Excess Molar Enthalpies for Propylene Carbonate + Linear and Cyclic Ketones at 298.15 K

Fabio Comelli

Centro di Studio per la Fisica delle Macromolecole del CNR, via Selmi 2, I-40126 Bologna, Italy

Romolo Francesconi*

Dipartimento di Chimica "G. Ciamician", Università degli Studi, via Selmi 2, I-40126 Bologna, Italy

Excess molar enthalpies, $H_{\rm m}^{\rm E}$, have been determined for propylene carbonate + five linear ketones (2-propanone, 2-butanone, 2-hexanone, 2-octanone, or 2-undecanone) and + three cyclic ketones (cyclohexanone, 2-methylcyclohexanone, or 2,6-dimethylcyclohexanone) at 298.15 K and atmospheric pressure by means of an LKB flow microcalorimeter. Results have been correlated using the Redlich-Kister equation, and the adjustable parameters have been evaluated by the least-squares analysis. $H_{\rm m}^{\rm E}$ values are found to be positive for all mixtures with the exception of propylene carbonate + 2-propanone, which shows a sign inversion of $H_{\rm m}^{\rm E}$.

Introduction

In recent years much interest has been shown in the solvent properties and electrochemical studies of propylene carbonate (1-3). This work is undertaken to determine the excess molar enthalpies, $H_{\rm m}^{\rm E}$, for propylene carbonate (component 1) + five linear and + three cyclic ketones (component 2), namely, 2-propanone, 2-butanone, 2-hexanone, 2-octanone, 2-undecanone, cyclohexanone, 2-methyl-cyclohexanone, and 2,6-dimethylcyclohexanone, respectively. Measurements have been made at 298.15 K and atmospheric pressure. There appear to be no results published previously.

Previous papers (4, 5) report excess molar enthalpies of dimethyl carbonate or diethyl carbonate + linear and cyclic ketones. Calorimetric and phase equilibrium data for mixtures of linear carbonates + hydrocarbons or + carbon tetrachloride are given in the paper of Gonzalez et al. (6), reporting also revised data on mixtures of linear carbonates + aromatic hydrocarbons or + cyclohexane. Excess molar heat capacities and excess molar volumes of propylene carbonate + aromatic hydrocarbons have been measured by Wilhelm et al. (7). The purpose of the investigations is to obtain more information on the thermodynamic properties of the mixtures.

Experimental Section

Chemicals. All substances were from Aldrich, and their purities were better than 99 mass % with the exception of 2-octanone and 2,6-dimethylcyclohexanone whose purities were +98 mass %. 2-Octanone was purified following the method of Collerson et al. (8). 2,6-Dimethylcyclohexanone, a mixture of isomers, was used as received. The purities of the compounds were checked by density determinations at (298.15 \pm 0.01) K by using a vibrating digital density meter (Anton Paar, model DMA 60/602, Graz, Austria), and the values obtained are reported in Table 1 and compared with literature values (9–12). Before measurements, the

Table 1. Purity Grades and Densities, ρ , of the Pure Compounds and Comparison with Literature Data at 298.15 K and Atmospheric Pressure

		$\varrho/(\text{g cm}^{-3})$			
component	purity/%	present work	lit		
propylene carbonate	+99	1.199 15	1.199 3 (9)		
2-propanone	+99.9	$0.784\ 37$	0.784 4 (10)		
2-butanone	+99.5	0.799~71	0.799 70 (10)		
2-hexanone	+99	0.806~74	0.806 7 (10)		
2-octanone	98	$0.814\ 34$	0.814 3 (10)		
2-undecanone	99	$0.822\ 31$	0.822 15 (11)		
cyclohexanone	99.8	$0.942\ 20$	0.942 21 (12)		
2-methylcyclohexanone	99	$0.921\ 54$	0.921 48 (11)		
2,6-dimethylcyclohexanone	98	$0.912 12^a$			

^a No literature value at 298.15 K.

liquids were dried over molecular sieves (Union Carbide, type 4A, 1/16-in. pellets) and kept in dark bottles.

