# Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of 2-Ethoxyethanol with *n*-Alkanes ( $C_6$ to $C_{12}$ ), 2,2,4-Trimethylpentane, and Cyclohexane in the Temperature Interval 298.15–313.15 K

## Tejraj M. Aminabhavi\* and Bindu Gopalakrishna

Department of Chemistry, Karnatak University, Dharwad 580 003, India

Experimental results of density, viscosity, refractive index, and speed of sound in mixtures of 2-ethoxyethanol with *n*-alkanes ( $C_6$  to  $C_{12}$ ), 2,2,4-trimethylpentane, and cyclohexane are presented over the entire composition range at 298.15, 303.15, 308.15, and 313.15 K. These results are fitted simultaneously with mixture composition and temperature to an empirical equation. The computed values of excess molar volume and deviations in viscosity, molar refractivity, speed of sound, and isentropic compressibility are fitted to the Redlich–Kister polynomial equation to estimate the adjustable parameters and standard deviations. The effect of the size and shape of the alkanes on excess quantities is discussed. Excess molar volumes and deviations in viscosities show a systematic increase with increasing temperature. However, the deviations in molar refractivities are not dependent on temperature.

## Introduction

Binary mixtures of a polar liquid with alkanes have been known to exhibit interesting physicochemical properties (1-6). On the other hand, binary mixtures of 2-alkoxy alcohols with various other liquids have been studied in the literature (7-14). However, to the best of our knowledge, extensive physical data on binary mixtures of 2-ethoxyethanol, also known as ethyl cellosolve, with alkanes have not been published. 2-Ethoxyethanol is a useful solvent used in analytical and industrial research. Therefore, in this study, experimental values of density  $\rho$ , viscosity  $\eta$ , refractive index n, and speed of sound u for the binary mixtures of 2-ethoxyethanol with hexane, heptane, octane, nonane, decane, dodecane, 2,2,4-trimethylpentane, and cyclohexane at 298.15, 303.15, 308.15, and 313.18 K over the whole range of mixture compositions are presented. From these data, excess molar volume  $V^{\rm E}$  and changes in viscosity  $\Delta \eta$ , molar refractivity  $\Delta R$ , speed of sound  $\Delta u$ , and isentropic compressibility  $\Delta k_{\rm S}$  have been calculated. These results are fitted to the Redlich-Kister polynomial (15) to estimate the adjustable parameters and standard deviations between the calculated and experimental results. The calculated results are discussed in terms of the binary interactions and the effect of alkane chain length in addition to their shapes when mixed with 2-ethoxyethanol.

#### **Experimental Section**

**Materials.** The chemicals, viz., 2-ethoxyethanol, heptane, octane, nonane, decane, and dodecane (all from S.D. Fine Chemicals Pvt. Ltd., Bombay), hexane (Sarabhai Chemicals, Bombay), 2,2,4-trimethylpentane (B.D.H. Chemicals Ltd., England), and cyclohexane (B.D.H. Laboratories, Division of Glaxo Laboratories, Bombay), were high purity grade solvents. These solvents were used directly as supplied. GLC analyses were done to test their purities using a flame ionization detector (Nucon series, model 5700/5765, with fused silica columns) having a sensitivity better than  $10^{-8}$  g of fatty acid/µL of solvent.

**Measurements.** Binary mixtures were prepared by mixing the appropriate volumes of pure liquids in specially

0021-9568/95/1740-0632\$09.00/0

designed ground glass air tight bottles and weighed in a single-pan Mettler balance (Switzerland, model AE-240) to an accuracy of  $\pm 0.01$  mg. The possible error in mole fractions is estimated to be around  $\pm 0.0001$ .

Densities were measured using a pycnometer (Lurex, New Jersey) having a bulb volume of 15 cm<sup>3</sup> and a fine capillary with an internal diameter of 1 mm. These results were reproducible within  $\pm 0.0002$  g cm<sup>-3</sup>. Refractive indices for the sodium-D line were measured with a thermostatically controlled Abbe refractometer (Bellingham and Stanley Ltd., London) with an accuracy of  $\pm 0.0001$ . Viscosities were measured with a Cannon Fenske viscometer (size 100, Industrial Research glassware Ltd., New Jersey). Flow times were reproducible within  $\pm 0.01$  s, and the measured viscosities are accurate to  $\pm 0.001$  mPa·s. Speeds of sound were measured within a precision of  $\pm 2 \text{ m} \cdot \text{s}^{-1}$ using a variable path single crystal interferometer (model M-84, Mittal Enterprises, New Delhi). A steel cell fitted with a quartz crystal of 1 MHz frequency was used. Details of the apparatus and experimental procedures used in the above measurements are the same as described previously (4-6). The isentropic compressibilities,  $k_s$  calculated as  $k_s$ =  $u^{-2}\rho$ , are accurate to  $\pm 1.5$  TPa<sup>-1</sup>.

In all property measurements, triplicate measurements were made and the average of these runs was considered. An INSREF (model 016 AP) thermostat having a digital display of temperature control within  $\pm 0.01$  K at the desired temperature was used in the measurement of physical properties.

## Results

Table 1 presents experimental densities, viscosities, refractive indices, and speeds of sound of all the liquids at 298.15 K used in this work as well as the accepted literature values (6, 16-28). The estimated mole percent purities are also included.

Experimental results of  $\rho$ , n, u, and  $\eta$  for the binary mixtures at four temperatures are given in Table 2. These values are fitted simultaneously to study the effect of

<sup>\*</sup> To whom correspondence should be addressed.

Table 1. Comparison of Experimental Densities  $(\varrho)$ , Viscosities  $(\eta)$ , Refractive Indices (n), and Speeds of Sound (u) of Pure Liquids with Literature Values at 298.15 K

|                               | Q/(    | g·cm <sup>-3</sup> ) | η/(   | (mPa•s)    |                | n           | u/    | $(m \cdot s^{-1})$ |
|-------------------------------|--------|----------------------|-------|------------|----------------|-------------|-------|--------------------|
| liquid (mol % purity)         | exptl  | lit.                 | exptl | lit.       | exptl          | lit.        | exptl | lit.               |
| 2-ethoxyethanol (99.5)        | 0.9253 | 0.9252 (16)          | 1.784 | 1.850 (16) | 1.4054         | 1.4057 (16) | 1296  |                    |
| hexane (99.3)                 | 0.6606 | 0.6552(17)           | 0.311 | 0.298 (6)  | 1.3727         | 1.3725 (18) | 1073  | 1076 (19)          |
| heptane (99.6)                | 0.6794 | 0.6795 (20)          | 0.395 | 0.397 (16) | 1.3848         | 1.3851 (21) | 1133  | 1130 ( <i>19</i> ) |
| octane (99.7)                 | 0.6986 | 0.6985 (20)          | 0.510 | 0.506 (6)  | 1.3944         | 1.3951 (20) | 1180  | 1172 ( <i>19</i> ) |
| nonane (99.6)                 | 0.7145 | 0.7140(22)           | 0.650 | 0.657(22)  | 1.4034         | 1.4035 (18) | 1209  | 1209 (5)           |
| decane (99.5)                 | 0.7266 | 0.7266 (18)          | 0.832 | 0.843 (22) | 1.4090         | 1.4096 (23) | 1238  | 1234 (19)          |
| dodecane (99.2)               | 0.7461 | 0.7457 (24)          | 1.331 | 1.345(22)  | <b>1.419</b> 0 | 1.4197 (24) | 1284  | 1278 (25)          |
| cvclohexane (99.4)            | 0.7737 | 0.7737 (19)          | 0.877 | 0.898 (26) | 1.4232         | 1.4231(27)  | 1266  | 1254 (28)          |
| 2,2,4-trimethylpentane (99.5) | 0.6885 | 0.6877(6)            | 0.462 | 0.478 (6)  | 1.3884         | 1.3892 (6)  | 1080  | 1084 (6)           |

temperature and composition using (29)

$$Y(T,x_1) = \{ [a_0 \exp(a_1 T)](b_0 + b_1 x_1 + b_2 x_1^2 + b_3 x_1^3) \}^{1/2}$$
(1)

This equation calculates the property  $Y (=\rho, n, u, \text{ and } \eta)$  for any values of T and  $x_1$  of the mixture. The estimated coefficients and standard errors are listed in Table 3. Equation 1 fits the experimental data within the average uncertainty of experimental errors in the temperature range of 298.15  $\leq T/K \leq 313.15$  and composition range of  $0 \leq x_1 \leq 1$ .

Experimental densities of the binary mixtures are used to calculate  $V^{\rm E}$  as

$$V^{E}/(\text{cm}^{3} \cdot \text{mol}^{-1}) = x_{1}M_{1}(\varrho_{\text{m}}^{-1} - \varrho_{1}^{-1}) + x_{2}M_{2}(\varrho_{\text{m}}^{-1} - \varrho_{2}^{-1})$$
(2)

where  $x_1$ ,  $\varrho_1$ , and  $M_1$  are the mole fraction, density, and molecular weight of 2-ethoxyethanol. The same symbols with subscript 2 refer to alkanes. The  $\varrho_m$  is the density of the mixture at a given composition.

In order to obtain further information on intermolecular interactions in 2-ethoxyethanol + alkane mixtures, the deviations in viscosity  $\Delta \eta$ , molar refractivity  $\Delta R$ , speed of sound  $\Delta u$ , and isentropic compressibility  $\Delta k_s$  have been calculated, respectively, from viscosity, refractive index, and speed of sound data using the general equation (5)

$$\Delta Y = Y_{\rm m} - Y_1 C_1 - Y_2 C_2 \tag{3}$$

where  $\Delta Y$  refers to  $\Delta \eta$ ,  $\Delta R$ ,  $\Delta u$ , and  $\Delta k_s$ .  $Y_m$  is the measured mixture property under consideration, i.e., viscosity, molar refractivity, speed of sound, and isentropic compressibility;  $C_1$  and  $C_2$  are the mixture compositions containing components 1 and 2. To calculate  $\Delta \eta$  and  $\Delta u$ , mole fraction  $x_i$  is used for  $C_i$ .

