† and Maria I. Paz Andrade
‡

Departamento de Física, Facultad de Ciencias, Universidad de La Coruña, La Coruña, Spain

Viscosities and densities have been measured for hexane + butan-1-ol, + hexan-1-ol, and + octan-1-ol at 298.15 K and atmospheric pressure. Kinematic viscosities was determined using a capillary viscosimeter, and densities were measured by vibrating-tube densimetry. The viscosity deviations were evaluated. Viscosity results were fitted to the equations of Grunberg-Nissan, McAllister, Auslander, and Teja.

Introduction

In continuation of our studies on the thermodynamic and transport properties of (alkan-1-ols + n-alkanes) (1-3), we report measurements of viscosities of hexane + butan-1-ol, + hexan-1-ol, and + octan-1-ol at 298.15 K and atmospheric pressure. Kinematic viscosities were determined using a capillary viscosimeter, and densities were measured by a vibrating-tube densimeter.

The results were used to calculate the viscosity deviations and excess molar volumes. The viscosities were used to test the semiempirical relations of Grunberg-Nissan (4), McAllister (5, 6), Auslander (7), and Teja (8, 9).

Experimental Section

The following Fluka chemicals were used: hexane (x > 0.995), butan-1-ol (x > 0.995), hexan-1-ol (x > 0.995), and octan-1-ol (x > 0.995). The substances were degassed and dried over molecular sieves (Union Carbide, type 0.4 nm). The measured densities and viscosities of the pure component liquids are listed in Table 1 together with literature values.

Densities of the pure components and their mixtures were measured with an Anton Paar Model DMA 60/602 densimeter with a resolution of $\pm 2 \times 10^{-6}$ g·cm⁻³ and kinematic viscosities by the automatic Schott-Geräte measuring system with a resolution of $\pm 5 \times 10^{-4}$ mm²·s⁻¹. The temperature was regulated to better than 0.01 K. The experimental techniques have been described previously (16, 17). Mixtures were prepared by mass using a Mettler AT201; the precision of the mole fractions is estimated to better than $\pm 1 \times 10^{-4}$.

Results and Discussion

Densities and viscosities are listed in Table 2. The viscosity deviation was calculated by

$$\Delta \eta = \eta - \{ \boldsymbol{x}_1 \boldsymbol{\eta}_1 + \boldsymbol{x}_2 \boldsymbol{\eta}_2 \} \tag{1}$$

The experimental values of $\Delta \eta$ and $V^{\rm E}$, at 298.15 K, are also reported in Table 2. Excess volumes and viscosity deviations were fitted to

Table 1.Data for Pure Liquids at the Temperature298.15 K

	Q/(g·cm ⁻³)	$\eta/(mPa\cdot s)$	
liquid	exptl	lit.	exptl	lit.
hexane	0.655 05	0.655 03 (10)	0.2861	0.2968 (13)
butan-1-ol	$0.805\ 81$	0.805 80 (1)	2.550	2.571 (13)
hexan-1-ol	$0.815\ 32$	0.815 15 (11)	4.862	4.317 (14)
octan-1-ol	$0.821\ 62$	0.821 61 (12)	7.596	7.363 (15)

Figure 1. Experimental $\Delta \eta$ at 298.15 K of x CH₃(CH₂)₄CH₃ + (1 - x) CH₃(CH₂)_nOH: \bigcirc , n = 3; \blacksquare , n = 5; \triangle , n = 7. The curves have been calculated from eq 2.

$$Q = x_1 x_2 \sum_{i=0}^{m} A_i (x_1 - x_2)^i$$
(2)

where $Q = \Delta \eta / (\text{mPa·s})$ or $Q = V^{\text{E}} / (\text{cm}^3 \cdot \text{mol}^{-1})$. The parameters A_i and the corresponding standard deviations σ given in Table 3 were calculated using the unweighted least-squares method, with the degree of the polynomial previously optimized through the application of the *F*-test (18).

The differences between the experimental excess molar volumes of the literature (1-19) and our results fitted with eq 2 were about $0.007 \text{ cm}^3 \text{-mol}^{-1}$ for hexane + butan-1-ol, $0.02 \text{ cm}^3 \text{-mol}^{-1}$ for hexane + hexan-1-ol, and $0.04 \text{ cm}^3 \text{-mol}^{-1}$ for hexane + octan-1-ol.

Figures 1 and 2 show the experimental $\Delta \eta$ and $V^{\rm E}$ plotted against x together with the fitted curve. The $\Delta \eta$ is negative and decreases with increasing carbon number of the alkan-1-ol. The $V^{\rm E}$ increases with the carbon number of the 1-alkanol with values close to zero for the hexane + butan-1-ol and negative for hexane + hexan-1-ol and octan-1-ol.

