# Volumetric and Isopiestic Studies of $(H_2O+K_2HPO_4+KH_2PO_4)$ at 25 $^\circ C$

# M. Kabiri-Badr\*

Chemical Engineering Department, Sahand University of Technology, Tabriz, Iran

## M. T. Zafarani-Moattar

Physical Chemistry Department, University of Tabriz, Tabriz, Iran

Density and water activity in  $(H_2O + K_2HPO_4 + KH_2PO_4)$  have been measured at 25 °C. The densities were measured by oscillating tube densimeter, and the water activities were obtained by an improved isopiestic technique. The results were correlated with semiempirical equations.

#### Introduction

Recently, there has been interest in utilizing aqueous salt-polymer two-phase systems for large scale biochemical purifications (1, 2). The salts employed in these systems must not be harmful to labile biomaterials. One of the salts commonly used is the mixture of potassium mono- and dihydrogen phosphates. Although there are reports on the thermodynamic properties of  $H_2O + K_2HPO_4$  and  $H_2O + KH_2PO_4$  binary systems (3-5), the ternary  $H_2O + K_2HPO_4 + KH_2PO_4$  system has not been studied.

In this work, densities and water activities of this ternary system are measured at  $25 \, ^\circ$ C. The correlations used to represent the experimental density and activity data depend on two parameters and single-electrolyte properties.

#### **Experimental Section**

**Chemicals.** The chemicals were all supplied by Merck (high purity) and were used without further purification. The salts were dried in oven at about 120  $^{\circ}$ C for 24 h, and the solutions were made from distilled and deionized water.

Apparatus and Procedure. The densimeter used in this study was a high-precision oscillating tube densimeter (DA-210, Kyoto Electronic Co., Japan). The accuracy of the instrument is reported to be  $\pm 0.01$  kgm<sup>-3</sup>, and it was calibrated with air and distilled water before each measurement. The temperature was held to within  $\pm 0.01$  °C with a temperature controller (Eyela, UA-10, Tokyo Rikakikai Co., Japan).

The isopiestic apparatus employed is essentially similar to the one used previously (6). This apparatus consisted of a five-leg manifold attached to round-bottom flasks. The five flasks were typically used as follows. Two flasks contained the standard NaCl solutions, two flasks contained  $K_2HPO_4 + KH_2PO_4$  solutions, and the central flask was used as a water reservoir. The apparatus was held in a constant temperature bath for at least 72 h for equilibration.

The temperature was controlled to within  $\pm 0.005$  °C by a Heto temperature controller (Hetotherm PF, Heto Lab Equipment, Denmark). The temperature of the bath was monitored with a mercury thermometer with a readability of  $\pm 0.01$  °C. After equilibrium had been reached, the manifold assembly was removed from the bath and each flask was weighed with a high-precision ( $\pm 10^{-8}$  kg) analytical balance (AE-240, Mettler-Toledo AG, Switzerland).

## Table 1. Densities of Aqueous K<sub>2</sub>HPO<sub>4</sub> Solutions at 25 °C

|                          | -                      | _                        |                        |
|--------------------------|------------------------|--------------------------|------------------------|
| $m/(\text{mol·kg}^{-1})$ | $d/(\text{g-cm}^{-3})$ | $m/(\text{mol·kg}^{-1})$ | $d/(\text{g-cm}^{-3})$ |
| 0.1016                   | 1.01180                | 0.6308                   | 1.08414                |
| 0.1622                   | 1.02051                | 1.4281                   | 1.17987                |
| 0.1946                   | 1.02504                | 2.4395                   | 1.28582                |
| 0.2406                   | 1.03161                | 3.7280                   | 1.39826                |
| 0.2880                   | 1.03801                | 5.7458                   | 1.51245                |
| 0.3445                   | 1.04565                | 8.6082                   | 1.64466                |
| 0.3985                   | 1.05303                |                          |                        |

Table 2. Densities of Aqueous KH<sub>2</sub>PO<sub>4</sub> Solutions at 25 °C

| $m/(mol \cdot kg^{-1})$ | $d/(\text{g-cm}^{-3})$ | $m/(\text{mol}\cdot\text{kg}^{-1})$ | $d/(\text{g·cm}^{-3})$ |
|-------------------------|------------------------|-------------------------------------|------------------------|
| 0.0502                  | 1.00178                | 0.3941                              | 1.03304                |
| 0.0991                  | 1.00637                | 0.8128                              | 1.06866                |
| 0.1464                  | 1.01077                | 1.2805                              | 1.10687                |
| 0.1988                  | 1.01560                | 1.8370                              | 1.14651                |
| 0.2968                  | 1.02439                |                                     |                        |