For the calculation of  $\Delta R$ , the Lorentz-Lorenz relation (30, 31) for refractivity  $R_i$  is used:

$$R_i = [(n_i^2 - 1)/(n_i^2 + 2)](M_i/\varrho_i)$$
(4)

Following the general practice in the literature (32-34),  $\Delta R$  and  $\Delta k_s$  have been calculated on the basis of volume fraction  $\phi_i$ , defined as

$$\phi_i = x_i V_i / \sum_{i=1}^2 x_i V_i \tag{5}$$

where  $V_i$  is the molar volume of the *i*th component of the mixture. The results of  $V^E$ ,  $\Delta \eta$ ,  $\Delta R$ ,  $\Delta u$ , and  $\Delta k_s$  have been fitted to the Redlich-Kister polynomial (15),

$$\Delta Y \text{ or } V^{\text{E}} = C_1 C_2 \sum_{i=0}^{4} A_i (C_2 - C_1)^i \tag{6}$$

to estimate the adjustable parameters  $A_0$ ,  $A_1$ ,  $A_2$ ,  $A_3$ , and



**Figure 1.** Excess molar volumes at 298.15 K for mixtures of 2-ethoxyethanol with hexane ( $\bullet$ ), heptane ( $\bullet$ ), octane ( $\bigcirc$ ), nonane ( $\Box$ ), decane ( $\triangle$ ), dodecane ( $\blacksquare$ ), cyclohexane ( $\diamondsuit$ ), and 2,2,4-trimethylpentane ( $\nabla$ ).

 $A_4$  by the method of least squares using the Marquardt algorithm (35). For none of the mixtures does the precision warrant the use of more than five adjustable parameters. The standard deviation  $\sigma$  between the calculated and experimental values is calculated as

$$\sigma(\Delta Y \text{ or } V^{\text{E}}) = \left[\sum_{i=1}^{m} \{(\Delta Y \text{ or } V^{\text{E}})_{\text{exptl}} - (\Delta Y \text{ or } V^{\text{E}})_{\text{calcd}}\}^2 / (m-p)\right]^{1/2} (7)$$

where *m* is the number of data points and *p* is the number of estimated parameters. The results of the coefficients  $A_i$  and  $\sigma$  values for  $V^{\rm E}$ ,  $\Delta \eta$ ,  $\Delta u$ ,  $\Delta R$ , and  $\Delta k_{\rm s}$  are given in Table 4.

## Discussion

Excess molar volumes of the binary mixtures at 298.15 K are presented in Figure 1. The continuous curves represent the calculated values. In all cases, the values of  $V^{\rm E}$  are positive and increase systematically with increasing chain length of the alkanes from C<sub>6</sub> to C<sub>12</sub>. However, the  $V^{\rm E}$  versus  $x_1$  curves for cyclohexane lie between those of octane- and nonane-containing mixtures. Similarly, the curves for 2,2,4-trimethylpentane lie between those of hexane and heptane. Several contributions may appear in the interaction of 2-ethoxyethanol with alkanes, but the net effect leading to positive values of  $V^{\rm E}$  may be due to the decrease in dipole-dipole interactions between the mixing molecules. The progressive increase in  $V^{\rm E}$  is directly related to an increase in the length of the alkane chains. The observed maxima in  $V^{\rm E}$  vs  $x_1$  curves tend to

| <i>x</i> <sub>1</sub> | $\varrho/(g \cdot cm^{-3})$ | $\eta/(mPa\cdot s)$ | n                | $u/(m \cdot s^{-1})$ | <i>x</i> <sub>1</sub> | <i>Q</i> /( <b>g</b> • <b>cm</b> <sup>−3</sup> ) | η/(mPa·s)      | n      | <i>u</i> /(m·s <sup>-1</sup> ) |
|-----------------------|-----------------------------|---------------------|------------------|----------------------|-----------------------|--------------------------------------------------|----------------|--------|--------------------------------|
|                       |                             |                     | 2-1              | Ethoxyethano         | l(1) + Hexar          | ne (2)                                           |                |        |                                |
|                       |                             |                     |                  | 298                  | .15 K                 |                                                  |                |        |                                |
| 0.0000                | 0.6606                      | 0.311               | 1.3727           | 1073                 | 0.5958                | 0.7970                                           | 0.716          | 1.3898 | 1146                           |
| 0.0967                | 0.6789                      | 0.335               | 1.3749           | 1076                 | 0.6979                | 0.8262                                           | 0.875          | 1.3929 | 1170                           |
| 0.1963                | 0.6994                      | 0.376               | 1.3776           | 1082                 | 0.7955                | 0.8562                                           | 1.087          | 1.3966 | 1213                           |
| 0.2958                | 0.7213                      | 0.433               | 1.3829           | 1089                 | 1 0000                | 0.8900                                           | 1.452          | 1.4007 | 1202                           |
| 0.4948                | 0.7700                      | 0.595               | 1.3856           | 1116                 | 1.0000                | 0.5200                                           | 1.704          | 1.4004 | 1230                           |
|                       |                             |                     |                  | 303                  | 15 K                  |                                                  |                |        |                                |
| 0.0000                | 0.6559                      | 0.296               | 1.3709           | 000                  | 0.5958                | 0.7925                                           | 0.663          | 1.3875 |                                |
| 0.0967                | 0.6738                      | 0.318               | 1.3723           |                      | 0.6979                | 0.8218                                           | 0.803          | 1.3905 |                                |
| 0.1963                | 0.6947                      | 0.357               | 1.3749           |                      | 0.7955                | 0.8516                                           | 0.987          | 1.3949 |                                |
| 0.2958                | 0.7166                      | 0.406               | 1.3776           |                      | 0.8993                | 0.8855                                           | 1.315          | 1.3985 |                                |
| 0.3940                | 0.7396                      | 0.472               | 1.3802           |                      | 1.0000                | 0.9208                                           | 1.587          | 1.4033 |                                |
| 0.4540                | 0.7000                      | 0.004               | 1.3030           |                      |                       |                                                  |                |        |                                |
| 0.0000                | 0 6511                      | 0.284               | 1 2694           | 308                  | .15 K                 | 0 7979                                           | 0.615          | 1 0050 |                                |
| 0.0000                | 0.6511                      | 0.284               | 1.3004<br>1.3700 |                      | 0.5958                | 0.7878                                           | 0.615          | 1.3803 |                                |
| 0.1963                | 0.6898                      | 0.339               | 1.3725           |                      | 0.7955                | 0.8468                                           | 0.907          | 1.3927 |                                |
| 0.2958                | 0.7116                      | 0.385               | 1.3749           |                      | 0.8993                | 0.8807                                           | 1.199          | 1.3965 |                                |
| 0.3940                | 0.7349                      | 0.443               | 1.3778           |                      | 1.0000                | 0.9161                                           | 1.427          | 1.4014 |                                |
| 0.4948                | 0.7606                      | 0.517               | 1.3814           |                      |                       |                                                  |                |        |                                |
|                       |                             |                     |                  | 313                  | $.15 \mathrm{K}$      |                                                  |                |        |                                |
| 0.0000                | 0.6464                      | 0.270               | 1.3653           |                      | 0.5958                | 0.7830                                           | 0.573          | 1.3832 |                                |
| 0.0967                | 0.6641                      | 0.290               | 1.3670           |                      | 0.6979                | 0.8125                                           | 0.686          | 1.3871 |                                |
| 0.1963                | 0.6851                      | 0.322               | 1.3699           |                      | 0.7955                | 0.8422                                           | 0.829          | 1.3904 |                                |
| 0.2958                | 0.7009                      | 0.361               | 1.3720           |                      | 0.8993                | 0.8701                                           | 1.083          | 1.3952 |                                |
| 0.4948                | 0.7560                      | 0.484               | 1.3799           |                      | 1.0000                | 0.3110                                           | 1.201          | 1.4000 |                                |
|                       |                             |                     | 2-F              | thowwethano          | (1) + Henter          | ne (2)                                           |                |        |                                |
|                       |                             |                     |                  | anoxyc unanos        |                       | .ie (2)                                          |                |        |                                |
| 0.0000                | 0.6794                      | 0.395               | 1 3848           | 1133                 | .10 K<br>0.6074       | 0 7995                                           | 0 720          | 1 3030 | 1190                           |
| 0.1091                | 0.6957                      | 0.422               | 1.3851           | 1134                 | 0.6986                | 0.8243                                           | 0.922          | 1.3956 | 1202                           |
| 0.1973                | 0.7107                      | 0.455               | 1.3859           | 1136                 | 0.7990                | 0.8545                                           | 1.120          | 1.3995 | 1228                           |
| 0.2990                | 0.7300                      | 0.510               | 1.3876           | 1137                 | 0.8989                | 0.8876                                           | 1.390          | 1.4016 | 1255                           |
| 0.4000                | 0.7508                      | 0.585               | 1.3894           | 1146                 | 1.0000                | 0.9253                                           | 1.784          | 1.4054 | 1296                           |
| 0.5014                | 0.7735                      | 0.671               | 1.3915           | 1159                 |                       |                                                  |                |        |                                |
| 0.0000                | 0.0750                      | 0.075               | 1 000 /          | 303                  | .15 K                 |                                                  |                |        |                                |
| 0.0000                | 0.6750                      | 0.375               | 1.3824           |                      | 0.6074                | 0.7950                                           | 0.673          | 1.3915 |                                |
| 0.1031                | 0.0913                      | 0.398               | 1 3832           |                      | 0.0980                | 0.8198                                           | 0.843          | 1.3934 |                                |
| 0.2990                | 0.7254                      | 0.478               | 1.3850           |                      | 0.8989                | 0.8830                                           | 1.247          | 1.4000 |                                |
| 0.4000                | 0.7462                      | 0.541               | 1.3869           |                      | 1.0000                | 0.9208                                           | 1.587          | 1.4033 |                                |
| 0.5014                | 0.7689                      | 0.619               | 1.3891           |                      |                       |                                                  |                |        |                                |
|                       |                             |                     |                  | 308.                 | $15 \mathrm{K}$       |                                                  |                |        |                                |
| 0.0000                | 0.6707                      | 0.356               | 1.3796           |                      | 0.6074                | 0.7903                                           | 0.630          | 1.3886 |                                |
| 0.1091                | 0.6867                      | 0.377               | 1.3800           |                      | 0.6986                | 0.8151                                           | 0.772          | 1.3908 |                                |
| 0.1973                | 0.7017                      | 0.404               | 1.3823           |                      | 0.7990                | 0.8451                                           | 0.927          | 1.3945 |                                |
| 0.4000                | 0.7416                      | 0.506               | 1.3849           |                      | 1 0000                | 0.8785                                           | 1.133<br>1 427 | 1.3960 |                                |
| 0.5014                | 0.7642                      | 0.574               | 1.3873           |                      | 1.0000                | 0.0101                                           | 1.427          | 1.4014 |                                |
|                       |                             |                     |                  | 313                  | 15 K                  |                                                  |                |        |                                |
| 0.0000                | 0.6664                      | 0.339               | 1.3777           | 010                  | 0.6074                | 0.7858                                           | 0.592          | 1.3870 |                                |
| 0.1091                | 0.6821                      | 0.355               | 1.3774           |                      | 0.6986                | 0.8105                                           | 0.713          | 1.3891 |                                |
| 0.1973                | 0.6972                      | 0.382               | 1.3797           |                      | 0.7990                | 0.8406                                           | 0.844          | 1.3927 |                                |
| 0.2990                | 0.7162                      | 0.422               | 1.3800           |                      | 0.8989                | 0.8736                                           | 1.026          | 1.3959 |                                |
| 0.4000                | 0.7308                      | 0.472               | 1.3827           |                      | 1.0000                | 0.9116                                           | 1.281          | 1.4000 |                                |
| 0.0014                | 0.1000                      | 0.000               | 1.0000           | 7th or roth on o     |                       | a (1)                                            |                |        |                                |
|                       |                             |                     | 2-1              | 2 mox yet nano       | $1 \in \mathbb{Z}$    | e (2)                                            |                |        |                                |
| 0.0000                | 0 6986                      | 0.510               | 1 30//           | 298.<br>1190         | 10 K                  | 0 8001                                           | 0.870          | 1 2072 | 1.00.9                         |
| 0.0976                | 0.7104                      | 0.524               | 1.3938           | 1176                 | 0.6962                | 0.8252                                           | 1.003          | 1.3980 | 1203                           |
| 0.1994                | 0.7251                      | 0.566               | 1.3940           | 1176                 | 0.7983                | 0.8540                                           | 1.179          | 1.4001 | 1242                           |
| 0.3003                | 0.7414                      | 0.619               | 1.3943           | 1175                 | 0.8969                | 0.8861                                           | 1.421          | 1.4020 | 1267                           |
| 0.4001                | 0.7591                      | 0.687               | 1.3953           | 1179                 | 1.0000                | 0.9253                                           | 1.784          | 1.4054 | 1296                           |
| 0.5004                | 0.7790                      | 0.772               | 1.3959           | 1188                 |                       |                                                  |                |        |                                |
| 0 0000                | 0 6045                      | 0.470               | 1 9009           | 303.                 | 15 K                  | 0.7050                                           | 0.505          | 1.0050 |                                |
| 0.0000                | 0.0940                      | 0.479               | 1.3923           |                      | 0.0944                | 0.7953                                           | 0.795          | 1.3950 |                                |
| 0.1994                | 0.7208                      | 0.527               | 1.3916           |                      | 0.7983                | 0.8494                                           | 1.069          | 1.3978 |                                |
| 0.3003                | 0.7370                      | 0.574               | 1.3919           |                      | 0.8969                | 0.8816                                           | 1.279          | 1.3999 |                                |
| 0.4001                | 0.7546                      | 0.632               | 1.3928           |                      | 1.0000                | 0.9208                                           | 1.587          | 1.4033 |                                |
| 0.5004                | 0.7746                      | 0.710               | 1.3935           |                      |                       |                                                  |                |        |                                |

