Enthalpy Increment Measurements from 4.5 to 350 K and the Thermodynamic Properties of Titanium Disilicide(cr) to 1700 K[†]

Donald G. Archer*

Chemical Kinetics and Thermodynamic Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Mel S. Sabella, Stacey E. Stillman, and Eric J. Cotts*

Physics Department, Binghamton University, Binghamton, New York 13902-6016

Enthalpy increments for titanium disilicide were measured from 4.5 to 350 K with an adiabatic calorimeter. The enthalpy increments were combined with previous differential scanning calorimetry values to 500 K, Kopp's rule estimates for 500–800 K, and previous enthalpy increment measurements for temperatures to 1700 K in order to give the thermodynamic properties of titanium disilicide to 1700 K. Values of the Debye temperature, θ_D , and the coefficient for the heat capacity of the conduction electrons, γ_{el} , were determined from the model. Thermodynamic properties for formation from the elements at 298.15 K were also given.

Introduction

Titanium disilicide is a low resistivity material of high thermal stability. It is used for interconnects in microcircuits as layers deposited on silicon substrates. The thermodynamic properties of the deposited silicides are essential to generation of predictive models of the chemical-vapor deposition processes used to form these electronic interconnects. Because there exist at least five stoichiometrically different stable (in the kinetic sense) solid phases, the deposited phases might be susceptible to small differences in the thermodynamic properties of the different stoichiometries.

The present work provides the thermodynamic properties to 1700 K of titanium disilicide, the titanium silicide presently of most importance for microelectronic usage. The thermal functions are based upon new measurements of enthalpy increments from 4.5 to 350 K obtained with an adiabatic calorimeter, previous heat capacities obtained with a differential scanning calorimeter for temperatures from 350 to 500 K, a Kopp's rule estimate of the heat capacity from 500 to 800 K, and previous measurements of the difference in enthalpy between 298.15 K and upper temperatures ranging from 1200 to 1700 K.

Experimental Section

Ingots of titanium disilicide were produced by means of arc melting in a titanium-gettered argon atmosphere (Feder et al., 1993; Grosman and Cotts, 1993). The titanium and silicon used in sample preparation were of high purity, <0.01 and <0.005 mol % impurities, respectively. Ingots were turned on their side and remelted at least once. Pieces of each ingot were finely powdered in an acetone medium. Glass slides were coated with a thin layer of Vaseline petroleum jelly, and the powder was sprinkled onto the slide (pouring resulted in preferential orientations of the grains). X-ray diffraction analysis was performed in a standard θ - 2θ theta geometry using Cu Ka radiation. X-ray diffraction profiles revealed only peaks

* To whom correspondence should be addressed.

indexed to the titanium disilicide phase. The observed lattice parameters ($a = 0.8274 \pm 0.0005$ nm, $b = 0.4795 \pm$ $0.0002 \text{ nm}, c = 0.8544 \pm 0.0005 \text{ nm}$) were consistent with previous observations (Sylla et al., 1994; Laves and Walbaum, 1939; Jeitschko, 1977; Dietrich et al., 1978). Selected relatively large pieces of some ingots were cut and polished for optical microscope analysis. After a light etch with Kroll's reagent, optical micrographs revealed grain sizes between 500 and 1000 μ m, primarily of single phase. The level of contamination by secondary phases observed by optical microscopy was estimated to be less than 0.1%. Chemical analysis performed by the LECO Corp. on selected samples indicated that the ingots contained <100ppm oxygen, <100 ppm carbon, <2 ppm hydrogen, and <30 ppm nitrogen. These impurity levels were typical of the titanium silicides produced in our laboratory except for oxygen, for which more typical values were at the 500 ppm level.

The titanium disilicide ingots were lightly crushed and separated by particle size by means of a 20 mesh sieve. Pieces of the ingots larger than 20 mesh were used to load the calorimeter.

