Excess Molar Enthalpies, Densities, and Excess Molar Volumes of Diethyl Carbonate in Binary Mixtures with Seven *n*-Alkanols at 298.15 K

Romolo Francesconi*,[†] and Fabio Comelli[‡]

Dipartimento di Chimica "G. Ciamician", Universitá degli Studi, via Selmi 2, I-40126 Bologna, Italy, and Centro di Studio per la Fisica delle Macromolecole del CNR, via Selmi 2, I-40126 Bologna, Italy

The excess molar enthalpies, H_{m}^{E} , and the excess molar volumes, V_{m}^{E} , of diethyl carbonate + seven *n*-alkanols have been determined at 298.15 K and atmospheric pressure in order to investigate interactions between molecules. Mixtures show an endothermic effect which increases with the increase of the chain length of alkanols. The same positive pattern is observed for V_{m}^{E} . The experimental results have been correlated using the Redlich–Kister equation and have been qualitatively discussed.

Introduction

Literature reports only few thermodynamic studies on mixtures containing esters of carbonic acid, despite their importance as solvents used in industry, pharmaceuticals, and agricultural chemistry.

Continuing our research program, the present paper is undertaken to measure the excess molar enthalpies, H_{m}^{E} , and excess molar volumes, V_{m}^{E} , for diethyl carbonate + seven *n*-alkanols for which no literature data are available (that is, methanol, ethanol, propan-1-ol, butan-1-ol, hexan-1-ol, octan-1-ol, and decan-1-ol).

In previous papers (Comelli and Francesconi, 1995; Francesconi and Comelli, 1995) we have determined the excess molar enthalpies of diethyl carbonate with a series of dichloroalkanes and ketones, while other authors (Garcia et al., 1987) have measured the excess molar enthalpies of mixtures containing diethyl carbonate with some *n*-alkanes.

These series of data will contribute to a qualitative discussion.

Experimental Section

Materials. Origins and stated purities of liquids are shown in Table 1. All reagents were used without further purification, owing to their high purity grade, with the exception of diethyl carbonate which was fractionally distilled with sodium under reduced pressure and only the middle fraction was collected.

The purity tested by GLC was >99.8 mol %, and no appreciable peaks of impurities were detected.

Before use, all chemicals were kept in dark bottles over molecular sieves (Union Carbide type 4A, $^{1}/_{16}$ -in. pellets) to reduce the water content and degassed by ultrasound (ultrasonic bath, Hellma, type 460, Milan, Italy).

In order to check the purity of compounds, also density values and refractive indices were determined and are reported in Table 2 in comparison with literature data.

Calorimetric Measurements. The excess molar enthalpies, $H_{\rm m}^{\rm E}$, were determined using a flow microcalorimeter (LKB Produkter, model 2107, Bromma, Sweden). Details of the apparatus and experimental procedure were

[‡] CNR.

Table 1. Origin and Stated Purity of the Pure Components

component	origin	stated purity/mol%
diethyl carbonate	Aldrich Chemical Co.	99% ^{<i>a</i>} ; >99.8% (GLC) ^{<i>b</i>}
methanol	Aldrich Chemical Co.	99.8 (HPLC)
ethanol	E. Merck, D	99.8
propan-1-ol	Aldrich Chemical Co.	99.7
butan-1-ol	Aldrich Chemical Co.	99.8 (HPLC)
hexan-1-ol	Fluka Chemie, AG, CH	>99.5 (GC)
octan-1-ol	Fluka Chemie, AG, CH	>99.5 (GC)
decan-1-ol	Fluka Chemie, AG, CH	>99.5 (GC)

^a As supplied. ^b After purification.