Apparatus. Excess molar enthalpies, $H_{\rm m}^{\rm E}$, were measured at (298.15 \pm 0.01) K (IPTS-68) using an LKB flow microcalorimeter (13) (model 2107, AB Produkter, LKB Bromma, Sweden) equipped with two identical automatic burets (ABU-Radiometer, Copenhagen, Denmark) which pumped the liquids through the mixing cell of the calorimeter. Further details on the apparatus and experimental procedure are described in a previous paper (14). The test system cyclohexane + hexane was used to evaluate the accuracy of the experimental technique, and the results obtained agree with those in the literature (15), within 0.5% over the central range of concentration.

Results and Discussion

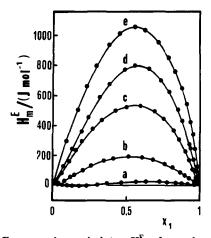
The experimental excess molar enthalpies, $H_{\rm m}^{\rm E}$, for the eight binary mixtures as a function of mole fraction x_1 of propylene carbonate were fitted to the Redlich-Kister equation

$$H_{\rm m}^{\rm E}/({\rm J}{\cdot}{\rm mol}^{-1}) = x_1 x_2 \sum_{k\geq 0} a_k (x_1 - x_2)^k \tag{1}$$

* To whom correspondence should be addressed.

© 1995 American Chemical Society

$H_{\rm m}^{\rm E}/({ m J}{ m \cdot}{ m mol}^{-1})$	x_1	$H_{\rm m}^{\rm E}/({ m J}{\cdot}{ m mol}^{-1})$	x_1	$H_{\rm m}^{\rm E}/(J{\cdot}{ m mol}^{-1})$	x_1	$H_{\mathrm{m}}^{\mathrm{E}}/(\mathrm{J}\cdot\mathrm{mol}^{-1})$	x_1	$H_{\rm m}^{\rm E}/({ m J}{ m \cdot}{ m mol}^{-1})$
		Propyle	ne Carbona	ate $(1) + 2$ -Propa				
-4.3		-5.2	0.4652	15.5		15.7	0.9543	2.1
-7.1	0.3670							
		$a_0 = 69.8, a_1$			$a_4 = -48$.8		
			$\sigma(H_{\rm m}^{\rm L})$	$= 0.1 \text{ J} \cdot \text{mol}^{-1}$				
		Propyle	ene Carbon	ate $(1) + 2$ -Butar	none (2)			
12.4	0.2093	101.6	0.5144	188.8	0.8090	119.6	0.9622	22.6
28.3	0.2609	128.7	0.6138		0.8640	87.5		
48.1	0.3462	158.6	0.6793		0.8944	65.7		
66.1	0.4138	174.1	0.7606	143.6	0.9271	44.1		
		$a_0 = 743.9, a$	$_1 = 122.8, a$	$a_2 = 0, a_3 = 67.0$	$, a_4 = -42$	0.1		
			$\sigma(H_{\rm m}^{\rm E})$	$= 1.3 \text{ J} \cdot \text{mol}^{-1}$				