The calorimetric apparatus has been described previously (Archer, 1995). The loaded calorimeter was evacuated, and then approximately 8 kPa (300 K) of helium was sealed in the calorimeter. The mass of titanium disilicide used for the measurements was 11.9037 g and corresponded to approximately 50% of the internal volume of the calorimeter. The density of titanium disilicide was calculated from the X-ray data to be 4.08 gcm^{-3} . The molecular mass was taken to be $104.072 \text{ g}\text{-mol}^{-1}$. The measured enthalpy increments of the filled calorimeter were converted into enthalpy increments for titanium disilicide by subtraction of the enthalpy increment for the empty calorimeter and for the small differences in the amounts of helium and vacuum grease between the empty and filled calorimeters. The enthalpy increments were corrected for the small systematic biases in the calorimetric system using the equations

$$\epsilon \Delta H_{\rm m} = -[\{(T_2 + T_1)/2\} - 100 \text{K}](0.00001 \text{ K}^{-1})\Delta H_{\rm m} \ (T_1 > 100 \text{ K}) \ (1)$$

$$\epsilon \Delta H_{\rm m} = -0.0025 \Delta H_{\rm m} \ (T_2 \le 13.8 \text{ K})$$
 (2)

where T_2 and T_1 are the larger and the smaller of the two

[†] Certain commercial materials and suppliers are identified in this paper in order to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by either the U.S. Government or the National Institute of Standards and Technology, nor does it imply that the equipment or materials identified are necessarily the best available for the purpose.

Table 1.	Enthalpy	Increment	Measurements	for	Titanium	Disilicide
----------	----------	-----------	--------------	-----	----------	------------