Table 2.	Densities	s, ρ, Refracti	ve In	dices,	n _D , of	i Pure
Compone	ents and (Comparison	with	Litera	nture	Values

	$ ho/{ m g}{\cdot}{ m cm}^{-3}$			n _D
component	exptl	lit.	exptl	lit.
diethyl carbonate	0.969 23	0.969 26 ^a	1.3827	1.382 87 ^a
		$0.969 \ 4^{b}$		1.3824^{b}
methanol	0.786 56	0.786 37 ^a	1.3264	1.326 52 ^a
		0.7866 ^c		1.3264 ^c
		0.7868^{d}		
ethanol	0.785 09	0.784 93 ^a	1.3593	1.359 41 ^a
		0.785 1 ^c		1.3592 ^c
		$0.785 \ 4^{d}$		
propan-1-ol	0.799 58	0.799 60 ^a	1.3838	1.383 70 ^a
		$0.799~2^{d}$		
butan-1-ol	0.805 72	0.805 75 ^a	1.3975	1.397 41 ^a
		0.805 81 ^e		
		$0.805 \ 93^{f}$		$1.397 \ 4^{f}$
hexan-1-ol	0.815 16	0.815 34 ^a	1.4158	1.415 7 ^a
		0.815 32 ^e		
		$0.815\ 26^{f}$		1.416 0 ^f
octan-1-ol	0.821 64	0.821 57 ^a	1.4274	1.427 6 ^a
		$0.821 62^{e}$		
		0.821 67 ^f		1.4270 ^f
decan-1-ol	0.826 33	$0.826~42^{f}$	1.4348	1.4349^{f}

 a Riddick et al.,1986. b Cocero et al., 1989. c Arce et al., 1995. d Nikam et al., 1995. e Franjo et al., 1995. f Ortega, 1995.

described elsewere (Monk and Wadso, 1968; Francesconi and Comelli, 1986).

Liquids were pumped into the mixing cell of the calorimeter using two automatic burets (ABU, Radiometer, Copenhagen, Denmark), and the temperature was kept constant to ± 0.01 K by an isothermal control unit. Mole fractions of mixtures were determined from calibrated flow rates and fluid densities: we estimate mole fractions

^{*} To whom correspondence should be addressed.

[†] Universitá degli Studi.

Figure 1. Excess molar enthalpies, H_{m}^{E} , of diethyl carbonate (1) with methanol (2) (a), ethanol (2) (b), propan-1-ol (2) (c), butan-1-ol (2) (d), hexan-1-ol (2) (e), octan-1-ol (2) (f), and decan-1-ol (2) (f) at 298.15 K: (\bullet), experimental points; (solid curves), calculated from eq 2.

Figure 2. Excess molar volumes, V_m^E , of diethyl carbonate (1) with methanol (2) (a), ethanol (2) (b), propan-1-ol (2) (c), butan-1-ol (2) (d), hexan-1-ol (2) (e), octan-1-ol (2) (f), and decan-1-ol (2) (g) at 298.15 K: (\bullet), experimental points; (solid curves), calculated from eq 2.

precise to $1 \times 10^{-4},$ and the accuracy of the excess molar enthalpies is less than 1%.

Before measurements, the mixing cell was calibrated electrically with an integral resistance heater.

The calorimeter was tested by using the reference cyclohexane + hexane mixture (Gmehling, 1993) at 298.15 K: the deviation of our measurements from the literature was less than 0.5% over the central range of mole fraction of cyclohexane.

Density Measurements. Densities of the pure components and binary mixtures were determined using a vibrating density meter (model DMA 60, Anton Paar, Graz, Austria) equipped with a density measuring cell (Type 602) with a precision for the measured period τ of 1×10^{-6} s, which leads to a precision in densities and excess molar volumes of $\pm 5 \times 10^{-5}$ g·cm⁻³ and 3×10^{-3} cm³·mol⁻¹, respectively.

The densities, ρ , of mixtures were used to calculate the excess molar volumes, $V_{\rm m}^{\rm E}$, according to

$$V_{\rm m}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1} = (x_1M_1 + x_2M_2)/\rho - x_1M_1/\rho_1 - x_2M_2/\rho_2$$
(1)

where x_{i} , M_{i} , and ρ_{i} are the mole fraction, molar mass, and density of component *i*, respectively.