The results obtained for excess magnitudes are compared in Table 4 with other magnitudes of the same mixtures,

© 1995 American Chemical Society

(

^{*} To whom correspondence should be addressed.

[†] Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Vigo, 36200 Vigo, Spain.

[‡] Departamento de Física Aplicada, Facultad de Física, Universidad de Santiago, 15706 Santiago de Compostela Spain.

Table 2. Densities, Viscosities, Excess Molar Volumes, and Viscosity Deviation at 298.15 K

x	$\varrho/(g cm^{-3})$	$\eta/(mPa\cdot s)$	$V^{E/(cm^3 \cdot mol^{-1})}$	$\Delta\eta\times10^{3/}(\mathrm{mPa}\text{-s})$
x Hexane + $(1 - x)$ Butan-1-ol				
0.0971	$0.786\ 81$	1.848	-0.1345	-0.482
0.1322	$0.780\ 14$	1.688	-0.1636	-0.563
0.1707	$0.772\ 97$	1.496	-0.1839	-0.667
0.2625	$0.756\ 42$	1.169	-0.1990	-0.787
0.3521	$0.741\ 08$	0.909	-0.1707	-0.845
0.4142	0.730 91	0.778	-0.1330	-0.834
0.5620	0.708 39	0.539	-0.0265	-0.739
0.6624	0.694 38	0.440	0.0467	-0.610
0.8147	$0.675\ 24$	0.348	0.0906	-0.357
0.8728	0.66856	0.323	0.0807	-0.251
0.9267	0.662~72	0.306	0.0448	-0.146
	x	Hexane + ()	1 – x) Hexan-1-o	1
0.1327	0.794~24	3.088	-0.1760	-1.166
0.1854	$0.785\ 77$	2.578	-0.2173	-1.435
0.2308	$0.778\ 45$	2.207	-0.2462	-1.599
0.3137	$0.765\ 00$	1.632	-0.2756	-1.794
0.4404	0.744 43	1.072	-0.2768	-1.775
0.4841	$0.737\ 32$	0.941	-0.2657	-1.706
0.6117	0.716~59	0.648	-0.2057	-1.415
0.7122	0.700 31	0.501	-0.1312	-1.102
0.8046	$0.685\ 48$	0.408	-0.0614	-0.772
0.8997	0.670 48	0.338	-0.0075	-0.407
0.9493	0.662 79	0.309	0.0044	-0.209
	x	Hexane + (1-x) Octan-1-0	l
0.1657	$0.799\ 45$	4.313	-0.2695	-2.072
0.2119	0.792 89	3.677	-0.3191	-2.370
0.2740	0.783 90	2.968	-0.3869	-2.625
0.3717	0.769 17	2.093	-0.4656	-2.786
0.4775	$0.752\ 31$	1.432	-0.4925	-2.673
0.5556	0.739 20	1.096	-0.4677	-2.438
0.6659	0.719 87	0.759	-0.4049	-1.969
0.7638	$0.701\ 84$	0.559	-0.3096	-1.453
0.8406	$0.687\ 18$	0.443	-0.2292	-1.008
0.9211	$0.671\ 27$	0.350	-0.1244	-0.513
0.9597	0.663~56	0.319	-0.0965	-0.262

Table 3. Parameters A_i of Eq 2 and Standard Deviations σ

	A_0	A_1	A_2	A_3	σ
x Hexane + $(1 - x)$ Butan-1-ol					
$V^{\rm E}$	-0.2245	1.5887			0.002
$\Delta\eta$	-3.151	1.439	-0.887	0.793	0.010
x Hexane + $(1 - x)$ Hexan-1-ol					
$V^{\rm E}$	-1.0411	0.7296	0.3402	0.3189	0.001
$\Delta\eta$	-6.733	3.708	-1.166		0.006
x Hexane + $(1 - x)$ Octan-1-ol					
$V^{\rm E}$	-1.8738	0.2846	0.3982		0.007
$\Delta \eta$	-10.440	5.506	-1.704		0.006

and show agreement with the trends found in previous work (1-3). In these mixtures the behavior of $V^{\rm E}$ is contrary to the $\Delta \epsilon'$. This is due to the fact that when $V^{\rm E}$ decreases, the number of dipoles per volume unit increases. The $\Delta \epsilon''$ shows behavior opposite of that of the $\Delta \eta$, $H^{\rm E}$, and $G^{\rm E}$ due to weaker interactions in the mixture. The excess molar volumes and viscosity increments decrease as the length of the 1-alcohol chain increases.