		$A H (T \rightarrow T)$	·				$A H (T \rightarrow T)$		
T_1/K	$T_{\rm p}/{ m K}$	$\frac{\Delta n_{\rm m}(T_1 \rightarrow T_2)}{(J \cdot {\rm mol}^{-1})}$	σ^a	δ^b	T_1/K	$T_{\rm o}/{\rm K}$	$\frac{\Delta n_{\rm m}(T_1 \rightarrow T_2)}{(J \cdot {\rm mol}^{-1})}$	σ^a	δ^b
				·····		- 2	0 1101)	0.1	
15.5490	17.1905	0.2245	U	4.57	202.9065	207.8160	275.832	0.1	-0.01
17.1841	19.6095	0.4207	2.5	-1.27	207.7099	212.7001	284.257	0.1	0.02
19.5963	21.9013	0.0717	2.5	-1.87	212.0840	217.0790	282.345	0.1	-0.02
21.9002	24.3942	0.8334	2.0	0.30	211.0021	222.4400	280.070	0.1	-0.01
24.4001	20.0072	1.1000	0.6	0.47	222.4270	227.3204	200.972	0.1	0.01
20.0742	29.4220	1.0300	0.0	-0.10	227.3012	202.1004	291.001	0.1	0.03
29.4234	34 6950	2.200	0.5	-0.17	232.1045	237.0379	290.040	0.1	-0.01
34 6937	34.0500	3.125 4 051	0.5	-0.04	237.0334	241.5220	201.070	0.1	0.00
37 8179	41 0168	6.845	0.25	0.00	246 7548	251 6510	303 507	0.1	-0.01
4 5403	5 9766	0.040	6	2 33	247 9672	253 3971	337 241	0.1	-0.02
5 9378	7 7684	0.0548	4	-0.32	253 3683	257 7146	272 325	0.1	0.01
7 7815	9 6536	0.0769	4	-2.33	257 6847	262 0331	274 233	0.1	-0.01
9.6255	11.6720	0.1189	4	1.27	262,0007	266.3551	276.373	0.1	-0.03
11.6684	13.8014	0.1674	5	0.49	266.3209	270.6695	277.853	0.1	0.01
13.8362	15.9748	0.2307	3	1.46	270.6326	274.9919	280.004	0.1	-0.07
15.9874	18.2688	0.3322	2.5	-0.40	274.9527	279.3001	281.193	0.1	0.05
18.2750	20.4419	0.4411	2.5	1.03	279.2594	283.6173	283.290	0.1	0.00
20.4414	22.8674	0.6772	2.5	0.41	283.5734	287.9239	284.334	0.1	0.00
22.9104	25.3268	0.9323	0.6	0.04	287.8772	292.2264	285.686	0.1	0.00
25.3438	27.8374	1.316	0.6	-0.27	292.1776	296.5373	287.771	0.1	-0.01
27.8471	30.4118	1.854	0.5	0.04	296.4856	300.8389	288.776	0.1	0.01
30.4163	33.0610	2.582	0.5	-0.23	300.7844	305.1352	290.071	0.1	0.06
33.0616	35.7453	3.511	0.5	-0.02	81.3527	86.7804	103.141	0.1	0.00
35.7436	38.5034	4.766	0.3	0.20	86.7801	91.9400	110.550	0.1	-0.05
38.4997	41.3261	6.315	0.3	-0.07	91.9386	97.1472	123.839	0.1	-0.01
41.3208	44.1634	8.100	0.2	0.10	97.1447	102.3850	136.708	0.1	0.00
44.1580	47.0594	10.328	0.2	0.04	102.3813	107.6578	149.600	0.1	0.01
47.0540	49.9900	12.841	0.2	0.02	107.6537	112.9614	162.186	0.1	0.02
49.9842	52.9512	15.687	0.1	0.05	112.9566	118.2776	173.865	0.1	0.00
52.9451	55.9581	18.961	0.1	0.00	118.2724	123.6189	185.663	0.1	0.03
55.9516	58.9921	22.476	0.1	-0.01	123.6133	128.9607	196.088	0.1	0.01
58.9854	62.0640	26.404	0.1	0.00	128.9543	134.3204	206.785	0.1	0.01
62.0573	65.1537	30.446	0.1	0.00	134.3132	139.6883	216.783	0.1	0.06
65.1471	68.2583	34.678	0.1	0.01	139.6809	145.0811	226.811	0.1	0.00
68.2516	71.3835	39.180	0.1	0.04	145.0736	150.4692	235.244	0.1	-0.02
71.3769	74.5368	43.947	0.1	0.01	150.4611	155.8727	244.279	0.1	0.02
11.0990	84.0760	53.409	0.1	0.03	100.8039	161.2754	251.854	0.1	-0.06
84 0700	84.0709 97.0790	08.490 60.964	0.1	0.01	161.2007	100.0777	209.000	0.1	0.07
44 5803	47 5607	10.064	0.1	-0.01	172 0736	172.0040	200.000	0.1	-0.01
44.5605	50 5043	13 337	0.1	-0.04	172.0730	192 0306	274.055	0.1	0.01
50 5022	53 4853	16 250	0.1	-0.17	182 9168	188 3434	285.881	0.1	0.04
53 4830	56 4875	19.481	0.1	0.17	188 3230	193 7540	200.001	0.1	0.02
56 4851	59 5189	23 037	0.1	-0.00	193 7413	199 1526	295 916	0.1	0.02
59 5161	62 5830	26.952	0.1	0.01	199 1390	204 5688	301 987	0.1	0.00
62,5800	65.6742	31.097	0.1	-0.01	204.5537	209.9781	306.404	0.1	-0.01
65.6710	68,7743	35.288	0.1	0.01	209.9618	215.3951	311.303	0.1	-0.05
68.7711	71.8971	39.817	0.1	0.03	215.3776	220.8055	315.325	0.1	-0.04
71.8936	75.0328	44.328	0.1	-0.10	220.7868	226.2110	319.225	0.1	-0.03
75.0291	78.1874	49.209	0.1	0.10	226.1912	231.6149	323.192	0.1	0.01
78.1836	81.3557	53.976	0.1	-0.02	231.5935	237.0219	327.080	0.1	-0.02
81.3515	84.5378	58.888	0.1	-0.01	236.9988	242.4302	330.810	0.1	-0.01
84.5337	87.7294	63.757	0.1	-0.02	242.4050	247.8277	333.989	0.1	0.01
87.7252	90.9360	68.756	0.1	-0.04	247.7984	253.2276	337.255	0.1	0.00
90.9314	94.1463	73.518	0.1	-0.05	253.1893	258.6302	341.349	0.1	0.09
94.1413	97.3647	78.400	0.1	0.01	258.6012	264.0202	342.599	0.1	0.01
92.0950	97.3381	125.080	0.1	0.00	263.9867	269.4031	345.237	0.1	0.03
97.3365	101.5479	109.286	0.1	0.01	269.3665	274.7977	348.641	0.1	-0.03
101.5458	105.7956	118.039	0.1	0.00	274.7583	280.1752	350.438	0.1	0.03
105.7930	110.0545	126.041	0.1	0.03	280.1328	285.5648	353.706	0.1	-0.01
110.0514	114.3364	134.182	0.1	-0.01	285.5192	290.9383	355.101	0.1	-0.03
119 6166	110.0202	141.000	0.1	0.02	290.0009	290.3114	301.009	0.1	0.01
122 0224	122.9270	149.040	0.1	-0.02	290.2000	301,0004	309.900	0.1	-0.02
122.3234	121.2012	162 803	0.1	0.00	306.9694	312 3/30	360.477	0.1	-0.02
131.5333	135.8558	169 569	0.1	0.01	311 7298	317 0756	360.371	0.1	0.02
135.8508	140,1705	175.443	0.1	-0.05	317.0051	322.3190	359.885	0.1	0.00
140.1652	144.4928	181.712	0.1	0.00	322.2437	327.3360	346.471	0.1	0.00
144.4871	149.3367	210.138	0.1	-0.07	327.2570	332.3416	347.357	0.1	-0.02
149.3306	154.1969	217.664	0.1	-0.03	332.1361	337.3439	357.429	0.1	0.04
154.1900	159.0495	223.817	0.1	-0.01	337.2548	342.3305	349.643	0.1	0.00
159.0423	163.9128	230.265	0.1	-0.07	342.2371	346.5575	298.717	0.1	0.02
163.9050	168.7777	236.498	0.1	0.07	346.4607	349.7080	225.091	0.1	-0.01
168.7694	173.6502	242.077	0.1	-0.07	301.0654	308.1362	471.867	0.1	-0.02
173.6413	178.5308	247.941	0.1	-0.01	308.1298	315.1734	473.372	0.1	-0.02
178.5212	183.4102	252.872	0.1	-0.03	315.1591	322.2102	477.091	0.1	0.00
188 2800	100.2920	207.900	0.1	0.03	322.1880	329.2336	4/9.701	0,1	0.01
100.2000	198 0469	202.010	0.1	0.00	029.1900 336 9114	330.2000 343 9606	400.200 185 716	0.1	0.03 0.02
198.0343	202.9349	271.343	0.1	-0.02	343.2135	349.8677	460.552	0.1	-0.04