Table 2. Experimental Densities  $(\varrho)$ , Viscosities  $(\eta)$ , Refractive Indices (n), and Speeds of Sound (u) of Binary Mixtures at Different Temperatures

| Table 2 (C            | Continued)                  |                     |         |                                  |                        |                              |                     |        |                                |
|-----------------------|-----------------------------|---------------------|---------|----------------------------------|------------------------|------------------------------|---------------------|--------|--------------------------------|
| <i>x</i> <sub>1</sub> | $\varrho/(\text{gcm}^{-3})$ | $\eta/(mPa\cdot s)$ | n       | $u/(\text{m}\cdot\text{s}^{-1})$ | $x_1$                  | $\varrho/(\text{g-cm}^{-3})$ | $\eta/(mPa\cdot s)$ | n      | <i>u</i> /(m·s <sup>-1</sup> ) |
|                       |                             |                     |         | 308                              | .15 K                  |                              |                     |        |                                |
| 0.0000                | 0.6903                      | 0.453               | 1.3898  |                                  | 0.5944                 | 0.7906                       | 0.732               | 1.3924 |                                |
| 0.0976                | 0.7019                      | 0.463               | 1.3886  |                                  | 0.6962                 | 0.8159                       | 0.834               | 1.3935 |                                |
| 0.1994                | 0.7164                      | 0.494               | 1.3892  |                                  | 0.7983                 | 0.8448                       | 0.972               | 1.3954 |                                |
| 0.3003                | 0.7326                      | 0.538               | 1.3898  |                                  | 0.8969                 | 0.8769                       | 1.155               | 1.3978 |                                |
| 0.4001                | 0.7501                      | 0.591               | 1.3903  |                                  | 1.0000                 | 0.9161                       | 1.427               | 1.4014 |                                |
| 0.5004                | 0.7700                      | 0.657               | 1.3908  |                                  |                        |                              |                     |        |                                |
|                       |                             |                     |         | 313                              | .15 K                  |                              |                     |        |                                |
| 0.0000                | 0.6864                      | 0.426               | 1.3873  |                                  | 0.5944                 | 0.7861                       | 0.673               | 1.3902 |                                |
| 0.0976                | 0.6977                      | 0.434               | 1.3863  |                                  | 0.6962                 | 0.8114                       | 0.763               | 1.3913 |                                |
| 0.1994                | 0.7123                      | 0.462               | 1.3884  |                                  | 0.7983                 | 0.8404                       | 0.896               | 1.3938 |                                |
| 0.3003                | 0.7284                      | 0.500               | 1.3869  |                                  | 0.8969                 | 0.8725                       | 1.050               | 1.3956 |                                |
| 0.4001                | 0.7460                      | 0.550               | 1.3660  |                                  | 1.0000                 | 0.9116                       | 1.281               | 1.4000 |                                |
| 0.0004                | 0.1000                      | 0.005               | 1.0000  |                                  |                        | (0)                          |                     |        |                                |
|                       |                             |                     | Z-      | Etnoxyetnano                     | I(1) + Nonal           | ne (2)                       |                     |        |                                |
|                       |                             | 0.050               | 1 400 4 | 298                              | .15 K                  | 0.0044                       |                     | 1 1001 | 1000                           |
| 0.0000                | 0.7145                      | 0.650               | 1.4034  | 1209                             | 0.6010                 | 0.8044                       | 1.024               | 1.4024 | 1222                           |
| 0.0980                | 0.7245                      | 0.662               | 1.4025  | 1208                             | 0.7022                 | 0.8279                       | 1.107               | 1.4024 | 1234                           |
| 0.2031                | 0.7371                      | 0.696               | 1.4020  | 1202                             | 0.8034                 | 0.8000                       | 1.203               | 1.4027 | 1200                           |
| 0.3023                | 0.7511                      | 0.740               | 1.4014  | 1200                             | 0.9003                 | 0.0007                       | 1.409               | 1.4030 | 1208                           |
| 0.4074                | 0.7851                      | 0.822               | 1 4015  | 1203                             | 1.0000                 | 0.3200                       | 1.704               | 1.4004 | 1250                           |
| 0.0000                | 0.1001                      | 0.000               | 1.4010  | 1212                             | 1 5 17                 |                              |                     |        |                                |
| 0 0000                | 0.7106                      | 0 609               | 1 4004  | 303                              | .10 <b>N</b><br>0 6010 | 0.8001                       | 0 020               | 1 3008 |                                |
| 0.0000                | 0.7100                      | 0.000               | 1 3995  |                                  | 0.0010                 | 0.8001                       | 1 005               | 1.5550 |                                |
| 0.0980                | 0.7200                      | 0.646               | 1 3995  |                                  | 0.8034                 | 0.8511                       | 1 137               | 1 4004 |                                |
| 0.3023                | 0.7468                      | 0.690               | 1.3989  |                                  | 0.9003                 | 0.8821                       | 1.316               | 1.4019 |                                |
| 0.4074                | 0.7633                      | 0.753               | 1.3992  |                                  | 1.0000                 | 0.9208                       | 1.587               | 1.4033 |                                |
| 0.5050                | 0.7807                      | 0.821               | 1.3992  |                                  |                        |                              |                     |        |                                |
|                       |                             |                     |         | 308                              | 15 K                   |                              |                     |        |                                |
| 0.0000                | 0 7068                      | 0.569               | 1 3985  | 000                              | 0.6010                 | 0.7956                       | 0.853               | 1.3975 |                                |
| 0.0980                | 0.7162                      | 0.577               | 1.3975  |                                  | 0.7022                 | 0.8189                       | 1.916               | 1.3978 |                                |
| 0.2031                | 0.7287                      | 0.601               | 1.3970  |                                  | 0.8034                 | 0.8465                       | 1.034               | 1.3980 |                                |
| 0.3023                | 0.7425                      | 0.640               | 1.3968  |                                  | 0.9003                 | 0.8775                       | 1.191               | 1.3995 |                                |
| 0.4074                | 0.7589                      | 0.697               | 1.3967  |                                  | 1.0000                 | 0.9161                       | 1.427               | 1.4014 |                                |
| 0.5050                | 0.7761                      | 0.757               | 1.3969  |                                  |                        |                              |                     |        |                                |
|                       |                             |                     |         | 313                              | .15 K                  |                              |                     |        |                                |
| 0.0000                | 0.7029                      | 0.535               | 1.3965  |                                  | 0.6010                 | 0.7912                       | 0.778               | 1.3948 |                                |
| 0.0980                | 0.7121                      | 0.537               | 1.3954  |                                  | 0.7022                 | 0.8144                       | 0.837               | 1.3956 |                                |
| 0.2031                | 0.7246                      | 0.558               | 1.3942  |                                  | 0.8034                 | 0.8420                       | 0.939               | 1.3957 |                                |
| 0.3023                | 0.7382                      | 0.596               | 1.3945  |                                  | 0.9003                 | 0.8729                       | 1.075               | 1.3969 |                                |
| 0.4074                | 0.7546                      | 0.642               | 1.3942  |                                  | 1.0000                 | 0.9116                       | 1.281               | 1.4000 |                                |
| 0.5050                | 0.7718                      | 0.698               | 1.3950  |                                  |                        |                              |                     |        |                                |
|                       |                             |                     | 2-      | Ethoxyethano                     | l(1) + Decar           | ne (2)                       |                     |        |                                |
|                       |                             |                     |         | 298                              | .15 K                  |                              |                     |        |                                |
| 0.0000                | 0.7266                      | 0.832               | 1.4093  | 1238                             | 0.5978                 | 0.8062                       | 1.128               | 1.4050 | 1237                           |
| 0.0958                | 0.7347                      | 0.828               | 1.4078  | 1231                             | 0.6989                 | 0.8280                       | 1.223               | 1.4045 | 1244                           |
| 0.2018                | 0.7458                      | 0.851               | 1.4070  | 1224                             | 0.7994                 | 0.8541                       | 1.345               | 1.4043 | 1256                           |
| 0.2985                | 0.7578                      | 0.905               | 1.4064  | 1221                             | 0.8984                 | 0.8891                       | 1,512               | 1.4043 | 1274                           |
| 0.4011                | 0.7719                      | 0.962               | 1.4058  | 1224                             | 1.0000                 | 0.9255                       | 1,704               | 1.4004 | 1290                           |
| 0.4304                | 0.1011                      | 1.040               | 1.4004  | 1223                             |                        |                              |                     |        |                                |
| 0.0000                | 0 7000                      | 0.774               | 1 4000  | 303                              | .15 K                  | 0.0010                       | 1.016               | 1 4096 |                                |
| 0.0000                | 0.7229                      | 0.774               | 1.4068  |                                  | 0.5978                 | 0.8018                       | 1.016               | 1.4026 |                                |
| 0.0956                | 0.7309                      | 0.767               | 1.4000  |                                  | 0.0909                 | 0.8495                       | 1,100               | 1.4025 |                                |
| 0.2018                | 0.7410                      | 0.785               | 1.4040  |                                  | 0.7994                 | 0.8495                       | 1.209               | 1.4025 |                                |
| 0.2000                | 0.7678                      | 0.879               | 1 4033  |                                  | 1 0000                 | 0.9208                       | 1.587               | 1 4033 |                                |
| 0.4984                | 0.7835                      | 0.946               | 1.4031  |                                  | 1.0000                 | 0.0200                       | 1.001               | 1.1000 |                                |
|                       |                             |                     |         | 308                              | 15 K                   |                              |                     |        |                                |
| 0.0000                | 0.7190                      | 0.721               | 1.4043  | 308                              | 0.5978                 | 0.7973                       | 0.929               | 1.4003 |                                |
| 0.0958                | 0.7263                      | 0.709               | 1.4029  |                                  | 0.6989                 | 0.8191                       | 1.001               | 1.4000 |                                |
| 0.2018                | 0.7377                      | 0.725               | 1.4027  |                                  | 0.7994                 | 0.8449                       | 1.096               | 1.4001 |                                |
| 0.2985                | 0.7494                      | 0.766               | 1.4017  |                                  | 0.8984                 | 0.8759                       | 1.223               | 1.4000 |                                |
| 0.4011                | 0.7634                      | 0.806               | 1.4009  |                                  | 1.0000                 | 0.9161                       | 1.427               | 1.4014 |                                |
| 0.4984                | 0.7789                      | 0.866               | 1.4005  |                                  |                        |                              |                     |        |                                |
|                       |                             |                     |         | 313                              | .15 K                  |                              |                     |        |                                |
| 0.0000                | 0.7153                      | 0.673               | 1.4028  |                                  | 0.5978                 | 0.7929                       | 0.844               | 1.3977 |                                |
| 0.0958                | 0.7229                      | 0.661               | 1.4006  |                                  | 0.6989                 | 0.8147                       | 0.921               | 1.3977 |                                |
| 0.2018                | 0.7338                      | 0.681               | 1.4002  |                                  | 0.7994                 | 0.8405                       | 0.992               | 1.3977 |                                |
| 0.2985                | 0.7452                      | 0.705               | 1.3993  |                                  | 0.8984                 | 0.8714                       | 1.103               | 1.3979 |                                |
| 0.4011                | 0.7596                      | 0.744               | 1.3985  |                                  | 1.0000                 | 0.9116                       | 1.281               | 1.4000 |                                |
| 0.4984                | 0.7747                      | 0.797               | 1.3980  |                                  |                        |                              |                     |        |                                |