Figure 3. Values of equimolar excess enthalpies, $H_m^E(x_1=0.5)$, at 298.15 K as a function of the number of carbon atoms n_c of *n*-alkanols for the binary mixtures with diethyl carbonate: (closed circles) this paper; (open points) comparison with other functional groups from literature; (\bigcirc), *n*-alkanes (Garcia et al., 1987); (\bigtriangleup) methyl *n*-alkyl ketones (Francesconi and Comelli, 1995); (\Box), chloroalkanes (Comelli and Francesconi, 1995).

Figure 4. Values of equimolar excess volumes, $V_{\rm m}^{\rm E}(x_1 = 0.5)$, at 298.15 K as a function of the number of carbon atoms $n_{\rm c}$ of *n*-alkanols for the binary mixtures with diethyl carbonate.

The temperature of the U-shaped tube was checked using a calibrated digital thermometer (Anton Paar, DT-25) with an accuracy of ± 0.01 K. An external Hetotherm bath circulator (Heto, type 01 DBT 623) was used with a temperature control interval of ± 0.005 K.

The apparatus, the measuring method of densities, and the procedure to prepare samples by mass have been described elsewhere (Fermeglia and Lapasin, 1988).

Corrections for buoyancy and evaporation of the components were carried out, showing only a negligible contribution to the mole fraction, on the order of 1×10^{-4} at the worst.

Before measurements, the apparatus was calibrated with redistilled, degassed water and dry air.

The test mixture benzene + cyclohexane (Wilhelm, 1985) at 298.15 K was used to check the density meter and our measurements show a discrepancy less than 0.5% over the central range of mole fraction of benzene with respect to literature values.

Results and Discussion

The experimental values $H_{\rm m}^{\rm E}$ and $V_{\rm m}^{\rm E}$ as a function of mole fraction of diethyl carbonate (1) are shown in Tables 3 and 4 and are graphically represented in Figures 1 and 2. For each binary mixture, $H_{\rm m}^{\rm E}$ and $V_{\rm m}^{\rm E}$ values were fitted to the Redlich–Kister equation to correlate the composition dependence of both excess properties

$$Q_{\rm m}^{\rm E} = x_1 x_2 \sum_{k \ge 0} a_k (x_1 - x_2) \tag{2}$$

where $Q_{\rm m}^{\rm E} = H_{\rm m}^{\rm E}/J\cdot{\rm mol}^{-1}$ or $V_{\rm m}^{\rm E}/{\rm cm}^3\cdot{\rm mol}^{-1}$, a_k are the adjustable parameters and x_1 and x_2 are the mole fractions of diethyl carbonate and alkanols, respectively.

Table 3.	Excess Mo	olar Entha	lpies, H ^E ,	of Diethyl
Carbonat	te + <i>n</i> -Alka	anol at 298	3.15 K	•

-

Table 4. Excess Molar Volumes, $V_{\rm m}^{\rm E}$, of Diethyl Carbonate + *n*-Alkanol at 298.15 K