 $^{a}\sigma$ is the percentage uncertainty assigned to the observation for the purposes of the least-squares calculation. A U indicates that the observation was not included in the least-squares calculation. $^{b}\delta$ is the percentage difference of the calculated enthalpy increment from that observed.

Table 2. Least-Squares Estimated Knot Positions and $\gamma_{el}{}^a$

$T_{\rm i}/{ m K}$	\mathbf{d}_{i}	$T_{\rm i}/{ m K}$	di	$T_{\rm i}/{ m K}$	di
0	37.4736	40	21.2103	230	1.61511
10	37.4736	55	16.0524	280	0.04373
15	36.1256	75	11.9647	330	-1.31053
20	32.8220	100	8.82794	380	-2.55723
25	29.5381	130	6.33731	1850	-36.91127
32	25.2729	180	3.57256		

 $^{a} \gamma_{\rm el} / C_{p}^{\circ} = 0.003 \ 605 \ 87 \ {\rm K}^{-1}.$

temperatures for the enthalpy increment, respectively, and $\epsilon \Delta H_{\rm m}$ is the correction added to the substance's enthalpy increment, $\Delta H_{\rm m}$. The origin of these corrections has been described previously (Archer, 1995).

Results and Discussion

The measured enthalpy increments for titanium disilicide are given in Table 1. Above 50 K, the measurements are expected to be uncertain by no more than 0.05-0.1%, dependent upon the particular temperature. These uncertainty values were based on the previous measurements of enthalpy increments for calorimetric reference materials (Archer, 1995), the present reproducibility, and the percentage of the total measured enthalpy increment that was due to the titanium disilicide sample. Below 50 K, the results must be considered less accurate, partly due to limits in the accuracy of platinum resistance thermometer temperature scales below 50 K and partly due to an unfavorable percentage of the total measured enthalpy being due to the titanium disilicide sample. The contribution of the titanium disilicide to the total measured enthalpy increment was a minimum of 8% near 20 K and increased in percentage with both increasing and decreasing temperatures from 20 K. The sample contributed 24% of the total enthalpy increment for the lowest temperature measurement. The increasing contribution of titanium disilicide to the total enthalpy increment at temperatures of less than 20 K was a result of titanium disilicide possessing a much larger contribution to the molar enthalpy from the conduction electrons than does copper, which comprised the bulk of the calorimeter.