Table 2 (Continued)

|        | ontinueu/                   |                     |                  |                      |                  |                              |                     |        |                      |
|--------|-----------------------------|---------------------|------------------|----------------------|------------------|------------------------------|---------------------|--------|----------------------|
| $x_1$  | $\varrho/(g \cdot cm^{-3})$ | $\eta/(mPa\cdot s)$ | n                | $u/(m \cdot s^{-1})$ | $x_1$            | $\varrho/(\text{g-cm}^{-3})$ | $\eta/(mPa\cdot s)$ | n      | $u/(m \cdot s^{-1})$ |
|        |                             |                     | 2-E              | thoxyethanol         | (1) + Dodeca     | ane (2)                      |                     |        |                      |
|        |                             |                     |                  | 298                  | .15 K            |                              |                     |        |                      |
| 0.0000 | 0.7461                      | 1.331               | 1.4190           | 1284                 | 0.5996           | 0.8112                       | 1.412               | 1.4110 | 1256                 |
| 0.1001 | 0.7527                      | 1.288               | 1.4176           | 1273                 | 0.6933           | 0.8291                       | 1.453               | 1.4099 | 1262                 |
| 0.1987 | 0.7609                      | 1.294               | 1.4159           | 1268                 | 0.7988           | 0.8538                       | 1.529               | 1.4077 | 1269                 |
| 0.3009 | 0.7706                      | 1.321               | 1.4102<br>1 4137 | 1256                 | 1 0000           | 0.8839                       | 1.030               | 1.4050 | 1279                 |
| 0.5014 | 0.7954                      | 1.379               | 1.4125           | 1255                 | 1.0000           | 0.0200                       | 1.101               | 1.1004 | 1200                 |
|        |                             |                     |                  | 303                  | 15 K             |                              |                     |        |                      |
| 0.0000 | 0.7425                      | 1.215               | 1.4168           | 000                  | 0.5996           | 0.8071                       | 1.284               | 1.4086 |                      |
| 0.1001 | 0.7489                      | 1.171               | 1.4152           |                      | 0.6933           | 0.8248                       | 1.317               | 1.4074 |                      |
| 0.1987 | 0.7571                      | 1.174               | 1.4142           |                      | 0.7988           | 0.8495                       | 1.387               | 1.4053 |                      |
| 0.3009 | 0.7666                      | 1.195               | 1.4129           |                      | 0.8984           | 0.8794                       | 1.465               | 1.4036 |                      |
| 0.3972 | 0.7776                      | 1.223               | 1.4118           |                      | 1.0000           | 0.9208                       | 1.587               | 1.4033 |                      |
| 0.5014 | 0.7913                      | 1.200               | 1.4102           |                      |                  |                              |                     |        |                      |
| 0.0000 | 0.7000                      |                     | 1 41 40          | 308                  | .15 K            | 0.0007                       | 1 1 0 0             | 1 (001 |                      |
| 0.0000 | 0.7389                      | 1.113               | 1.4149           |                      | 0.0990           | 0.8027                       | 1.100               | 1.4061 |                      |
| 0.1001 | 0.7431                      | 1.075               | 1 4120           |                      | 0.0933           | 0.8204                       | 1.151<br>1 254      | 1.4031 |                      |
| 0.3009 | 0.7626                      | 1.090               | 1.4103           |                      | 0.8984           | 0.8750                       | 1.316               | 1.4018 |                      |
| 0.3972 | 0.7735                      | 1.115               | 1.4093           |                      | 1.0000           | 0.9161                       | 1.427               | 1.4014 | ·                    |
| 0.5014 | 0.7872                      | 1.138               | 1.4079           |                      |                  |                              |                     |        |                      |
|        |                             |                     |                  | 313                  | .15 K            |                              |                     |        |                      |
| 0.0000 | 0.7353                      | 1.025               | 1.4128           |                      | 0.5996           | 0.7985                       | 1.063               | 1.4042 |                      |
| 0.1001 | 0.7414                      | 0.986               | 1.4089           |                      | 0.6933           | 0.8162                       | 1.082               | 1.4028 |                      |
| 0.1987 | 0.7492                      | 0.987               | 1.4102           |                      | 0.7988           | 0.8406                       | 1.139               | 1.4009 |                      |
| 0.3009 | 0.7590                      | 0.997               | 1.4087           |                      | 0.8984           | 0.8705                       | 1.191               | 1.4000 |                      |
| 0.5972 | 0.7696                      | 1.020               | 1.4065           |                      | 1.0000           | 0.9110                       | 1.201               | 1.4000 |                      |
| 0.0011 | 0.1000                      | 11010               | 0 E+h            | owneth an ol (1      |                  | ( <b>9</b> )                 |                     |        |                      |
|        |                             |                     | 2-EU             | loxyethanoi (1       |                  | kane (2)                     |                     |        |                      |
| 0 0000 | 0 7707                      | 0.077               | 1 (000           | 1966                 | .15 K            | 0.0545                       | 1 011               | 1 4000 | 1040                 |
| 0.0000 | 0.77840                     | 0.877               | 1.4232           | 1260                 | 0.0998           | 0.8040                       | 1.211               | 1.4086 | 1248                 |
| 0.0000 | 0.7970                      | 0.910               | 1 4163           | 1246                 | 0.8080           | 0.8908                       | 1 496               | 1 4061 | 1203                 |
| 0.2968 | 0.8095                      | 0.961               | 1.4148           | 1242                 | 0.9006           | 0.9078                       | 1.714               | 1.4052 | 1286                 |
| 0.4007 | 0.8242                      | 1.035               | 1.4124           | 1241                 | 1.0000           | 0.9253                       | 1.784               | 1.4054 | 1296                 |
| 0.4950 | 0.8381                      | 1.112               | 1.4104           | 1241                 |                  |                              |                     |        |                      |
|        |                             |                     |                  | 303                  | .15 K            |                              |                     |        |                      |
| 0.0000 | 0.7691                      | 0.804               | 1.4203           |                      | 0.5998           | 0.8499                       | 1.093               | 1.4061 |                      |
| 0.0993 | 0.7791                      | 0.787               | 1.4163           |                      | 0.6974           | 0.8662                       | 1.200               | 1.4052 |                      |
| 0.2013 | 0.7921                      | 0.827               | 1.4136           |                      | 0.8080           | 0.8858                       | 1.341<br>1 597      | 1.4037 |                      |
| 0.2908 | 0.8047                      | 0.938               | 1 4099           |                      | 1.0000           | 0.9208                       | 1.587               | 1.4033 |                      |
| 0.4950 | 0.8335                      | 1.004               | 1,4078           |                      | 1.0000           | 0.0.000                      | 1.007               | 1.1000 |                      |
|        |                             |                     |                  | 308                  | 15 K             |                              |                     |        |                      |
| 0.0000 | 0.7643                      | 0.737               | 1.4175           |                      | 0.5998           | 0.8449                       | 0.992               | 1.4038 |                      |
| 0.0993 | 0.7740                      | 0.724               | 1.4139           |                      | 0.6974           | 0.8612                       | 1.085               | 1.4029 |                      |
| 0.2013 | 0.7870                      | 0.755               | 1.4111           |                      | 0.8080           | 0.8811                       | 1.206               | 1.4020 |                      |
| 0.2968 | 0.7996                      | 0.798               | 1.4092           |                      | 0.9006           | 0.8965                       | 1.371               | 1.4010 |                      |
| 0.4007 | 0.8140                      | 0.852               | 1.4069           |                      | 1.0000           | 0.9161                       | 1.427               | 1.4014 |                      |
| 0.4000 | 0.0204                      | 0.004               | 1.4002           | 010                  | 15 12            |                              |                     |        |                      |
| 0.0000 | 0 7596                      | 0.682               | 1 4148           | 313                  | .10 K<br>0 5998  | 0.8401                       | 0.899               | 1.4010 |                      |
| 0.0993 | 0.7692                      | 0.663               | 1.4109           |                      | 0.6974           | 0.8564                       | 0.977               | 1.4005 |                      |
| 0.2013 | 0.7822                      | 0.696               | 1.4052           |                      | 0.8080           | 0.8766                       | 1.094               | 1.4000 |                      |
| 0.2968 | 0.7951                      | 0.731               | 1.4070           |                      | 0.9006           | 0.8930                       | 1.231               | 1.3994 |                      |
| 0.4007 | 0.8097                      | 0.786               | 1.4049           |                      | 1.0000           | 0.9116                       | 1.281               | 1.4000 |                      |
| 0.4950 | 0.8237                      | 0.837               | 1.4031           |                      |                  |                              |                     |        |                      |
|        |                             |                     | 2-Ethoxyet       | (1) + 2              | ,2,4-Trimeth     | ylpentane (2)                |                     |        |                      |
|        |                             |                     |                  | 298                  | .15 K            |                              |                     |        |                      |
| 0.0000 | 0.6885                      | 0.462               | 1.3884           | 1080                 | 0.6001           | 0.7971                       | 0.862               | 1.3951 | 1151                 |
| 0.0991 | 0.7018                      | 0.494               | 1.3888           | 1089                 | 0.6976           | 0.8227                       | 1.006               | 1.3973 | 1176                 |
| 0.1991 | 0.7109                      | 0.536               | 1 3905           | 1092                 | 0.7979           | 0.8860                       | 1.179               | 1.3993 | 1209                 |
| 0.4347 | 0.7596                      | 0.692               | 1.3925           | 1120                 | 1.0000           | 0.9253                       | 1.784               | 1.4054 | 1296                 |
| 0.4972 | 0.7729                      | 0.753               | 1.3934           | 1128                 |                  |                              | ···· = =            |        |                      |
|        |                             |                     |                  | 303                  | .15 K            |                              |                     |        |                      |
| 0.0000 | 0.6844                      | 0.436               | 1.3860           |                      | 0.6001           | 0.7924                       | 0.797               | 1.3928 |                      |
| 0.0991 | 0.6975                      | 0.466               | 1.3865           |                      | 0.6976           | 0.8180                       | 0.913               | 1.3949 |                      |
| 0.1991 | 0.7126                      | 0.500               | 1.3873           |                      | 0.7979           | 0.8476                       | 1.086               | 1.3974 |                      |
| 0.2975 | 0.7291                      | 0.552               | 13003            |                      | 0.8986<br>1 0000 | 0.8812                       | 1.292               | 1.4001 |                      |
| 0.4972 | 0.7684                      | 0.694               | 1.3910           |                      | 1.0000           | 0.0200                       | 1.007               | 1.4000 |                      |
| —      |                             |                     |                  |                      |                  |                              |                     |        |                      |