<i>X</i> 1	$H_{ m m}^{ m E}/{ m J}{ m \cdot mol^{-1}}$	<i>X</i> 1	$H_{ m m}^{ m E}/{ m J}{ m \cdot}{ m mol}^{-1}$		<i>x</i> ₁	$ ho/{ m g}{ m \cdot}{ m cm}^{-3}$	$V_{\rm m}^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$	<i>X</i> ₁	$ ho/{ m g}{ m \cdot}{ m cm}^{-3}$	$V_{\rm m}^{\rm E}/{ m cm^3\cdot mol^{-1}}$
	Diethyl Carbonate (1) + Methanol (2) Diethyl Carbonate (1) + Methanol (2)									
0.0271	124	0.5007	1253	0	0.0054	0.789 56		0.2783	0.885 23	-0.058
0.0527	236	0 5721	1281	0).0356	0.805 00	-0.014	0.3170	0.893 54	-0.059
0.0021	125	0.6673	1250	0).0663	0.818 98	-0.024	0.3726	0.904 18	-0.058
0.1002	560	0.0073	1167	0	0.0932	0.830 09	-0.033	0.4430	0.915 81	-0.054
0.1432	309	0.7270	1000	0	0.1194	0.839 90	-0.037	0.5284	0.927 78	-0.047
0.1821	701	0.8005	1023	0).1610	0.853 92	-0.046	0.6946	0.946 03	-0.022
0.2505	879	0.8892	698	0).1883	0.862 15	-0.050	0.7905	0.954 44	-0.010
0.3339	1055	0.9146	552	0).2219	0.871 46	-0.055	0.9031	0.962 91	-0.001
0.4006	1168	0.9750	191	0).2527	0.879 21	-0.056			
	Diethyl Carbonate	(1) + Ethanol	2)			Di	ethyl Carbonat	e (1) + Et	thanol (2)	
0.0386	ັ 213	0.4905	1526	0	0.0507	0.803 37	0.009	0.4439	0.898 87	0.104
0 0742	404	0.5908	1539	0	0.0900	0.816 23	0.018	0.5428	0.924 22	0.120
0.1074	558	0.6582	1/01	0).1712	0.839 99	0.032	0.5734	0.919 46	0.126
0.1074	684	0.0302	1259	0	0.2135	0.850 89	0.050	0.6104	0.924 73	0.129
0.1362	084	0.7420	1000	0).2593	0.861 91	0.062	0.6975	0.936 24	0.130
0.1940	905	0.7938	1230	0	0.2924	0.869 35	0.070	0.7737	0.945 42	0.124
0.2428	1065	0.8524	992	0	0.3201	0.875 28	0.077	0.8489	0.953 81	0.105
0.3248	1279	0.9203	638	0	0.3594	0.883 27	0.086	0.9335	$0.962\ 63$	0.061
0.4194	1444			Û	0.4032	0.891 62	0.094	~ ~ ~		
	Diethyl Carbonate (1	l) + Propan-1-ol	(2)			Diet	hyl Carbonate	$(1) + Pro_{1}$	pan-1-ol (2)	0.010
0.0488	304	0.5521	1801	0	0.0202	0.804 89	0.018	0.4535	0.894 91	0.216
0.0931	564	0 6490	1727	0	0.0432	0.810 76	0.037	0.4948	0.901 66	0.222
0.1335	785	0.7114	1602	0	0.1249	0.830 53	0.093	0.5224	0.906 05	0.224
0.1333	765	0.7114	1002	0	0.1563	0.837 64	0.113	0.5490	0.910 17	0.225
0.1704	900	0.7872	1391	0	0.2008	0.847 34	0.136	0.6954	0.931 34	0.211
0.2356	1251	0.8314	1197	0	0.2550	0.858 57	0.161	0.8145	0.946 94	0.168
0.2911	1440	0.8809	944	0	0.3094	0.869 25	0.179	0.8531	0.951 76	0.145
0.3813	1661	0.9367	569	0	0.3461	0.876 11	0.193	0.9806	$0.966\ 94$	0.030
0.4805	1777			Û).4185	0.888 97	0.212			
	Diethyl Carbonate (1) + Butan - 1 - ol	(2)		0007	Die	thyl Carbonate	(1) + But	tan-1-ol (2)	0.000
0.0592	386	0.5310	1943	0	0.0297	0.811 79	0.035	0.5214	0.89 94	0.283
0.0862	556	0.6015	1900	0	0.0821	0.822 26	0.091	0.5706	0.907 65	0.282
0.1117	712	0.6936	1782	U	0.2039	0.845 54	0.186	0.64/4	0.919 38	0.268