Thermodynamic properties for titanium disilicide were calculated from a least-squares representation using a cubic-spline method described previously (Archer, 1992). That method was altered in the present case to allow incorporation of an additional variable value representing the limiting value of the heat capacity of the conduction electrons.

Briefly, a function f(T) was used, where:

$$f(T) = [T\{(C_{p,m} - \gamma_{el}T)/C_p^{\circ}\}^{-1/3} - bT]/T^{\circ}$$
(3)

and where T is temperature, T° is 1 K, $C_{p,m}$ is the molar heat capacity, C_{p}° is 1.0 J·K⁻¹·mol⁻¹, γ_{el} is the coefficient for the contribution to the heat capacity of the conduction electrons, and b is arbitrarily chosen to be 0.25 for the present case. The function f(T) of eq 3 was fitted with a cubic spline using polynomials of the form

$$f(T) = a_i (T - T_i)^3 + b_i (T - T_i)^2 + c_i (T - T_i) + d_i \quad (4)$$

where the subscript *i* refers to the polynomial that contained the specified value of *T* and spanned the temperature range T_i to T_{i+1} . A particular (T_i, d_i) pair is referred to as a "knot." "Natural spline" end conditions (*i.e.*, second derivative equal to 0) were imposed at the two end knots. (For the purpose of calculation $T_{i+1} > T > T_i$). The calculated heat capacity is thus

$$C_{p,\mathrm{m}}/C_{p}^{\circ} = \left(\frac{T}{T^{\circ}f(T) + bT}\right)^{3} + \gamma_{\mathrm{el}}T/C_{p}^{\circ} \tag{5}$$

Equation 5 was integrated numerically to obtain the enthalpy. The model was determined by fitting to the selected values with a nonlinear least-squares program. The vector of residuals was calculated using eq 5 for the heat capacity or the numerical integration of eq 5 to obtain enthalpy increments. The estimated square root of the variance for the least-squares procedure was calculated from twice the irreproducibility for a full calorimeter determination and the percentage of the observed enthalpy due to the titanium disilicide sample. These values, given in Table 1, approximately corresponded to a 95% confidence interval rather than the square root of the variance. However, the calculations will be correct if the relative weighting of all results was correct, which was the case here. In the current work, the first two knot positions were set to have identical values which were determined from the nonlinear least-squares procedure. Representation of the experimental results, over the full range of temperature, required 16 variable values for the knot positions and the variable γ_{el} . This procedure yielded an estimate of the Debye temperature of approximately (675 \pm 50) K and a value of $\gamma_{\rm el}/C_p^{\circ}$ of $36 \times 10^{-4} \, {\rm K}^{-1} \pm \sim 10\%$. The value of the Debye temperature for TiSi2 obtained here was very similar to that obtained by Gottlieb et al. (1993) for the adjacent first-row transition metal disilicide VSi₂. Gottlieb et al. (1993) measured the heat capacity of VSi_2 from 0.1 to 7.5 K and obtained a value of the Debye temperature of (665 \pm 10) K. The value of $\gamma_{\rm el}/C_p^{\circ}$ obtained here, $36 \times 10^{-4} \, {\rm K}^{-1}$, was similar to the value for titanium metal, $35.6 imes 10^{-4}$ K^{-1} (Hultgren et al., 1963). This was different from VSi_2 where $\gamma_{\rm el}/C_p^{\circ}$ was found by Gottlieb et al. to be 60.8×10^{-4} ${
m K}^{-1}$ compared to the value for vanadium metal of 90.8 imes 10^{-4} K⁻¹ (Hultgren et al., 1963). Determination of the parameters for vanadium were complicated by a superconducting transition at 5 K.

The final knot positions and the value of $\gamma_{\rm el}$ are given in Table 2. The number of digits given in Table 2 should be sufficient for calculation of thermodynamic properties and were not meant to be representative of any statistical assessment. Calculated thermodynamic properties of titanium disilicide are given in Table 3. One of the present measurements was excluded from the least-squares representation as it disagreed with the other measurements; no reason for the divergence of this point was known.