Semiempirical Relations

Several semiempirical relations have been proposed to estimate dynamic viscosity (η) . Grunberg-Nissan (4) suggested the expression

$$\ln \eta = x_1 \ln \eta_1 + x_2 \ln \eta_2 + x_1 x_2 d_{\rm w} \tag{3}$$

where x_1 is the mole fraction of hexane and x_2 that of the alkan-1-ol, η_1 and η_2 are the dynamic viscosities of hexane and alkan-1-ol, and d_w is a parameter proportional to the interchange energy.

Figure 2. Experimental $\triangle G^*$ at 298.15 K of $x \operatorname{CH}_3(\operatorname{CH}_2)_4\operatorname{CH}_3 + (1-x) \operatorname{CH}_3(\operatorname{CH}_2)_n\operatorname{OH}$: \bigcirc , n = 3; \blacksquare , n = 5; \triangle , n = 7. The curves have been calculated from eq 2.

Table 4. Excess Molar Volumes, Viscosity Deviations, Excess Molar Enthalpies, Dielectric-Permittivity Increments, and Excess Molar Gibbs Energies at 298.15 K

	$\Delta \eta /$	$H^{ m E}$ /			$G^{\rm E}$
$V^{\rm E}$	$(mPa \cdot s)$	(J·mol ⁻¹)	$\Delta \epsilon'$	$\Delta \epsilon''$	$(J \cdot mol^{-1})$
	0	.5 Hexane	+ 0.5 Butan	-1-ol	
-0.0561	-0.7877	515 (20)	-0.276 (1)	-0.930(1)	1140 (<i>21</i>)
	0	.5 Hexane	+ 0.5 Hexan	-1-ol	
-0.2602	-1.6833	505 (22)	0.111 (1)	-0.276(1)	975 (23)
0.5 Hexane + 0.5 Octan-1-ol					
-0.4684	-2.6100	456 (24)	0.180 (1)	-0.057(1)	

Table 5. Parameters of Eqs 3–5 and 11 and Standard Deviations σ

eq				σ	
x Hexane + $(1 - x)$ Butan-1-ol					
3	$d_{ m w} = -1.1455$			0.013	
4	$\eta_{12} = 0.3736$	$\eta_{21} = 0.8661$		0.010	
5	$B_{12} = 1.4197$	$\dot{B}_{21} = 0.1717$	$A_{21} = 0.3721$	0.008	
11	$\alpha_{12} = 0.1241$			0.018	
	x Hexane + $(1 - x)$ Hexan-1-ol				
3	$d_{\rm w} = -0.8588$			0.040	
4	$\eta_{12} = 0.4224$	$\eta_{21} = 1.5874$		0.009	
5	$\dot{B}_{12} = 0.4666$	$\dot{B}_{21} = 0.6339$	$A_{21} = 0.1379$	0.006	
11	$\alpha_{12} = 0.2154$			0.024	
x Hexane + $(1 - x)$ Octan-1-ol					
3	$d_{\rm w} = -0.2480$			0.036	
4	$\eta_{12} = 0.6647$	$\eta_{21} = 2.5444$		0.005	
5	$B_{12} = 0.6131$	$B_{21} = 0.4947$	$A_{21} = 0.1809$	0.007	
11	$\alpha_{12} = 0.6814$			0.027	

The McAllister (5) equation was derived on the basis of the absolute reaction rate theory of Eyring (6):

$$\ln \eta = x_1^{3} \ln \eta_1 + x_2^{3} \ln \eta_2 + 3x_1^{2}x_2 \ln \eta_{12} + 3x_1x_2^{2} \ln \eta_{21} - \ln\{x_1 + x_2M_2/M_1\} + 3x_1^{2}x_2 \ln\{2/3 + M_2/3M_1\} + 3x_1x_2^{2} \ln(1/3 + 2M_2/3M_1) + x_2^{3} \ln(M_2/M_1)$$
(4)

where η_{12} and η_{21} are the interaction parameters and M is the molar mass.

The Auslander (7) equation, the less complex threeparameter equation, has the following form:

$$x_1\{x_1 + B_{12}x_2(\eta - \eta_1)\} + A_{21}x_2\{B_{21}x_1 + x_2(\eta - \eta_2)\} = \begin{array}{c} 0 \\ (5) \end{array}$$

here B_{12} , A_{21} , and B_{21} are the parameters representing binary interactions.