0.1117	000	0.0000	1619	U).2517	0.854 29	0.213	0.6648	0.921 99	0.264
0.1007	900	0.7312	1012	U	1.2936	0.861 79	0.232	0.7391	0.932 89	0.236
0.2010	1196	0.8191	1359	U	1.3303	0.8/1 /3	0.234	0.83/1	0.940 84	0.179
0.2740	1506	0.8579	1144	U	1.3800	0.8///8	0.200	0.8820	0.953 16	0.144
0.3346	1699	0.9006	882	U	0.4170	0.882 99	0.272	0.9562	0.963 25	0.064
0.4300	1890	0.9477	526	U	0.4702	0.891 /3	0.280	(1) 11	1 -1 (9)	
	Diethyl Carbonate (1) + Hexan-1-ol	(2)	0	0951	Die	inyi Carbonate	(1) + Hey = 0.5499	an-1-01(2)	0.202
0.0411	289	0.6067	1978	U	0770	0.818 03	0.043	0.5422	0.894 /8	0.392
0.0789	547	0.6729	1902	U	1070	0.826 00	0.123	0.0883	0.901 93	0.385
0.0700	090	0.07559	1696		1.1012	0.841 03	0.232	0.0401	0.911 30	0.300
0.1403	300 1979	0.7332	1404).2200	0.847 23	0.200	0.7032	0.920 37	0.337
0.2045	1270	0.0044	1494) 2667	0.800 10	0.343	0.7040	0.933.00	0.201
0.2555	1505	0.8000	1222		1.3007	0.808 07	0.370	0.0071	0.540 07	0.202
0.3396	1782	0.8916	1019		1.42.55	0.870 08	0.300	0.9203	0.950 02	0.124
0.4066	1915	0.9250	757		5024	0.888 65	0.393	0.3721	0.304 37	0.033
0.5069	2022	0.9611	431	U	5.5024	0.000 05	0.555	(1) + 0	1 1 (0)	
	Diethyl Carbonate ((1) + Octan-1-ol	(2)	0	0401	Die	thyl Carbonate	(1) + Oct	an-1-01 (2)	0 502
0.0514	327	0.6611	2054		0707	0.823 79	0.084	0.0097	0.090 00	0.303
0.0978	623	0 7223	1905		10/9/	0.830 00	0.102	0.0399	0.903 37	0.491
0.0070	880	0.7220	1624	U	J.1843	0.841 /3	0.320	0.7021	0.913 03	0.453
0.1330	003	0.7900	1034	U U	1.2900	0.800 18	0.435	0.7409	0.921 10	0.417
0.1/81	1120	0.8387	1415	U U	1.3027	0.803 72	0.479	0.8134	0.933 10	0.344
0.2453	1470	0.8864	1094		1.4314	0.872.90	0.511	0.0994	0.940 02	0.220
0.3024	1713	0.9123	892		1.4000	0.079.07	0.521	0.9300	0.950 58	0.145
0.3940	1996	0.9389	663) 5500	0.000 03	0.520	0.9824	0.965 49	0.048
0.4642	2124	0.9690	347	U	0.0000	0.891 09	0.518			
0.5652	2174					Die	thyl Carbonate	(1) + Dec	an-1-ol (2)	
	Diothyl Carbonata (1) \perp Decan 1 of	(9)	0	0.0391	0.829 50	0.097	0.6513	0.900 22	0.602
0.0400	Dietriyi Carbonate (T = Decali-1-01	(~)	0).1126	0.835 83	0.258	0.6854	0.905 70	0.578
0.0468	316	0.5115	2250	0	0.2157	0.845 55	0.430	0.7344	0.913 97	0.534
0.0614	410	0.6111	2240	0	0.2902	0.853 23	0.521	0.7880	0.923 60	0.469
0.1158	780	0.7022	2100	0	0.3894	0.864 42	0.600	0.8441	0.934 44	0.375
0.1641	1088	0.7586	1908	0	0.4806	0.875 76	0.634	0.9188	0.950 18	0.219
0.2075	1314	0.8250	1620	0	0.5307	0.882 48	0.639	0.9511	0.957 49	0.139
0.2820	1718	0.8628	1383	0	0.5704	0.888 06	0.634	0.9817	0.964 75	0.052
0.3437	1930	0.9041	1070	0	0.6072	0.893 45	0.623			
0 4 4 0 0	9175	0 9/97	0.63							
0.1400	£11J	0.0437	030	n	umbe	r of adju	stable param	eters, a	and Φ is t	the objective