The values used for determination of the model consisted of the enthalpy increments from Table 1, heat capacities calculated from the equation of Sylla et al. (1994) for 350-500 K, heat capacities estimated by means of Kopp's rule, and the reference heat capacity values for titanium and silicon (Chase et al., 1985) for temperatures from 500 to 800 K. Also included were values of $\Delta H_{\rm m}(T_1 \rightarrow 298.15 \text{ K})$ calculated from the equation given by Bondarenko (1976) for values of T_1 from 1200 to 1700 K (Bondarenko gave only the fitted equation). The equation given by Sylla et al. is a representation of their differential scanning calorimetry measurements that spanned the temperature range of 110-500 K. Differential scanning calorimetry is inherently less accurate than the calorimetry used for the measurements presented here. Because of this large difference in accuracy, the scanning calorimetry results that were included in the least-squares representation were only those for temperatures greater than the largest temperature for the present measurements. The heat capacities from Sylla et al. and from the Kopp's rule estimate were weighted as possessing 95% confidence intervals of 2% and

Table 3.	Thermodynamic Pro	perties of Titanium	Disilicide Ca	alculated from E	as 4 and 5

T/K	$C_{p,m}/(J\cdot K^{-1}\cdot mol^{-1})$	$(T) - H_{\rm m}(0 \text{ K}))/$ $(kJ \cdot mol^{-1})$	$(S_{m}/(J\cdot K^{-1}\cdot mol^{-1}))$	T/K	$\frac{C_{p,\mathrm{m}}}{(\mathrm{J}\textbf{\cdot}\mathrm{K}^{-1}\textbf{\cdot}\mathrm{mol}^{-1})}$	$\begin{array}{c} (T) - H_{\rm m}(0~{\rm K})) / \\ ({\rm kJ}{\cdot}{\rm mol}^{-1}) \end{array}$	$(S_{\rm m}/(J\cdot K^{-1}\cdot {\rm mol}^{-1})$
10	0.0517	0.000	0.041	460	73.8	22.577	94.612
20	0.220	0.001	0.116	480	74.4	24.060	97.768
40	2.249	0.020	0.696	500	75.0	25.555	100.819
60	8.366	0.120	2.633	520	75.6	27.061	103.77
80	17.124	0.373	6.208	540	76.1	28.578	106.64
100	26.193	0.807	11.013	560	76.6	30.10	109.41
120	34.363	1.414	16.529	580	77.0	31.64	112.11
140	41.267	2.173	22.361	600	77.5	33.19	114.73
160	46.94	3.057	28.255	620	77.9	34.74	117.27
180	51.54	4.043	34.058	640	78.3	36.30	119.75
200	55.30	5.113	39.690	660	78.6	37.87	122.17
220	58.39	6.251	45.110	680	79.0	39.45	124.51
240	60.95	7.445	50.304	700	79.3	41.03	126.81
260	63.08	8.686	55.269	720	79.7	42.62	129.05
280	64.89	9.966	60.012	740	80.0	44.22	131.24
298.15	66.29	11.157	64.132	760	80.3	45.82	133.38
300	66.42	11.279	64.543	780	80.6	47.43	135.47
320	67.75	12.621	68.873	800	80.8	49.04	137.51
340	68.90	13.988	73.015	900	82.1	57.19	147.10
360	69.91	15.376	76.983	1000	83.1	65.45	155.81
380	70.8	16.784	80.788	1200	84.9	82.26	171.13
400	71.7	18.209	84.442	1400	86.3	99.38	184.32
420	72.4	19.650	87.958	1600	87.5	116.77	195.93
440	73.1	21.107	91.345	1700	88.0	125.54	201.25
100				L O	3		

Figure 1. Heat capacity of titanium disilicide calculated from the least-squares representation.

3%, respectively. The enthalpy increments from Bondarenko were weighted as possessing 95% confidence intervals of 2% for values of T_1 less than 1550 K and were given no weight for values of T_1 greater than 1550 K for reasons discussed below. Only a single knot was used beyond 380 K. This was because the accuracy of the fitted results for temperatures greater than 350 K did not justify any tighter of a representation. The enthalpy increment measurements from Golutvin (1959) were found to disagree with the fitted equation with a root-mean-square (rms) difference of 1.3 kJ-mol⁻¹ for upper temperatures from 108.6 to 774.2 K. This difference was more or less independent of temperature.