Table 3. Densities of  $H_2O$  +  $KH_2PO_4$  +  $K_2HPO_4$  Solutions at 25  $^{\circ}C$ 

| $m/(\text{mol·kg}^{-1})$        |                                 |                          |
|---------------------------------|---------------------------------|--------------------------|
| KH <sub>2</sub> PO <sub>4</sub> | K <sub>2</sub> HPO <sub>4</sub> | $d_{12}/({ m gcm}^{-3})$ |
| 0.2049                          | 0.2976                          | 1.05677                  |
| 0.6149                          | 0.8651                          | 1.15840                  |
| 0.4040                          | 0.5658                          | 1.10688                  |
| 0.8082                          | 1.1492                          | 1.20248                  |
| 1.0059                          | 1.4345                          | 1.24408                  |
| 0.7231                          | 0.7030                          | 1.14759                  |
| 1.1615                          | 0.3485                          | 1.13834                  |
| 0.3213                          | 0.3147                          | 1.06856                  |
| 0.4421                          | 0.2516                          | 1.07017                  |
| 0.0796                          | 0.1795                          | 1.03028                  |
| 0.4623                          | 1.1211                          | 1.17697                  |
| 0.8640                          | 0.2348                          | 1.10140                  |
| 0.1505                          | 0.1214                          | 1.02838                  |
| 0.9296                          | 0.7953                          | 1.17219                  |
| 1.4135                          | 0.5121                          | 1.17298                  |

The maximum errors in the reported experimental molality, density, and activity data were verified as  $\pm 0.0002$  mol·kg<sup>-1</sup>,  $\pm 0.00001$  gcm<sup>-3</sup>, and  $\pm 0.0002$ , respectively.

### **Results and Discussion**

The results for the densities and water activities are given in Tables 1-6. The density data are correlated using the semiempirical equation

$$d_{12} - d_{w} = (d_{1} - d_{w}) + (d_{2} - d_{w}) + (m_{1}m_{2})^{1/2}(b_{0} + b_{1}(m_{1}m_{2})^{1/2})$$
(1)

0/0 © 1995 American Chemical Society

Table 4. Water Activity of  $H_2O$  +  $KH_2PO_4$  Solutions at 25  $^\circ C$ 

| $\frac{m(\mathrm{KH}_{2}\mathrm{PO}_{4})}{(\mathrm{mol}\cdot\mathrm{kg}^{-1})}$ | a      | $m(\mathrm{KH}_2\mathrm{PO}_4)/$<br>(mol·kg <sup>-1</sup> ) a |        |
|---------------------------------------------------------------------------------|--------|---------------------------------------------------------------|--------|
| 0.6874                                                                          | 0.9813 | 1.5709                                                        | 0.9620 |
| 1.3325                                                                          | 0.9666 | 1.9158                                                        | 0.9551 |
| 1.4546                                                                          | 0.9645 | 1.9913                                                        | 0.9540 |

Table 5. Water Activity of  $H_2O + K_2HPO_4$  Solutions at 25 °C

| $m(K_2HPO_4)/(mol\cdot kg^{-1})$ | a      | $m(K_2HPO_4)/(mol\cdot kg^{-1})$ | a      |
|----------------------------------|--------|----------------------------------|--------|
| 0.4371                           | 0.9835 | 1.3034                           | 0.9540 |
| 0.5353                           | 0.9813 | 1.5673                           | 0.9463 |
| 0.7644                           | 0.9710 | 1.8157                           | 0.9340 |
| 1.0124                           | 0.9644 | 2.2007                           | 0.9213 |