## Table 2 (Continued)

| $x_1$  | $\varrho/(\text{g-cm}^{-3})$ | $\eta/(mPa \cdot s)$ | n      | $u/(m \cdot s^{-1})$ | $x_1$  | ℓ/(g·cm <sup>-3</sup> ) | $\eta/(mPa\cdot s)$ | n      | $u/(m \cdot s^{-1})$ |
|--------|------------------------------|----------------------|--------|----------------------|--------|-------------------------|---------------------|--------|----------------------|
|        |                              |                      |        | 308.3                | 15 K   |                         |                     |        |                      |
| 0.0000 | 0.6801                       | 0.412                | 1.3833 |                      | 0.6001 | 0.7879                  | 0.738               | 1.3904 |                      |
| 0.0991 | 0.6933                       | 0.439                | 1.3836 |                      | 0.6976 | 0.8134                  | 0.839               | 1.3926 |                      |
| 0.1991 | 0.7083                       | 0.475                | 1.3849 |                      | 0.7979 | 0.8429                  | 0.993               | 1.3952 |                      |
| 0.2975 | 0.7247                       | 0.517                | 1.3858 |                      | 0.8986 | 0.8765                  | 1.167               | 1.3978 |                      |
| 0.4347 | 0.7507                       | 0.601                | 1.3875 |                      | 1.0000 | 0.9161                  | 1.427               | 1.4014 |                      |
| 0.4972 | 0.7640                       | 0.642                | 1.3887 |                      |        |                         |                     |        |                      |
|        |                              |                      |        | 313.3                | 15 K   |                         |                     |        |                      |
| 0.0000 | 0.6760                       | 0.391                | 1.3807 |                      | 0.6001 | 0.7834                  | 0.677               | 1.3878 |                      |
| 0.0991 | 0.6891                       | 0.415                | 1.3817 |                      | 0.6976 | 0.8089                  | 0.767               | 1.3905 |                      |
| 0.1991 | 0.7040                       | 0.445                | 1.3825 |                      | 0.7979 | 0.8383                  | 0.901               | 1.3931 |                      |
| 0.2975 | 0.7204                       | 0.483                | 1.3836 |                      | 0.8986 | 0.8719                  | 1.066               | 1.3956 |                      |
| 0.4347 | 0.7462                       | 0.560                | 1.3854 |                      | 1.0000 | 0.9116                  | 1.281               | 1.4000 |                      |
| 0.4972 | 0.7596                       | 0.597                | 1.3867 |                      |        |                         |                     |        |                      |

## Table 3. Coefficients and Standard Errors of Eq 1

| property                  | $a_0$   | $a_1$   | $b_0$             | $b_1$                | $b_2$     | $b_3$   | $\sigma$ |
|---------------------------|---------|---------|-------------------|----------------------|-----------|---------|----------|
|                           |         |         | 2-Ethoxyethan     | ol(1) + Hexane(2)    | )         |         |          |
| $\rho/(\text{g-cm}^{-3})$ | 0.0183  | -0.0024 | 48.558            | 27.918               | 11.928    | 7.535   | 0.0007   |
| $\eta/(mPa\cdot s)$       | 0.2258  | -0.0181 | 83.052            | 727.31               | -2846.2   | 4515.7  | 0.0570   |
| n                         | 0.0235  | -0.0001 | 82.969            | 2.771                | 1.488     | -0.1392 | 0.0029   |
|                           |         |         | 2-Ethoxyethan     | ol (1) + Heptane (2  | )         |         |          |
| $\rho/(\text{g-cm}^{-3})$ | 0.0183  | -0.0023 | 49.957            | 22.912               | 6.850     | 13.380  | 0.0007   |
| $n/(mPa\cdot s)$          | 0.2985  | -0.0174 | 81.468            | 505.148              | -1845.1   | 2710.1  | 0.0609   |
| n                         | 0.0501  | -0.0007 | 46.578            | 0.3499               | 1.169     | -0.0501 | 0.0005   |
|                           |         |         | 2-Ethoxyethar     | ol(1) + Octane(2)    |           |         |          |
| $o/(e^{-3})$              | 0.0567  | -0.0023 | 16.793            | 6.540                | 0.4261    | 5.797   | 0.0008   |
| $n/(mPa\cdot s)$          | 0.2079  | -0.0175 | 205.23            | 586.28               | -1844.4   | 3210.8  | 0.0600   |
| n                         | 0.0090  | -0.0007 | 261.57            | -0.1437              | 0.9816    | 3.607   | 0.0005   |
|                           |         |         | 2-Ethoxyethan     | ol(1) + Nonane(2)    | )         |         |          |
| $o/(e^{-3})$              | 0.0550  | -0.0022 | 17.651            | 5.896                | -0.8946   | 7.001   | 0.0009   |
| $n/(mPa\cdot s)$          | 0.1120  | -0.0191 | -1046.6           | -1214.6              | 2811.8    | -7220.3 | 0.0610   |
| n                         | -0.0096 | -0.0007 | -249.98           | 2.514                | -2.210    | -1.276  | 0.0004   |
|                           |         |         | 2-Ethoxyethar     | ol(1) + Decane(2)    | )         |         |          |
| $o/(g \cdot cm^{-3})$     | 0.0544  | -0.0022 | 18.386            | 5.489                | -2.145    | 8.105   | 0.0011   |
| $n/(mPa\cdot s)$          | 0.0738  | -0.0179 | -1769.6           | -672.25              | 810.98    | -5465.3 | 0.0674   |
| n                         | 0.0079  | -0.0007 | 304.55            | -4.747               | 1.852     | 1.431   | 0.0004   |
|                           |         |         | 2-Ethoxyethand    | ol (1) + Dodecane (2 | 2)        |         |          |
| $o/(grcm^{-3})$           | 0.0353  | -0.0020 | 28.989            | 7.537                | -6.874    | 14.882  | 0.0015   |
| $n/(mPa\cdot s)$          | 0.3931  | -0.0202 | 1623.6            | -192.88              | 275.85    | 1071.3  | 0.0720   |
| n                         | 0.0211  | -0.0006 | 114.64            | -1.542               | -1.621    | 1.018   | 0.0006   |
|                           |         |         | 2-Ethoxyethanol   | (1) + Cyclohexane    | (2)       |         |          |
| $o/(g \cdot cm^{-3})$     | 0.0412  | -0.0023 | 28.749            | 7.680                | 5.284     | -0.4175 | 0.0005   |
| $n/(mPa\cdot s)$          | 0.0234  | -0.0165 | 3804.6            | 382.57               | 5680.0    | 5866.6  | 0.0823   |
| n                         | 0.0229  | -0.0007 | 109.16            | -5.380               | 3.835     | -0.965  | 0.0008   |
|                           |         | 2-Et    | hoxyethanol (1) + | 2.2.4-Trimethylper   | ntane (2) |         |          |
| $o/(g \cdot cm^{-3})$     | 0.0335  | -0.0023 | 27.964            | 11.618               | 1.415     | 9.672   | 0.0006   |
| $n/(mPa\cdot s)$          | 0.4285  | -0.0184 | 110.29            | 395.45               | -1156.9   | 2049.1  | 0.0551   |
|                           | 0.0091  | 0.0007  | 200 50            | 9,670                | 0.054     | 9,690   | 0.0002   |

shift slightly toward 2-ethoxyethanol-rich region of the mixtures from hexane to decane.