Calculated values of the heat capacity are shown in Figure 1. The differences of the present measured values, Sylla et al.'s (1994) equation from 110 to 500 K, the Kopp's rule estimate to 800 K, and the high-temperature enthalpy increments from the model are shown in Figure 2. The rms difference of the present measurements from the fitted model was approximately 0.035% for temperatures greater than 50 K. The fitted equation agreed well with the hightemperature enthalpy increments from 1200 to 1500 K (rms

Figure 2. Differences from the fitted model, in percent, for the present results, *; the heat capacity equation of Sylla et al. (1994), --; the estimated heat capacity from Kopp's rule, ---; and enthalpy increments from Bondarenko (1976), O.

Figure 3. Values of the heat capacity at low temperatures. The line is calculated from the least-squares estimated model. The symbols are values approximated from the experimental values as $\Delta H_{\rm m}(T_1 \rightarrow T_2)/(T_2 - T_1)$.

difference of 0.5%); however, the differences became larger for 1600 and 1700 K (1.9 % and 3.5%, respectively; the rms difference for the total range of 1200-1700 K was 1.7%). The increased differences above 1500 K could have resulted from at least three different possibilities: (1) A significant variation of electrical resistivity above 1470 K had been reported previously for titanium disilicide (Glaser and Moskowitz, 1953). This increased resistivity may be an indicator for the existence of an allotropic transformation of titanium disilicide in the vicinity of 1470 K. This possible transformation may have been the cause of the divergence of the observed enthalpy from the model for temperatures greater than 1550 K. (2) Increased experimental uncertainty for temperatures greater than 1500 K was certainly possible. (3) There is sometimes an observed increase in enthalpy and heat capacity in the temperature region just prior to the melting temperature. This effect may account for the differences. The fitted function should not follow the additional increase in enthalpy for the first two cases, but should follow it for the third case. Some refractory materials, such as aluminum oxide, do not show the decidedly nonlinear behavior seen in nonrefractory materials, e.g., bismuth and sodium chloride. On the basis of the above considerations, the decision was made not to have the fitted function more tightly represent the enthalpy increments at 1600 and 1700 K.

Figure 3 shows a comparison of calculated values of the heat capacity and values of $\Delta H_{\rm m}(T_1 \rightarrow T_2)/(T_2 - T_1)$ from Table 1. The linear dependence, with respect to T, of the calculated heat capacity resulting from the conduction electrons is visible at the lowest temperatures.

Combination of the present 298.15 K entropy with the reference values of the entropies of titanium and silicon (Chase et al., 1985) gives an entropy of formation of -4.27J·mol⁻¹·K⁻¹ for 298.15 K. Schlesinger (1990) recommended a value of the 298.15 K enthalpy of formation, (-170.9 \pm 8.3) kJ·mol⁻¹, given by Topor and Kleppa (1986). Combination of these two values gives a 298.15 K Gibbs energy of formation of (-169.6 ± 8.3) kJ·mol⁻¹. The thermodynamic properties for formation at other temperatures may be calculated from the model given here and the material given by Chase et al. (1985).

Journal of Chemical and Engineering Data, Vol. 40, No. 6, 1995 1241

appeared to be "estimated" from a purely empirical additivity scheme. As such, it does not have the same standing as a value determined from measured thermal properties. The difference between the Kubaschewski et al. value and the present value, about 5%, is quite significant in thermodynamic calculations. For example, the various phase equilibria occur between 1600 and 2400 K in the phase diagram for the Ti + Si system. The error in the change of the Gibbs energy from 300 to 1700 K for TiSi₂ that arises from an error in the 300 K entropy of $-3 \text{ J}\cdot\text{mol}^{-1}\cdot\text{K}^{-1}$ is a bit larger than 4 kJ·mol⁻¹. This error is of the same magnitude as the error that would arise from a systematic error of -5% in the molar heat capacity over the entire 300-1700 K temperature interval ($\sim 6 \text{ kJ} \cdot \text{mol}^{-1}$). (The uncertainty of the heat capacity values given in Table 3 is probably less than 5%.) The uncertainty Kubaschewski et al. assigned to their entropy value, $\pm 9.2 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, would contribute 13 kJ·mol⁻¹ to the uncertainty in the change of the Gibbs energy from 300 to 1700 K. These values of the error and uncertainty introduced into Gibbs energy calculations from use of estimated 298.15 K entropies demonstrate the importance of actually determining the 298.15 K molar entropies.