On the basis of the corresponding states treatment for mixture compressibility factors (25, 26), Teja and Rice (8, 9) proposed the following expression for liquid mixture viscosity:

$$\ln(\eta\xi) = x_1 \ln(\eta_1\xi_1) + x_2 \ln(\eta_2\xi_2)$$
(6)

where $\xi = V_c^{2/3}/(T_cM)^{1/2}$ and V_c and T_c are the critical temperature and critical volume, respectively. The values of the mixture at each composition were evaluated by using

$$V_{\rm c} = x_1^2 V_{\rm c1} + x_2^2 V_{\rm c2} + 2x_1 x_2 V_{\rm c12} \tag{7}$$

$$T_{\rm c} = \{x_1^2 T_{\rm c1} V_{\rm c1} + x_2^2 T_{\rm c2} V_{\rm c2} + 2x_1 x_2 T_{\rm c12} V_{\rm c12}\} / V_{\rm c} \quad (8)$$

$$M = x_1 M_1 + x_2 M_2 (9)$$

$$V_{c12} = \{ (V_{c1}^{1/3} + V_{c2}^{1/3})/2 \}^3$$
(10)

$$T_{c12}V_{c12} = \alpha_{12}(T_{c1}V_{c1}T_{c2}V_{c2})^{1/2}$$
(11)

where α_{12} is an "empirical" interaction parameter.

Table 5 gives the parameters calculated and the standard deviations between experimental values obtained using the eqs 3-5 and 11. The values of T_c and V_c used in eq 11 for pure components were obtained from ref 15.

Registry Numbers Supplied by Author. hexane, 110-54-3; butan-1-ol, 71-36-3; hexan-1-ol, 111-27-3; octan-1-ol, 111-87-5.

Literature Cited

(1) Iglesias, T. P.; Legido, J. L.; Romaní, L.; Paz Andrade, M. I. Phys. Čhem. Liq. **1993**, 25, 135.

- (2) Amigo, A.; Legido, J. L.; Bravo, R.; Paz Andrade, M. I. J. Chem. Thermodyn. 1990, 22, 1059.
- Iglesias, T. P.; Legido, J. L.; Peleteiro, J.; Romaní, L.; Paz Andrade, M. I. J. Chem. Thermodyn. 1993, 25, 1325. (3)
- (4) Grunberg, L.; Nissan, A. H. Nature 1949, 164, 799.
 (5) McAlister, R. L. AIChE J. 1960, 6, 427.
- (6) Eyring, H. J. Chem. Phys. 1936, 4, 283.
- (7) Auslander, G. Br. Chem. Eng. 1964, 9, 610.
- (8) Teja, A. S.; Rice, P. Chem. Eng. Sci. 1981, 36, 7.
 (9) Teja, A. S.; Rice, P. Ind. Eng. Chem. Fundam. 1981, 20, 70.
- (10) Lorenzana, M. T.; Jiménez, E.; Legido, J. L.; Fernández, J.; Paz Andrade, M. I. Phys. Chem. Liq. 1991, 24, 13.
- (11) Tanaka, R.; Toyama, S.; Murakami, S. J. Chem. Thermodyn. 1986, 18
- (12) Amigo, A.; Bravo, R.; Pintos, M. J. Chem. Eng. Data 1993, 28, 141
- (13) TRC-Thermodynamic Tables; Texas A&M University: College Station, TX 1993
- (14) Aminabhavi, T. M.; Aralaguppi, M. J.; Harogopad, S. B.; Balundgi, R. H. J. Chem. Eng. Data **1993**, 38, 31.
- I. I. J. Onem. Eng. Data 1990, 50, 51.
 Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, Techniques of Chemistry; Wiley: New York, 1986.
 Lorenzana, M. T.; Legido, J. L.; Jiménez, E.; Fernández, J.; Pías, L.: Ortere, J.: Paz Andredo, M. L. Chem. Thermody, 1000.
- L.; Ortega, J.; Paz Andrade, M. I. J. Chem. Thermodyn. 1989, 21, 1017
- (17) Bravo, R.; Pintos, M.; Amigo, A.; Garcia, G. Phys. Chem. Liq. 1991, *22*, 245.
- (18) Bevington, P. Data Reduction and Error Analysis for the Physical Sciences; McGraw-Hill: New York, 1969. (19) Heintz, A.; Smchmittecker, B.; Warner, D. J. Chem. Eng. Data
- (10) Heinis, M., Oheinin Meterki, D., Walner, D. S. Stenard, D. S. Stenard, D. S. Stenard, M. S. Stenard, S. Sten

- 254.(23) Wieczorek, S. A.; Stecki, J. J. Chem. Thermodyn. 1978, 10, 177.
- (25) WIECZOFER, S. A., SUECKI, S. J. C. Chem. Intermologyn. 1976, 10, 177.
 (24) Lai, T. T.; Doan-Nguyen, T. H.; Vera, J. H.; Ratcliff, G. A. Can. J. Chem. Eng. 1978, 56, 358.
 (25) Teja, A. S. AIChE J. 1980, 26, 337.
 (26) Teja, A. S.; Sandler, S. I. AIChE J. 1980, 26, 341.

Received for review November 17, 1993. Revised April 26, 1994. Accepted June 8, 1994.8

[®] Abstract published in Advance ACS Abstracts, August 15, 1994.