The  $V^{\text{E}}$  results of 2-ethoxyethanol + 2,2,4-trimethylpentane mixtures are smaller than those of 2-ethoxyethanol + octane mixtures. This suggests that though 2,2,4trimethylpentane and octane contain eight carbon atoms, the presence of bulky methyl groups in 2,2,4-trimethylpentane might lead to higher interactions, giving lower positive  $V^{E}$  than water + octane mixtures. On the other hand, the cyclic molecule, viz., cyclohexane with six carbon atoms, exhibits higher  $V^{E}$  than the linear hexane molecule having the same number of carbons. In view of the nonavailability of the  $V^{\mathbb{E}}$  data for the present mixtures, we could not directly compare our  $V^{\rm E}$  values with the literature findings. However, considerable work has been published on the thermodynamic properties of binary systems formed by mixing various types of alkanols with alkanes (36, 37). In these studies, the positive values of  $V^{\rm E}$  were attributed to the breaking of hydrogen bonds between alkanol and alkane molecules.



Figure 2. Deviations in viscosity at 298.15 K for the binary mixtures given in Figure 1.

| Table 4. Estim                                                      | lated Para                                                                             | umeters of                                                                                              | Excess F1                                                                                            | unctions                                                                                                |                                                                                                         |                                                                                                                      |                                                                                            |                                                                                                                                                                             |                                                                              |                                                                                           |                                                                                |                                                                                 |                                                                                 |                                                                                          |                                                                                   |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| function                                                            | T/K                                                                                    | $\mathbf{A}_0$                                                                                          | $\mathbf{A}_{1}$                                                                                     | $\mathbf{A}_2$                                                                                          | $\mathbf{A}_3$                                                                                          | $A_4$                                                                                                                | σ                                                                                          | function                                                                                                                                                                    | T/K                                                                          | $A_0$                                                                                     | $A_1$                                                                          | $A_2$                                                                           | $A_3$                                                                           | $A_4$                                                                                    | a                                                                                 |
| $V^{\rm E}/({ m cm}^3 { m mol}^{-1})$<br>$\Delta\eta/({ m mPas})$   | 298.15<br>298.15<br>303.15<br>308.15<br>313.15<br>298.15<br>303.15<br>308.15<br>313.15 | 1.471<br>1.410<br>1.350<br>1.354<br>1.394<br>-1.770<br>-1.514<br>-1.319<br>-1.335                       | 0.890<br>0.890<br>1.333<br>1.192<br>1.538<br>1.031<br>0.877<br>0.764<br>0.607                        | 0.624<br>0.134<br>0.151<br>-0.821<br>-0.843<br>-0.881<br>-0.757<br>-0.656                               | 0.502<br>0.576<br>0.576<br>-0.760<br>-0.819<br>-0.829<br>-0.862<br>-0.656                               | $\begin{array}{c} -2.22\\ -0.024\\ 1.750\\ 2.129\\ 5.235\\ 5.235\\ 1.611\\ 1.662\\ 1.662\\ 1.565\\ 1.371\end{array}$ | Ethoxyet<br>0.007<br>0.036<br>0.036<br>0.037<br>0.012<br>0.012<br>0.013<br>0.012<br>0.013  | $\frac{\text{hanol} (1) + \text{Hexan}}{\Delta u (\text{ms}^{-1})}$ $\frac{\Delta u (\text{ms}^{-1})}{\Delta k_s \text{TPa}^{-1}}$ $\Delta R (\text{cm}^3 \text{mol}^{-1})$ | e (2)<br>298.15<br>298.15<br>298.15<br>298.15<br>303.15<br>308.15<br>313.15  | $\begin{array}{c} -265.50\\ 7.70\\ -1.466\\ -1.621\\ -1.578\\ -1.578\\ -1.462\end{array}$ | $\begin{array}{c} 21.34\\ -211.20\\ 0.154\\ 0.272\\ 0.514\\ -0.024\end{array}$ | $\begin{array}{c} 108.86\\ -73.20\\ 0.036\\ 0.277\\ -0.334\\ -1.215\end{array}$ | $\begin{array}{c} -7.69\\ 121.76\\ -0.540\\ -0.332\\ -0.733\\ 0.650\end{array}$ | -59.26<br>33.48<br>0.084<br>-0.755<br>0.131<br>2.147                                     | $\begin{array}{c} 3.313 \\ 5.358 \\ 0.020 \\ 0.021 \\ 0.004 \\ 0.011 \end{array}$ |
| $V^{E/(cm^{3}-mol^{-1})}$<br>$\Delta \eta/(mPa\cdots)$              | 298.15<br>303.15<br>303.15<br>308.15<br>313.15<br>298.15<br>303.15<br>308.15<br>313.15 | 2.539<br>2.614<br>2.732<br>2.732<br>2.908<br>-1.763<br>-1.514<br>-1.514<br>-1.317                       | 0.415<br>0.561<br>0.587<br>0.513<br>0.913<br>1.084<br>0.872<br>0.741<br>0.597                        | $\begin{array}{c} 0.910\\ 0.905\\ 0.798\\ 0.798\\ 0.500\\ -0.178\\ -0.148\\ -0.136\end{array}$          | $\begin{array}{c} 1.495\\ 1.107\\ 1.107\\ 1.609\\ 1.286\\ -0.396\\ -0.251\\ -0.221\\ -0.142\end{array}$ | 2-<br>0.793<br>0.820<br>1.516<br>2.543<br>-0.376<br>-0.368<br>-0.266<br>-0.258                                       | EthoxyetJ<br>0.016<br>0.006<br>0.004<br>0.012<br>0.012<br>0.027<br>0.027<br>0.015<br>0.010 | $\Delta u ((ms^{-1})$<br>$\Delta u ((ms^{-1}))$<br>$\Delta k_s TPa^{-1}$<br>$\Delta R / (cm^3 mol^{-1})$                                                                    | e (2)<br>298.15<br>298.15<br>298.15<br>298.15<br>303.15<br>308.15<br>313.15  | -223.36<br>26.0<br>-4.275<br>-4.223<br>-4.226<br>-4.269                                   | -13.63<br>-202.80<br>1.068<br>1.163<br>0.520<br>0.667                          | $\begin{array}{c} 101.57\\ 88.8\\ 1.010\\ 0.498\\ 0.171\\ -0.063\end{array}$    | $\begin{array}{c} 118.46\\ 206.5\\ -0.268\\ 0.216\\ 0.721\\ 0.624\end{array}$   | $\begin{array}{c} -149.59\\ -40.1\\ -2.207\\ -1.382\\ 0.502\\ 0.502\\ -0.208\end{array}$ | 0.817<br>1.376<br>0.024<br>0.026<br>0.047<br>0.042                                |
| $V^{\rm E/(cm^3 mol^{-1})}$<br>$\Delta \eta/(mPas)$                 | 298.15<br>303.15<br>303.15<br>308.15<br>313.15<br>298.15<br>303.15<br>308.15<br>313.15 | 2.833<br>3.031<br>3.168<br>3.168<br>3.365<br>-1.501<br>-1.501<br>-1.134<br>-0.987                       | $\begin{array}{c} 0.285\\ 0.159\\ 0.073\\ -0.206\\ 0.688\\ 0.581\\ 0.509\\ 0.441\end{array}$         | 0.668<br>0.786<br>0.784<br>-0.154<br>-0.520<br>-0.438<br>-0.402<br>-0.293                               | $\begin{array}{c} 0.913\\ 1.169\\ 1.778\\ 2.684\\ 0.194\\ 0.096\\ 0.093\\ -0.047 \end{array}$           | $\begin{array}{c} 2\\ 1.867\\ 1.582\\ 1.596\\ 1.596\\ 3.443\\ -0.128\\ -0.042\\ -0.033\end{array}$                   | -Ethoxyet<br>0.019<br>0.017<br>0.014<br>0.014<br>0.001<br>0.001<br>0.002<br>0.001          | $\Delta u (ms^{-1})$<br>$\Delta u (ms^{-1})$<br>$\Delta k_s TPa^{-1}$<br>$\Delta R (cm^3 mol^{-1})$                                                                         | 298.15<br>298.15<br>298.15<br>298.15<br>303.15<br>303.15<br>308.15<br>313.15 | -198.92<br>59.40<br>-7.736<br>-7.853<br>-7.895<br>-7.895                                  | 8.56<br>-157.56<br>1.856<br>1.985<br>1.985<br>2.294                            | 46.22<br>84.32<br>-0.648<br>-0.255<br>-0.117<br>-0.595                          | 8.89<br>23.37<br>0.272<br>0.715<br>0.158<br>-1.308                              | -19.58<br>-83.71<br>0.063<br>-1.163<br>-1.297<br>0.054                                   | $\begin{array}{c} 1.446\\ 2.280\\ 0.019\\ 0.026\\ 0.024\\ 0.063\end{array}$       |
| V <sup>E</sup> /(cm <sup>3</sup> -mol <sup>-1</sup> )<br>Δη/(mPa·s) | 298.15<br>303.15<br>308.15<br>313.15<br>298.15<br>303.15<br>308.15<br>313.15           | $\begin{array}{c} 3.224 \\ 3.423 \\ 3.659 \\ 3.904 \\ -1.243 \\ -1.083 \\ -0.943 \\ -0.829 \end{array}$ | $\begin{array}{c} -0.010\\ 0.162\\ 0.240\\ 0.352\\ 0.400\\ 0.325\\ 0.243\\ 0.243\\ 0.243\end{array}$ | $\begin{array}{c} 1.545\\ 1.545\\ 1.483\\ 1.337\\ 1.542\\ -0.830\\ -0.670\\ -0.634\\ -0.531\end{array}$ | $\begin{array}{c} 1.129\\ 1.045\\ 1.045\\ 1.460\\ 1.481\\ 0.540\\ 0.510\\ 0.393\\ 0.296\end{array}$     | $\begin{array}{c} & & 2 \\ 0.144 \\ 0.758 \\ 1.473 \\ 1.409 \\ 0.222 \\ 0.163 \\ 0.186 \\ 0.074 \end{array}$         | Ethoxyet<br>0.012<br>0.012<br>0.014<br>0.014<br>0.014<br>0.013<br>0.011<br>0.011<br>0.010  | hanol $(1)$ + Nonan,<br>$\Delta u(ms^{-1})$<br>$\Delta k_s TPa^{-1}$<br>$\Delta R/(cm^3 mol^{-1})$                                                                          | e (2)<br>298.15<br>298.15<br>298.15<br>303.15<br>303.15<br>308.15<br>313.15  | -165.68<br>58.26<br>-11.648<br>-11.593<br>-11.593<br>-11.789                              | 27.37<br>120.91<br>3.466<br>3.274<br>3.336<br>3.251                            | 55.91<br>76.49<br>-2.175<br>-1.751<br>-2.136<br>-2.136                          | 24.08<br>55.46<br>0.568<br>0.899<br>0.642<br>0.602                              | -22.56<br>-139.0<br>1.660<br>1.687<br>1.926<br>1.296                                     | $\begin{array}{c} 0.891 \\ 1.234 \\ 0.020 \\ 0.016 \\ 0.028 \\ 0.028 \end{array}$ |
| V <sup>E</sup> /(cm³-mol <sup>-1</sup> )<br>Δη/(mPa·s)              | 298.15<br>303.15<br>308.15<br>313.15<br>298.15<br>303.15<br>308.15<br>313.15           | $\begin{array}{c} 3.505\\ 3.679\\ 4.005\\ 4.193\\ -1.056\\ -0.940\\ -0.834\\ -0.734\end{array}$         | 0.096<br>0.246<br>0.107<br>0.107<br>0.215<br>0.215<br>0.215<br>0.215                                 | $\begin{array}{c} 1.156\\ 1.429\\ 0.134\\ 1.488\\ -0.678\\ -0.481\\ -0.445\\ -0.277\end{array}$         | 0.647<br>0.331<br>2.174<br>1.119<br>0.380<br>0.380<br>0.324<br>0.185<br>0.242                           | 2.<br>1.685<br>1.500<br>5.026<br>1.834<br>-0.187<br>-0.163<br>-0.319                                                 | Ethoxyet<br>0.021<br>0.021<br>0.016<br>0.028<br>0.023<br>0.004<br>0.003<br>0.004<br>0.003  | hanol $(1)$ + Decant $\Delta u d(m s^{-1})$<br>$\Delta k_s T P a^{-1}$<br>$\Delta k_s T P a^{-1}$<br>$\Delta R / (c m^3 m ol^{-1})$                                         | s (2)<br>298.15<br>298.15<br>298.15<br>303.15<br>308.15<br>313.15<br>313.15  | -151.91<br>73.95<br>-16.436<br>-16.073<br>-16.073<br>-16.369<br>-16.664                   | -8.62<br>-71.86<br>5.440<br>6.007<br>5.708<br>5.841                            | -84.94<br>197.30<br>-1.977<br>-3.726<br>-2.062<br>-1.561                        | 50.36<br>-166.32<br>0.871<br>-0.210<br>-0.250<br>-0.006                         | $\begin{array}{c} 113.2\\-204.6\\-0.287\\1.828\\0.403\\-1.873\end{array}$                | 0.848<br>1.084<br>0.006<br>0.012<br>0.012                                         |
| V <sup>E</sup> /(cm <sup>3</sup> ·mol <sup>-1</sup> )               | 298.15<br>303.15<br>308.15<br>313.15                                                   | 3.593<br>3.876<br>4.071<br>4.333                                                                        | $^{-0.183}_{-0.066}$<br>$^{-0.066}_{0.048}$<br>$^{-0.390}$                                           | $\begin{array}{c} 1.117 \\ 0.994 \\ 2.125 \\ 0.898 \end{array}$                                         | $\begin{array}{c} -0.383 \\ -0.274 \\ 0.093 \\ 0.935 \end{array}$                                       | 2-F<br>1.681<br>2.475<br>0.613<br>3.010                                                                              | Ithoxyeth<br>0.017<br>0.026<br>0.014<br>0.017                                              | (anol (1) + Dodecar)<br>$\Delta u/(ms^{-1})$<br>$\Delta k_s TPa^{-1}$<br>$\Delta R/(cm^3 \cdot mol^{-1})$                                                                   | le (2)<br>298.15<br>298.15<br>298.15<br>303.15                               | -143.19<br>111.27<br>-27.080<br>-27.150                                                   | $\begin{array}{c} 10.49 \\ -113.83 \\ 10.776 \\ 10.767 \end{array}$            | $\begin{array}{c} 40.37 \\ 110.90 \\ -4.673 \\ -3.913 \end{array}$              | 32.04<br>-9.87<br>1.588<br>1.329                                                | - 84.56<br>- 27.71<br>- 1.227<br>- 1.769                                                 | $\begin{array}{c} 1.411 \\ 1.957 \\ 0.028 \\ 0.012 \end{array}$                   |