		371.3					0.9722	57.1
		430.2						
287.0	0.4929			361.4				
		$a_0 = 2079.4, a$	$a_1 = 457.9, a_{\sigma}$ $\sigma(H_{\rm m}^{\rm E}) =$	$a_2 = 384.1, a_3 =$ = 2.3 J·mol ⁻¹	$0, a_4 = -8$	32.8		
		Propyle	ene Carbon	ate (1) + 2-Octar	none (2)			
119.7	0.3162	587.9	0.6490	780.8	0.8809	420.6	0.9780	94.1
235.2	0.3814	681.2	0.7350	701.4	0.9315	269.8		
	0.4804	773.4	0.7872	624.0	0.9367	249.8		
447.1	0.5521	794.4	0.8473	504.9	0.9569	173.2		
		$a_0 = 3131.$	4, $a_1 = 966$	$8.5, a_2 = -203.6,$	$a_3 = 584.0$)		
			$\sigma(H_{ m m}^{ m E})$:	$= 2.6 \text{ J} \cdot \text{mol}^{-1}$				
		Propyler	ne Carbona	te $(1) + 2$ -Undeca	anone (2)			
291.8	0.3782	939.3	0.7087	953.1	0.9068	546.6	0.9832	129.9
499.8	0.4478	1009.1	0.7849	850.7	0.9359	419.0		
663.0					0.9511	344.4		
796.2	0.6186					246.0		
		$a_0 = 4170.8, a_1$	$_{1} = 608.2, c$	$a_2 = 0, a_3 = 1844$	$1.3, a_4 = 18$	43.2		
			$\sigma(H_{m}^{E})$:	$= 4.1 \text{ J} \cdot \text{mol}^{-1}$				
		Propylen	e Carbonat	e(1) + Cyclohex	anone (2)			
47.3	0.2342	215.5	0.5503	312.9	0.8304	195.9	0.9671	42.6
92.4	0.2897	254.3	0.6484	301.0	0.8801	145.6		
131.7	0.3796	290.5	0.7099	277.9	0.9073	115.4		
168.1	0.4492	309.1	0.7859			79.7		
		$a_0 = 1256.4, a_1$	$= 128.1, a_2$ $\sigma(H_m^{\rm E}) =$	$a_2 = 233.7, a_3 = 50$ = 1.5 J·mol ⁻¹	6.9, $a_4 = -$	397.3		
		Propulana C			hevenone	(9)		
79 A	0.2633						0 9717	61.8
							0.0111	01.0
102.0								
			$\sigma(\boldsymbol{H}_{\mathtt{m}}^{\mathtt{E}})$:	$= 1.8 \text{ J} \cdot \text{mol}^{-1}$				
	0.0000						0.0750	50.0
							0.9750	76.3
37771	0.5200	648.9	0.8298	428.7	0.9512	148.9		
372.1		- 25766 9	510 ~	$0, a_3 = 1510.3, a$	-0	-1910 /		
	$\begin{array}{c} -4.3 \\ -6.5 \\ -7.3 \\ -7.1 \\ 12.4 \\ 28.3 \\ 48.1 \\ 66.1 \\ 80.7 \\ 158.5 \\ 228.4 \\ 287.0 \\ 119.7 \\ 235.2 \\ 353.2 \\ 447.1 \\ 291.8 \\ 499.8 \\ 663.0 \\ 796.2 \\ 47.3 \\ 92.4 \\ 131.7 \\ 168.1 \\ 72.0 \\ 141.0 \\ 205.4 \\ 262.5 \\ 115.5 \\ 210.1 \\ 300.7 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