function defined as

The values of a_k , obtained by a least-squares method with all points weighted equally, correspond to the minimum value of the standard deviation $\sigma(Q_{\rm m}^{\rm E})$ defined as

$$\sigma(Q_{\rm m}^{\rm E}) = |\Phi/(N-n)|^{0.5}$$
(3)

where N is the number of experimental points, n is the

where $\eta = Q_{\text{m,calcd}}^{\text{E}} - Q_{\text{m}}^{\text{E}}$, with $Q_{\text{m,calcd}}^{\text{E}}$ determined from the right-hand side of eq 2.

(4)

 $\phi = \sum_{k\geq 0}^N \eta_k^2$

Table 5. Adjustable Parameters, *a*_k, and Standard Deviations, $\sigma(Q_m^E)$, Eq 4, for H_m^E and V_m^E of Diethyl Carbonate (1) + *n*-Alkanols (2) at 298.15 K

alkanol	function	a_0	a_1	a_2	a_3	$\sigma(Q_{\rm m}^{\rm E})$
methanol	$H_{\rm m}^{\rm E}/{\rm J}{\cdot}{ m mol}^{-1}$	5030.5	1249.8	1354.6	401.3	6.1
	$V_{\rm m}^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$	-0.1922	0.2215	0.2333		0.0008
ethanol	$H_{\rm m}^{\rm H}/J\cdot{ m mol}^{-1}$	6092.7	1174.9	1554.0	707.8	6.1
	$V_{\rm m}^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$	0.4571	0.3292	0.1549	0.1619	0.0017
propan-1-ol	$H_{\rm m}^{\rm E}/J\cdot {\rm mol}^{-1}$	7177.7	804.99	1213.4	1156.2	4.6
	$V_{\rm m}^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$	0.8899	0.2072			0.0017
butan-1-ol	$H_{\rm m}^{\rm E}/J\cdot {\rm mol}^{-1}$	7777.4	675.99	1176.4	1652.7	7.6
	$V_{\rm m}^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$	1.1261	0.1124	0.2590		0.0017
hexan-1-ol	$H_{m}^{E}/J \cdot mol^{-1}$	8062.8	754.31	1710.5	1709.5	6.4
	$V_{\rm m}^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$	1.5762	0.0283	0.2581		0.0018
octan-1-ol	$H_{\rm m}^{\rm H}/J\cdot{ m mol}^{-1}$	8638.3	1309.1	708.99	1764.5	5.8
	$V_{\rm m}^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$	2.0802	0.0720	0.3352	0.1436	0.0020
decan-1-ol	$H_{\rm m}^{\rm H}/J\cdot{\rm mol}^{-1}$	8991.2	1530.6	1391.3	2280.5	8.4
	$V_{\rm m}^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$	2.5545	0.2167	0.3284		0.0018

Results of least-squares analysis are reported in Table 5.

Both $H_{\rm m}^{\rm E}$ and $V_{\rm m}^{\rm E}$ increase with the increase of the chain length of alkanol: these results are also shown in Figures 3 and 4 where the equimolar excess functions are plotted against $n_{\rm c}$, the number of carbon atoms of alkanol.

Large positive values of $H_{\rm m}^{\rm E}$ are in agreement with breaking of hydrogen bonding of alkanols during mixing. The consequent loosening of intermolecular interactions

is also responsible for the positive values of $V_{\rm m}^{\rm E}$, with the exception of methanol, due to its smaller molecular dimensions.

The same results have been observed for the binary mixtures of epoxybutane + alkanols (Comelli and Francesconi, 1996a) and propylene carbonate + alkanols (Comelli and Francesconi, 1996b).

Figure 3 allows drawing some interesting conclusions as to the $H_{\rm m}^{\rm E}$ values for different series of compounds in mixtures with dimethyl carbonate. In fact, the curves are nearly parallel to each other, with the highest values for alkanols and lower values for dichloroalkanes and ketones, capable of interactions with alkanols, which reduces the endothermic effect during mixing.