638 Journal of Chemical and Engineering Data, Vol. 40, No. 3, 1995

| Δη/(mPa·s)                                 | 298.15<br>303.15<br>308.15<br>313.15           | $\begin{array}{c} -0.728 \\ -0.593 \\ -0.528 \\ -0.446 \end{array}$ | 0.290<br>0.163<br>0.135<br>0.098 | $\begin{array}{c} -0.502 \\ -0.491 \\ -0.385 \\ -0.419 \end{array}$ | $\begin{array}{c} -0.299 \\ -0.258 \\ -0.152 \\ -0.196 \end{array}$ | $\begin{array}{c} -0.001 \\ 0.004 \\ -0.068 \\ 0.074 \end{array}$ | 0.003<br>0.004<br>0.005<br>0.006      |                                                                                                                              | 308.15<br>313.15                          | -27.207<br>-27.506          | 10.884<br>11.052            | -4.656<br>0.644            | 1.758 - 0.086              | -0.188<br>-11.75            | 0.019<br>0.108            |
|--------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|-----------------------------|----------------------------|----------------------------|-----------------------------|---------------------------|
| $V^{E}/(\mathrm{cm}^{3}\mathrm{mol}^{-1})$ | 298.15<br>303.15<br>308 15                     | 3.180<br>3.261<br>3.416                                             | 0.498<br>0.588<br>1.160          | -0.643<br>-0.062<br>-1 799                                          | 3.028<br>3.162<br>1.002                                             | 2-Et<br>0.609<br>0.569<br>5.664                                   | boxyethan<br>0.018<br>0.021<br>0.043  | ol (1) + Cyclohexa<br>$\Delta u/(\text{ms}^{-1})$<br>$\Delta k_s/\text{TPa}^{-1}$<br>$\Delta R/(\text{cm}^3\text{mol}^{-1})$ | ne (2)<br>298.15<br>298.15<br>298.15      | -154.71<br>164.87<br>-0.598 | -71.11<br>-143.58<br>-0.138 | 137.44<br>136.40<br>0.086  | 64.79<br>97.76<br>0.356    | -133.38<br>143.91<br>-1.327 | 4.255<br>4.824<br>0.018   |
| Δη/(mPa·s)                                 | 313.15<br>298.15<br>303.15                     | 3.511<br>-0.844<br>-0.737                                           | 0.655<br>0.204<br>0.184          | -1.227<br>-0.426<br>-0.376                                          | $3.078 \\ -1.426 \\ -1.326$                                         | 3.742<br>1.495<br>1.264                                           | 0.012<br>0.017<br>0.013               |                                                                                                                              | 303.15<br>308.15<br>313.15                | -0.598<br>-0.648<br>-0.526  | -0.165<br>-0.089<br>-0.135  | -0.280<br>-0.040<br>-2.099 | -0.235<br>-0.283<br>0.680  | -0.289<br>0.167<br>1.957    | 0.013<br>0.011<br>0.076   |
|                                            | 308.15<br>313.15                               | -0.706<br>-0.565                                                    | $0.127 \\ 0.170$                 | $0.042 \\ -0.370$                                                   | $^{-1.056}_{-1.122}$                                                | $0.577 \\ 1.013$                                                  | 0.017<br>0.007                        |                                                                                                                              |                                           |                             |                             |                            |                            |                             |                           |
| $V^{E}(\mathrm{cm}^{3}\mathrm{mol}^{-1})$  | 298.15<br>303.15<br>308.15                     | 1.725<br>1.866<br>1.902                                             | 0.941<br>0.860<br>0.954          | -0.162<br>0.004<br>0.004                                            | -0.137<br>-0.346<br>-0.510                                          | 2-Ethoxye<br>1.232<br>1.324<br>1.205                              | thanol (1)<br>0.002<br>0.006<br>0.002 | + 2,2,4-Trimethyl $\Delta u/(\text{ms}^{-1})$<br>$\Delta k_s/\text{TPa}^{-1}$<br>$\Delta R/(\text{cm}^3$                     | pentane (2)<br>298.15<br>298.15<br>298.15 | -233.18<br>-80.23<br>-7.909 | 30.54<br>-111.95<br>1.938   | -75.81<br>279.22<br>-0.657 | 92.18<br>15.63<br>0.260    | 175.1<br>476.4<br>0.004     | 1.878<br>5.290<br>0.008   |
| Δη/(mPa·s)                                 | 313.15<br>313.15<br>298.15<br>303.15<br>308.15 | 2.005<br>-1.475<br>-1.252<br>-1.094                                 | 0.952<br>0.679<br>0.541<br>0.435 | -0.059<br>-0.414<br>-0.343<br>-0.143                                | -0.680<br>0.181<br>0.090<br>0.156                                   | 1.391<br>0.000<br>0.078<br>-0.187                                 | 0.009<br>0.004<br>0.005<br>0.006      |                                                                                                                              | 303.15<br>308.15<br>313.15                | -7.935<br>-7.957<br>-7.989  | 2.144<br>2.087<br>2.010     | -0.273<br>0.166<br>0.132   | -0.058<br>-0.106<br>-0.572 | -0.115<br>-1.141<br>-0.904  | $0.002 \\ 0.013 \\ 0.021$ |
|                                            | 313.15                                         | -0.943                                                              | 0.415                            | -0.301                                                              | -0.033                                                              | 0.253                                                             | 0.003                                 |                                                                                                                              |                                           |                             |                             |                            |                            |                             |                           |



Figure 3. Deviations in molar refractivity at 298.15 K for the binary mixtures given in Figure 1.



Figure 4. Deviations in speed of sound at 298.15 K for the binary mixtures given in Figure 1.



**Figure 5.** Deviations in isentropic compressibility at 298.15 K for the binary mixtures given in Figure 1.

Deviations in viscosity at 298.15 K for all the binary mixtures are presented in Figure 2. The values of  $\Delta \eta$  are negative in all the mixtures and increase with increasing length of *n*-alkanes. In the case of the 2-ethoxyethanol +



Figure 6. Excess molar volume for 2-ethoxyethanol + (a) 2,2,4-trimethylpentane and (b) decane mixtures at  $(\nabla)$  298.15 K,  $(\Box)$  303.15 K,  $(\bigcirc)$  308.15 K, and  $(\blacktriangledown)$  313.15 K.



Figure 7. Deviations in viscosity for 2-ethoxyethanol + (a) 2,2,4-trimethylpentane and (b) decane mixtures at the temperature given in Figure 6.

cyclohexane mixture, the  $\Delta \eta$  values are higher when compared to 2-ethoxyethanol + hexane mixtures. This further supports the  $V^{\rm E}$  results discussed above for these mixtures, i.e., different behaviors in the transport properties of cyclohexane and hexane molecules in the presence of 2-ethoxyethanol. On the other hand, the shapes of  $\Delta \eta$ versus  $x_1$  curves for mixtures of 2-ethoxyethanol with octane or 2,2,4-trimethylpentane are almost identical.