Table 2. Excess Molar Enthalpies, H_m^E , of Binary Mixtures and Adjustable Parameters a_k of Eq 1 Along with Standard Deviations $\sigma(H_m^E)$ at 298.15 K

The adjustable parameters a_k were evaluated by fitting $H_{\rm m}^{\rm E}$ to eq 1 by the method of least squares. Table 2 collects the experimental $H_{\rm m}^{\rm E}$ values and the adjustable parameters a_k along with the standard deviations $\sigma(H_{\rm m}^{\rm E})$.

A graphical representation of the results is given in Figures 1 and 2, and excess molar enthalpies at $x_1 = 0.5$, $H_m^E(x_1=0.5)$, have been reported in Figure 3, as a function of the number n_c of carbon atoms, only for linear ketones. All excess enthalpies are nearly symmetrical in mole fraction, with the exception of the mixture containing 2-propanone, which has the smallest values of H_m^E and

shows a minor sign inversion of the excess enthalpy.

 $H_{\rm m}^{\rm E}(x=0.5)$ increases regularly with the chain length of the ketones for mixtures of propylene carbonate + linear ketones, as shown in Figures 1 and 3. Also, increasing the number of CH₃ groups in the cyclohexanone molecule leads to an increase in $H_{\rm m}^{\rm E}(x=0.5)$, as shown in Figure 2, reporting for comparison the $H_{\rm m}^{\rm E}$ values of 2-hexanone (dashed line). Thus, cyclization of the molecule leads to smaller $H_{\rm m}^{\rm E}$, and an increase in molecular size leads to larger $H_{\rm m}^{\rm E}$. The same trends are observed for the excess enthalpy of dimethyl or diethyl carbonate with cyclic or

Figure 1. Excess molar enthalpies, H_m^E , of propylene carbonate + 2-propanone (a), + 2-butanone (b), + 2-hexanone (c), + 2-octanone (d), and +2-undecanone (e) at 298.15 K: (O) experimental points; (-) curves calculated from eq 1 using the parameters of Table 1.

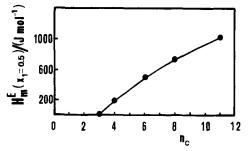



Figure 2. Excess molar enthalpies, $H_{\rm m}^{\rm E}$, of propylene carbonate + cyclohexanone (f), + 2-methylcyclohexanone (g), and + 2,6dimethylcyclohexanone (h): (\bullet) experimental points; (-) curves calculated from eq 1 using the parameters of Table 1; (--)propylene carbonate + 2-hexanone, taken from Figure 1 and shown for comparison.

linear ketones (4, 5). However, the magnitude of the cyclization effect is smaller.

The regular increase of H_m^E with the increase of the chain length in linear ketones and with the increase of the CH₃ groups in cyclic ketones may be explained, at most qualitatively, by the prevailence of the interaction energy between molecules of ketones, E_{22} , over that between molecules of ketone and cyclic ester, E_{12} , in the approximate

Figure 3. Values of $H_m^E(x_1=0.5)$ at 298.15 K for the five binary mixtures of propylene carbonate + linear ketones as a function of the number n_c of carbon atoms in the ketone.

expression for

$$H_{\rm m}^{\rm E} \approx E_{11} + E_{22} - 2E_{12} \tag{2}$$

In fact, alkyl chains and CH3 groups exert an electron donor effect on the neighbor C=O groups of ketones with an increased negative charge induced on the O atom of C=O and consequent larger interactions between ketones molecules.

Literature Cited

- Annesini, M. C., De Sanctis, R.; Kikic, I.; Marrelli, L. J. Chem. (1)Eng. Data 1984, 29, 39.
- Muhuri, P. K.; Hazra, D. K. J. Chem. Eng. Data 1994, 39, 375. (2)(3) Al-Najar, A. A.; Alami, K. M. H.; Ebraheem, A. M. J. Chem. Eng. Data 1992, 37, 443.

- Francesconi, R.; Comelli, F. *Thermochim. Acta*, in press. Francesconi, R.; Comelli, F. J. *Thermal Anal.*, in press. Gonzalez, J. A.; Garcia, I.; Cobos, J. C.; Casanova, C.; Kehiaian, H. V. Thermochim. Acta 1993, 217, 57.
- Wilhelm, E.; Jmenez, E. J. Solution Chem. 1991, 20, 17. Collerson, R. R.; Counsell, J. F.; Handley, R.; Martin, J. F.; Sprake,
- C. H. S. J. Chem. Soc. 1965, 3697. (9)
- Jansen, M. L.; Yeager, H. L. J. Phys. Chem. 1973, 77, 3089. Riddik, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents; (10)Wiley-Interscience: New York, 1986.
- (11)Smith, B. D.; Srivastava, R. S. Thermodynamic Data for Pure
- Compounds; Elsevier: Amsterdam, 1986; Part A. (12) Dernini, S.; Polcaro, A. M.; Ricci, P. F.; Marongiu, B. J. Chem. Eng. Data 1987, 32, 194.
- (13)Monk, P.; Wadso, I. Acta Chem. Scand. 1968, 22, 1842.
- Francesconi, R.; Comelli, F. J. Chem. Eng. Data 1986, 31, 250.
- (15) Benson, G. C. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1974, 19.

Received for review September 27, 1994. Accepted February 14, $1995.^{\circ}$

JE9402029

* Abstract published in Advance ACS Abstracts, April 1, 1995.