Table 6. Water Activities  $a_{12}$  of  $H_2O + KH_2PO_4 + K_2HPO_4$ Solutions at 25 °C

| <i>m/</i> (mo                   | <b>l·kg</b> <sup>-1</sup> )     |          |
|---------------------------------|---------------------------------|----------|
| K <sub>2</sub> HPO <sub>4</sub> | KH <sub>2</sub> PO <sub>4</sub> | $a_{12}$ |
| 0.1572                          | 0.1110                          | 0.9906   |
| 0.2349                          | 0.1655                          | 0.9867   |
| 0.3025                          | 0.2125                          | 0.9831   |
| 0.2521                          | 0.4518                          | 0.9793   |
| 0.5867                          | 0.1174                          | 0.9758   |
| 0.4241                          | 0.4430                          | 0.9758   |
| 0.2281                          | 0.7218                          | 0.9758   |
| 0.5561                          | 0.3909                          | 0.9724   |
| 0.7999                          | 0.4561                          | 0.9634   |
| 0.2737                          | 1.2433                          | 0.9634   |
| 0.8861                          | 0.4029                          | 0.9619   |
| 0.3755                          | 1.2166                          | 0.9619   |

where  $d_{12}$ ,  $d_1$ ,  $d_2$ , and  $d_w$  represent the mass density of mixed-electrolyte "12" solution, single-electrolyte "1" solution, single-electrolyte "2" solution, and pure water, respectively. The coefficients  $b_0$ , and  $b_1$  are empirical parameters, and  $m_1$  and  $m_2$  are the molalities of salts 1 and 2.

The densities of single-electrolyte solutions are obtained from

$$d_i = (1000 + m_i M_i) / [(1000/d_w) + m_i \phi_i]$$
(2)

where  $M_i$  is the molecular weight and  $\phi_i$  is the apparent molal volume of salt *i*. The apparent molal volume is given by the semiempirical equation

$$\phi_i = \phi_0 + S_v m_i^{1/2} + b_v m_i \tag{3}$$

where  $\phi_0$  is the apparent molal volume at infinite dilution obtained from the experimental density data at very low salt concentration,  $b_v$  is a fitting parameter, and  $S_v$  is the theoretical limiting slope defined by

$$S_{v} = k [1/2 \sum_{i} v_{i} z_{i}^{2}]^{3/2}$$
(4)

where  $\nu_i$  is the number of ions of species *i* and valency  $z_i$  formed by one molecule of electrolyte. The limiting slope, *k*, is 1.868 cm<sup>3</sup>·L<sup>1/2</sup>·mol<sup>-3/2</sup> at 25 °C (7). Equation 3 has been used to correlate the density data for a single-salt solution. The values for the infinite dilution apparent molar volume,  $\phi_0$ , obtained from our density measurements were compared with the values estimated from the partial molar volumes of ions in water reported by Millero (7). The result of this comparison is given in Table 7 along with the values for  $b_v$ . The experimental density data for the H<sub>2</sub>O + KH<sub>2</sub>-PO<sub>4</sub> system can be compared with sources compiled by 
 Table 7. Apparent Molar Volume Parameter Values

  $\phi_0/(\text{cm}^3 \cdot \text{mol}^{-1})$ 

|                                                                    | φυ(επι 1       |                  |                                        |  |
|--------------------------------------------------------------------|----------------|------------------|----------------------------------------|--|
|                                                                    | a              | ь                | $b_{v}/(\mathrm{cm^{3}kg^{m}ol^{-2}})$ |  |
| K <sub>2</sub> HPO <sub>4</sub><br>KH <sub>2</sub> PO <sub>4</sub> | 24.70<br>40.62 | $25.74 \\ 38.12$ | 1.14<br>2.94                           |  |

<sup>a</sup> This work. <sup>b</sup> Calculated from ionic partial molar volume data (7).



**Figure 1.** Comparison of the new experimental density results  $(\bullet)$  for H<sub>2</sub>O + KH<sub>2</sub>PO<sub>4</sub> system with data (+) from sources compiled by Hellwege (4) at 25 °C.



**Figure 2.** Comparison of the experimental water activity data ( $\bullet$ ) for H<sub>2</sub>O + K<sub>2</sub>HPO<sub>4</sub> system with literature values (O) of Goldberg (5) and Pitzer's correlation (-) at 25 °C.

Hellwege (4), who reported data with  $\pm 0.1$  kgm<sup>-3</sup> accuracy at several different temperatures. As shown in Figure 1, our data compare well with those of ref 4.