Kubaschewski et al. (1993). The Kubaschewski et al. value

Literature Cited

- Archer, D. G. Thermodynamic Properties of the $NaCl + H_2O$ System. I. Thermodynamic Properties of NaCl(cr). J. Phys. Chem. Ref. Data **1992**, 21, 1-21
- Archer, D. G. Enthalpy Increment Measurements from 4.5 to 318 K for Bismuth(cr). Thermodynamic Properties from 0 K to the Melting Point. J. Chem. Eng. Data 1995, 40, 1015-1024.
- Bondarenko, V. P. Chemical Linkage in and Enthalpy of Transition-Metal Disilicides at Temperautres above 1200 K. Sov. Powder Metall. Met. Ceram. (Engl. Transl.) 1976, 15, 938-941.
- Chase, M. W.; Davies, C. A.; Downey, J. R.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. JANAF Thermochemical Tables, 3rd ed. J. Phys. Chem. Ref. Data 1985, 14, Suppl. 1.
- Dietrich, F.; Smith, T.; Houska, C. R. Integrated Intensities and Lattice Parameters for TiSi₂. J. Am. Ceram. Soc. 1978, 61, 276-277.
- Feder, K.; Gance, K.; Cotts, E. Calorimetric Study of Solid State Reactions. J. Pure Appl. Chem. 1993, 65, 895-900.
- Glaser, F. W., Moskowitz, D. Electrical Measurements at High Temperatures as an Efficient Tool for Thermal Analysis. *Powder Met.* Bull. **1953**, 6, 178.
- Golutvin, Yu. M. Heat Contents and Heat Capacities in the Titanium-Silicon System. Russ. J. Phys. Chem. (Engl. Transl.) 1959, 33, 164-168.
- Gottlieb, U.; Lasjaunias, J. C.; Laborde, O.; Thomas, O.; Mador, R. Low Temperature Specific Heat Measurements of VSi₂, NbSi₂, and TaSi₂. Appl. Surf. Sci. 1993, 73, 232-236.
- Grosman, D.; Cotts, E. J. Averaged Interdiffusion Coefficient During Solid-State Amorphization Reactions between Metal Layers. Phys. Rev. B 1993, 48, 5579-5584
- Hultgren, R.; Orr, R. L.; Anderson, P. D.; Kelley, K. K. Selected Values of Thermodynamic Properties of the Metals and Alloys; John Wiley and Sons: New York, 1963.
- Jeitschko, W. Refinement of the Crystal Structure of TiSi2 and Some Comments on Bonding in TiSi2 and Related Compounds. Acta Crystallogr. 1977, B33, 2347.
- Kubaschewski, O.; Alcock, C. B.; Spencer, P. J. Materials Thermochemistry; Pergamon Press: New York, 1993.
- Laves, F.; Walbaum, H. J. Die Kristallstruktur von Ni₃Ti and Si₂Ti. (Zwei Neue Typen). Z. Kristallogr. 1939, 101, 78.
- Schlesinger, M. E. Thermodynamics of Solid Transition Metal Silicides. Chem. Rev. 1990, 90, 607-628.
- Sylla, W. K.; Stillman, S. E.; Sabella, M. S.; Cotts, E. J. The Heat Capacity of Titanium Disilicide J. Appl. Phys. 1994, 76, 2752.
- Topor, L.; Kleppa, O. J. Standard Enthalpies of Formation of TiSi2 and VSi2 by High-Temperature Calorimetry. Metall. Trans. A 1986, 17A, 1217.

Received for review May 5, 1995. Accepted July 31, 1995.* JE9501088

A comparison may also be made with the value of the molar entropy for TiSi₂, (61.1 ± 9.2) J·mol⁻¹·K⁻¹, given by

* Abstract published in Advance ACS Abstracts, September 15, 1995.