The same figure shows that the contribution to H_{m}^{E} of different substituting groups in a linear chain tends to become independent of chain length.

Literature Cited

- Arce, A.; Blanco, A.; Martinez-Ageitos, J.; Soto, A. Isobaric Vapor-Liquid Equilibria of Methanol + Hexyl Acetate and Ethanol + Exyl
- Liquid Equilibria of Methanol + Frexyl Acetate and Ethanol + Exyl Acetate. J. Chem. Eng. Data 1995, 40, 515-518.
 Cocero, M. J.; Mato, F.; Garcia, J. C. Thermodynamics of Binary Mixtures Containing Organic Carbonates. 3. Isothermal Vapor-Liquid Equilibria of Diethyl Carbonate + Cyclohexane, + Benzene,
- + Tetrachloromethane. J. Chem. Eng. Data **1989**, *34*, 443–445. Comelli, F.; Francesconi, R. Excess Molar Enthalpy of Binary Mixtures of Diethyl Carbonate + Nine Chloroalkanes at 298.15 K and Atmospheric Pressure. J. Chem. Eng. Data **1995**, 40, 509–511.
- Comelli, F.; Francesconi, R. Thermodynamic Properties of Binary Mixtures Containing 1,2-Epoxybutane + Four Alkanols at 298.15 K. J. Chem. Eng. Data 1996a, submitted for publication.
- Comelli, F.; Francesconi, R. Excess Enthalpies and Excess Volumes of the Liquid Binary Mixtures of Propylene Carbonate + Six alkanols at 298.15 K. J. Chem. Eng. Data **1996b**, submitted for publication.
- Fermeglia, M.; Lapasin, J. Excess Volumes and Viscosities of Binary Mixtures of Organics. J. Chem. Eng. Data **1988**, 33, 415–417. Francesconi, R.; Comelli, F. Liquid-Phase Enthalpy of Mixing for the
- System 1,3-Dioxolane Chlorobenzene in the Temperature Range 288.15-313.15 K. J. Chem. Eng. Data 1986, 31, 250-252
- Francesconi, R.; Comelli, F. Excess Molar Enthalpies of Binary Mixtures Containing Dimethyl Carbonate or Diethyl Carbonate and One of Six Methyl n-Alkyl Ketones. Application of an Extended Cell Model. Thermochim. Acta 1995, 264, 95-104.
- Franjo, C.; Jimenez, E.; Iglesias, T. P.; Legido, J. L.; PazAndrade, M. I. Viscosities and Densities of Hexane + Butan-1-ol, + Hexan-1-ol, and + Octan-1-ol at 298.15 K. J. Chem. Eng. Data 1995, 40, 68-
- Garcia, I.; Cobos, J. C.; Gonzales, J. A.; Casanova, C. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1987, No. 3, 164–168.
- Gmehling, I. Excess Enthalpies for 1,1,1-Trichloroethane with Alkanes, Ketones and Esters. J. Chem. Eng. Data 1993, 38, 143-146.
- Monk, P.; Wadso, I. A Flow Micro Reaction Calorimeter. Acta Chem. Scand. 1968, 22, 1842-1852.
- Nikam, P. S.; Jadhav, M. C.; Hasan, M. Density and Viscosity of Nikam, P. S.; Jadnav, M. C.; Hasan, M. Density and Viscosity of Mixtures of Nitrobenzene with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, 2-Methylpropan-1-ol, and 2-Methylpropan-2-ol at 298.15 and 301.15 K. J. Chem. Eng. Data 1995, 40, 931-934.
 Ortega, I. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1995, 23 (3), 183.
 Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents; Wiley-Interscience: New York, 1986.

Wilhelm, E. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1985, 164.

Received for review July 30, 1996. Accepted September 26, 1996.®

JE9602576

[®] Abstract published in Advance ACS Abstracts, November 1, 1996.