For mixed electrolyte solutions, eqs 2 and 3 are used along with eq 1 to correlate the density results. The parameters  $b_0$  and  $b_1$  for this correlation are -0.000127and -0.018857, and they can predict the density values with an average deviation of  $\pm 0.0005$  gcm<sup>-3</sup>.

The water activity results for single-salt solutions are given in Tables 4 and 5. As shown in Figure 2, our results for the  $H_2O + K_2HPO_4$  system are in good agreement with the data given by Goldberg (5) and consistent with Pitzer's correlation at low concentrations. Likewise, for the  $H_2O$ +  $KH_2PO_4$  system, our water activity data compare well with Pitzer's correlation. For both systems, our results extend the available activity data to higher molalities.

Furthermore, the water activity results for the mixedsalt solution are correlated by a similar equation

$$a_{12} - a_{w} = (a_{1} - a_{w}) + (a_{2} - a_{w}) + (m_{1}m_{2})^{1/2}(b_{0} + b_{1}(m_{1}m_{2})^{1/2})$$
(5)

where  $a_{12}$ ,  $a_1$ ,  $a_2$ , and  $a_w$  represent the water activity of



**Figure 3.** Water activity isolines for  $H_2O + KH_2PO_4 + K_2HPO_4$ solutions at 25 °C corresponding to water activities 0.9906 ( $\oplus$ ), 0.9867 ( $\bigcirc$ ), 0.9831 ( $\blacksquare$ ), 0.9793 ( $\square$ ), 0.9758 ( $\blacktriangle$ ), 0.9724 ( $\triangle$ ), 0.9634 ( $\blacklozenge$ ), 0.9619 ( $\diamondsuit$ ).

mixed-salt 12 solution, single-salt 1 and 2 solutions, and pure water ( $a_w = 1$ ). The single-salt water activities  $a_1$  and  $a_2$  are obtained from Pitzer osmotic coefficient correlations (3). The coefficients  $b_0$  and  $b_1$  are empirical parameters and for the  $H_2O + K_2HPO_4 + KH_2PO_4$  system; they are equal to 0.00456 and 0.00927, respectively. These parameters predict the water activity with an average deviation of  $\pm 0.0002$ .

From the water activity results for the ternary solution, the lines of constant water activities are plotted in Figure 3. The molalities of each binary salt +  $H_2O$  solution for these lines (the points on the ordinate and abscissa) were calculated using Pitzer's correlation (3). Those activity values showing anomaly from smooth line were discarded. This method can be regarded as an additional check on the accuracy of the experimental water activities for the ternary system.

Moreover, some of the molality pairs given in Table 6 are selected such that the mass ratio of  $K_2HPO_4$  to  $KH_2$ -PO<sub>4</sub> is about 1.82. This ratio has been used in some of the experimental salt-polymer-water phase diagrams (2) because of its buffering action. The water activity results for these points are represented by a dashed line in Figure 3.

#### Literature Cited

- Walter, H.; Brooks, D.; Fisher, D. Partitioning in Aqueous Two-Phase Systems; Academic Press: New York, 1985.
- (2) Albertsson, P. Partition of Cell Particles and Macromolecules, 3rd ed.; Wiley: New York, 1986.
- Pitzer, K. S. Ion Interaction Approach: Theory and Data Correlation. In Activity Coefficients in Electrolyte Solutions, 2nd ed.; Pitzer, K. S., Ed.; CRC Press: Boca Raton, FL, 1991.
   Hellwege, K. H., Ed. Densities of Binary Aqueous Systems, Heat
- Hellwege, K. H., Ed. Densities of Binary Aqueous Systems, Heat Capacities of Liquid Systems; Springer Verlag: Berlin, 1977.
   Goldberg, R. N. J. Phys. Chem. Ref. Data 1981, 10, 3.
- (a) Goldberg, R. N. J. Phys. Chert. Ref. Data 1981, 10, 3.
   (b) Ochs, L. R.; Kabiri-Badr, M.; Cabezas, H. AIChE J. 1990, 36, 1908.
- (7) Millero, F. J. Chem. Rev. 1971, 71, 147.

Received for review June 29, 1994. Revised September 21, 1994. Accepted November 8, 1994.<sup>®</sup> This work is partially supported by the Sahand University of Technology, Research Grant 31-23. The density measurements were carried out at Tabriz University.

#### JE940123X

<sup>®</sup> Abstract published in Advance ACS Abstracts, January 1, 1995.