Deviations in molar refractivity, which represent the changes in optical behavior of liquid mixtures due to electronic perturbations during mixing, are presented as a function of volume fraction at 298.15 K in Figure 3. For all mixtures, these values are negative and increase with an increase in chain length of *n*-alkanes. The values of  $\Delta R$  for the 2-ethoxyethanol + cyclohexane mixture are close to zero and are higher than those for other mixtures. However, the dependence of  $\Delta R$  on  $x_1$  for mixtures of 2-ethoxyethanol + 2,2,4-trimethylpentane or + octane is similar over the whole range of mixture composition as shown by a common curve for both these mixtures. This

suggests that the presence of side methyl groups in 2,2,4trimethylpentane does not drastically alter the changes in optical properties even though the same number of carbon atoms are present in both 2,2,4-trimethylpentane and octane molecules. Another noticeable effect in Figure 3 is the large differences in  $\Delta R$  values between mixtures of 2-ethoxyethanol with decane and dodecane. Such differences in the values of  $\Delta R$  are small in mixtures containing lower alkanes. This further suggests that the deviations in optical properties become significant as the length of the alkane molecule increases.

Deviations in the speed of sound at 298.15 K are presented in Figure 4. These values are negative for all mixtures and show a systematic trend of increase with increasing size of the *n*-alkanes. On the whole, the trends in the behavior of  $\Delta u$  versus  $x_1$  curves are quite identical to those of the  $\Delta \eta$  versus  $x_1$  curves presented in Figure 2. Here also, the values of  $\Delta u$  for mixtures containing octane are higher than those of the mixtures containing 2,2,4trimethylpentane. Similarly, the  $\Delta u$  values of 2-ethoxyethanol + cyclohexane mixtures are quite higher than those of 2-ethoxyethanol + hexane mixtures.

The results of deviations in isentropic compressibility versus volume fraction are presented in Figure 5. Sigmoidal shapes are observed for all the mixtures except cyclohexane, decane, and dodecane. For mixtures of 2-ethoxyethanol with 2,2,4-trimethylpentane, hexane, heptane, and octane, the variation of  $\Delta k_s$  with  $\phi_1$  shows sign inversions. With mixtures containing nonane, decane, and dodecane, the values of  $\Delta k_s$  are positive over the entire composition and the curves are somewhat skewed when compared to the curves for lower n-alkanes. The sigmoidal shapes observed in mixtures of 2-ethoxyethanol with lower nalkanes (2,2,4-trimethylpentane, hexane, heptane, and octane) result from a shifting imbalance between a relatively large positive contribution due to breaking of the hydrogen-bond structure and a negative contribution from the interstitial accommodation of *n*-alkane molecules into 2-ethoxyethanol. On the other hand, the interstitial accommodation of n-alkanes into 2-ethoxyethanol multimer structure becomes less effective when the size of the n-alkane is large and the positive contribution from the breaking of hydrogen bonds becomes more predominant, giving positive  $\Delta k_s$  values over the entire volume fraction range for these mixtures. However, a quantitative description of such effects may be found in the extended real associated solution (ERAS) model (38).

In the present work, while the effect of temperature on  $V^{\rm E}$  and  $\Delta \eta$  values is systematic, the  $\Delta R$  values are not greatly affected within the temperature interval of 298.15-313.15 K. The  $V^{E}$  results show an increase with increasing temperature in all mixtures except 2-ethoxyethanol + hexane. The effect of  $V^{E}$  on temperature is displayed typically in Figure 6 for mixtures of 2-ethoxyethanol + 2,2,4-trimethylpentane and + decane. The increase in  $V^{E}$ values over the interval of 298.15-313.15 K is more significant with higher alkanes than the lower alkanes, showing the net effect of chain length on  $\Delta V^{\rm E}$  values. The temperature variation of  $\Delta \eta$  values for mixtures of 2-ethoxyethanol with 2,2,4-trimethylpentane and decane is presented in Figure 7. Here also, we observe a systematic increase in  $\Delta \eta$  values with increasing temperature. On the other hand, the  $\Delta R$  values do not show any dependence on temperature, and hence, these plots are not displayed.

#### Conclusion

Density, viscosity, refractive index, and speed of sound values for binary mixtures of 2-ethoxyethanol with nalkanes ( $C_6$  to  $C_{12}$ ), 2,2,4-trimethylpentane, and cyclohexane are presented as a function of mixture composition at 298.15, 303.15, 308.15, and 313.15 K. These results are used to calculate excess molar volume and deviations in viscosity, molar refractivity, speed of sound, and isentropic compressibility. The results are fitted to the Redlich-Kister polynomial to estimate the adjustable parameters and standard deviations between the observed and fitted quantities. The excess molar volumes are positive and deviations in viscosity, refractivity, and speed of sound are negative over the whole mixture composition at all temperatures. The values of these quantities increase with increasing chain length of the *n*-alkanes. The deviations in isentropic compressibility show sigmoidal trends with lower *n*-alkanes. Due to the insolubility of higher alkanes,

i.e., tetradecane  $(C_{14})$  and hexadecane  $(C_{16})$ , in 2-ethoxyethanol, experiments for these mixtures were not performed.

#### **Literature Cited**

- (1) Rincon, R. E.; Trejo, A. J. Chem. Soc., Faraday Trans. 1994, 90, 113.
- (2) Zvaigzne, A. I.; Teng, I. L.; Martinez, E.; Trejo, J.; Acree, W. E., Jr. J. Chem. Eng. Data 1993, 38, 389
- (3) Yanes, C.; Maestre, A.; Perez-Tejeda, P.; Calvente, J. J. J. Chem. Eng. Data 1993, 38, 512.
- (4) Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H.; Joshi, S. S. J. Phys. Chem. 1991, 95, 5299
- (5) Aminabhavi, T. M.; Bindu, G. J. Chem. Eng. Data 1994, 39, 529. Aminabhavi, T. M.; Aralaguppi, M. I.; Bindu, G.; Khinnavar, R. (6)S. J. Chem. Eng. Data 1994, 39, 522.
- (7) Shindo, Y.; Kusano, K. J. Chem. Eng. Data 1979, 24, 106.
- Corradini, F.; Malagoli, M.; Marcheselli, L.; Marchetti, A.; Tassi, L.; Tosi, G. J. Chem. Eng. Data 1993, 38, 565.
- Martin, M. C.; Cocero, M. J.; Mato, R. B. J. Chem. Eng. Data 1994, 39, 535.
- (10) Corradini, F.; Franchini, G.; Marchetti, A.; Tagliazucchi, M., Tassi, L.; Tosi, G. J. Solution Chem. 1993, 22, 1019.
- (11) Chandak, B. S.; Nageshwar, G. D.; Mene, P. S. J. Chem. Eng. Data 1977, 22, 137
- Venkatesulu, D.; Prabakar Rao, M. V. J. Chem. Eng. Data 1992, (12)37, 479.
- (13) Al-Azzawi, S. F.; Awwad, A. M. J. Chem. Eng. Data 1990, 35, 411.

- (14) Fermeglia, M.; Lapasin, R. J. Chem. Eng. Data 1988, 33, 415.
  (15) Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 345.
  (16) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, Physical Properties and Methods of Purification. Techniques of Chemistry; John Wiley and Sons: New York, Vol. II, 1986. Rai, R. D.; Shukla, R. K.; Shukla, A. K.; Pandey, J. D. J. Chem.
- (17)Thermodyn. **1989**, 21, 125.
- (18) Ortega, J.; Matos, J. S. Mater. Chem. Phys. 1986, 15, 415.
- Junguera, E.; Tardajos, G.; Aicart, E. J. Chem. Thermodyn. 1988, (19)20. 1461.
- (20) Garcia, I.; Cobos, J. C.; Gonzalez, J. A.; Casanova, C.; Cocero, M. J. J. Chem. Eng. Data 1988, 33, 423.
  (21) Treszczanowicz, A. J.; Halpin, C. J.; Benson, G. C. J. Chem. Eng.
- Data 1992, 27, 321.
- (22) Chevalier, J. L. E.; Petrino, P. J.; Gaston-Bonhomme, Y. H. J. Chem. Eng. Data 1990, 35, 206.
- (23) Sarmiento, F.; Paz-Andrade, M. I.; Farnandez, J.; Bravo, R.; Pintos, M. J. Chem. Eng. Data 1985, 30, 321.
- Cayetano, Y.; Alfredo, M.; Pilar, P. T.; Juan, J. C. J. Chem. Eng. Data 1993, 38, 512. (24)
- Junguera, E.; Tardajos, G.; Aicart, E. J. Chem. Thermodyn. 1989, (25)21, **1**223.
- (26) Papaloannou, T.; Evangelou; Panayiotou, C. J. Chem. Eng. Data (20) Paparoninou, 1., 2. (20) 1991, 36, 43.
  (27) Tasic, A. Z.; Djordjevic, B. D.; Grozdanic, D. K.; Radojkovic, N. J. Chem. Eng. Data 1992, 37, 310.
  (28) Kalra, K. C.; Singh, K. C.; Spah, D. C. J. Chem. Eng. Data 1994,
- 39. 372.
- (29) Franchini, G. C.; Marchetti, A.; Tagliazucchi, M.; Tassi, L.; Tosi, (20) Franchin, G. C.; Marchetti, A.; Tagnazucchi, M.; Tassi, L.; Tosi, G. J. Chem. Soc., Faraday Trans. 1991, 87, 2583.
  (30) Lorentz, H. A. Weid. Ann. 1880, 9, 641.
  (31) Lorenz, L. Weid. Ann. 1880, 11, 70.
  (32) Reddy, V. K.; Reddy, K. S.; Krishnaiah, A. J. Chem. Eng. Data 1994, 39, 615.
  (32) K. S.; Marchetti, D. S. K. Chem. The second secon

- (33) Kumar, V. C.; Naidu, P. R. J. Chem. Eng. Data 1993, 38, 414.
   (34) Aminabhavi, T. M.; Phayde, H. T. S.; Khinnavar, R. S.; Bindu,
- G.; Hansen, K. C. J. Chem. Eng. Data 1994, 39, 251.
- (35) Marquardt, D. W. J. Soc. Ind. Appl. Math. 1963, 11, 431.
- (36) Treszczanowicz, A. J.; Benson, G. C. J. Chem. Thermodyn. 1977, 9, 1189; 1978, 10, 967; 1980, 12, 173.
- (37) Ortega, J.; Gonzalez, E. J. Chem. Thermodyn. 1993, 25, 1083.
- (38) Heintz, A. Ber. Bunsen-Ges. Phys. Chem. 1985, 89, 172.

Received for review October 19, 1994. Accepted January 25, 1995.\* JE940218Z

<sup>®</sup> Abstract published in Advance ACS Abstracts, March 1, 1995.