Buffers for the Physiological pH Range: Acidic Dissociation Constants of Zwitterionic Compounds (ACES and CHES) in Water from 5 to $55{ }^{\circ} \mathrm{C}$

Rabindra N. Roy,* J ennifer Bice, J ason Greer, J ulie A. CarIsten, J ulie Smithson, William S. Good, Catherine P. Moore, Lakshmi N. Roy, and Kathleen M. Kuhler ${ }^{\dagger}$
Hoffman Department of Chemistry, Drury College, Springfield, Missouri 65802

Abstract

The precise el ectromotive force (emf) measurements of the cells without liquid junction, $\mathrm{Pt}\left|\mathrm{H}_{2}\right| \mathrm{ACES}\left(\mathrm{m}_{1}\right)$ $+\mathrm{NaACESate}\left(\mathrm{m}_{2}\right)+\mathrm{NaCl}\left(\mathrm{m}_{3}\right) \mid \mathrm{AgCl}, \mathrm{Ag}$ and $\mathrm{Pt}\left|\mathrm{H}_{2}\right| \mathrm{CHES}\left(\mathrm{m}_{1}\right)+\mathrm{NaCHESate}\left(\mathrm{m}_{2}\right)+\mathrm{NaCl}\left(\mathrm{m}_{3}\right) \mid \mathrm{AgCl}$, Ag, have been made to collect emf data from (5 to 55) ${ }^{\circ} \mathrm{C}$, with molalities $\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}_{3}$ in the range 0.01 to $0.1 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$. The hydrogen and silver + silver chloride electrodes were used. The second thermodynamic dissociation constants (pK_{2}) of N -(2-acetamido)-2-aminoethanesulfonic acid (ACES) and 2-(N-cyclohexylamino)ethanesulfonic acid (CHES), along with the thermodynamic quantities associated with the ionization of ACES and CHES, have been calculated. The values of pK_{2} for ACES are expressed by the equation $\mathrm{pK}_{2}=2548.60 /(\mathrm{T} / \mathrm{K})-20.03159+3.2172 \ln (\mathrm{~T} / \mathrm{K})$, and for CHES , by $\mathrm{pK}_{2}=1917.66 /(\mathrm{T} /$ K) $+5.7940-0.4971 \ln (T / K)$ with standard deviations of ± 0.00058 and ± 0.00097, respectively.

Introduction

The zwitterionic buffers recommended by Good and coworkers $(8,9)$ are suitable as standard buffers for the standardization of glass-electrode pH meter assembly. Harned and Ehlers (11) demonstrated how cells without liquid junction could be used for the determination of equilibrium constants of weak acid-base systems including zwitterionic amino acids (7, 15, 16, 20).

Biological buffers are of utmost importance for research in biomedicine. They are vital in experimentation ranging from stabilizing biological molecules to fertilizing ova in vitro. The future of biomedical research depends on reliable biological buffer systems, as they provide pH stabilizers in the optimum pH range for specific biological molecules, such as nudeic acids and proteins. In the present study, the ampholyte ACES is useful as a biological buffer in the pH range 6.5-7.5. Chappell (6) showed that ACES improved phenotyping of α_{1}-antitrypsin by isoelectric focusing on agarose gel. The buffer substance CHES is also important as a physiological buffer in the pH range 8.59.5. In order to obtain pH values for these buffer compounds with greater accuracy as well as to recommend a suitable pH buffer standard at an ionic strength of 0.16 $\mathrm{mol} \cdot \mathrm{kg}^{-1}$ for biochemical applications, it is essential to determine very accurately the thermodynamic dissociation constants (pK_{2}) of ACES and CHES as a function of temperature. To our knowledge, very limited and unreliable data are available in the literature (10) for ACES and CHES, which are the derivatives of the simplest amino acid, taurine. For the determination of pK_{2} values from (5 to 55) ${ }^{\circ} \mathrm{C}$, the most precise emf measurements of the following cells without liquid junctions have been carried out:

$$
\begin{align*}
\text { Pt; } \mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{~atm}) \mid \mathrm{ACES}\left(\mathrm{~m}_{1}\right), \mathrm{NaACESate}\left(\mathrm{~m}_{2}\right), \\
\mathrm{NaCl}\left(\mathrm{~m}_{3}\right) \mid \mathrm{AgCl}, \mathrm{Ag} \mathrm{(A)} \\
\text { Pt; } \mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{~atm}) \mid \mathrm{CHES}\left(\mathrm{~m}_{1}\right), \mathrm{NaCHES} \text { Sate }\left(\mathrm{m}_{2}\right), \\
\left.\mathrm{NaCl}\left(\mathrm{~m}_{3}\right) \mid \mathrm{AgCl}, \mathrm{Ag} \mathrm{(B)}\right) \tag{B}
\end{align*}
$$

where m_{1}, m_{2}, and m_{3} indicates the molalities of undisso-
† Camille and Henry Dreyfus Fellow, 1994-1996.
ciated molecules of ACES (or CHES), the sodium salt of the zwitterionic substance, and the neutral salt NaCl , respectively.

Theory and Equations

ACES (or CHES) is usually present in the form of a zwitterion with a large dipole moment. The second dissociation constant invol ves the dissociation of a proton from the protonated amino group of a dipolar molecule, $\mathrm{z}^{ \pm}$. The structural formulas of ACES and CHES in the zwitterionic forms are given below:

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{~N}-\mathrm{COCH}_{2}-\mathrm{N}^{+} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}^{-}(\mathrm{ACES}) \\
\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{N}^{+} \mathrm{H}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{SO}_{3}^{-}(\mathrm{CHES})
\end{gathered}
$$

The dissociation process is indicated by

$$
\begin{equation*}
\mathrm{z}^{ \pm}=\mathrm{z}^{-}+\mathrm{H}^{+} \tag{1}
\end{equation*}
$$

where $z^{ \pm}$is ACES or CHES and z^{-}is NaACESate or NaCHESate .

The "apparent" thermodynamic dissociation constant is expressed as

$$
\begin{align*}
\mathrm{pK}_{2}^{\prime} & =\mathrm{pK}_{2}-\log _{10}\left\{\gamma_{\mathrm{z}} \pm \gamma_{\mathrm{Cl}}\right\} / \gamma_{\mathrm{z}^{-}} \tag{2}\\
& =\left(\mathrm{E}-\mathrm{E}^{\circ}\right) \mathrm{F} /(\mathrm{R}(\mathrm{~T} / \mathrm{K}) \ln 10)+\log _{10}\left(\mathrm{~m}_{1} \mathrm{~m}_{3} / \mathrm{m}_{2}\right) \tag{3}
\end{align*}
$$

where E is the corrected emf (at a hydrogen pressure of 1 atm or 101325 Pa) listed in Tables 1 and 2 for ACES and CHES, respectively; γ indicates the activity coefficients of the respective species, and m refers to the molalities. The activity coefficient of a dipolar molecule is assumed to behave like an uncharged molecule. The values of E°, the standard electrode potential of the silver + silver chloride electrodes were determined by making emf measurements of $0.01 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} \mathrm{HCl}$ solution, assuming a value of $\gamma_{\mathrm{HCl}}=$ $0.904(1,2)$ at $25^{\circ} \mathrm{C}$ in this concentration. In eq 3, for the calculation of pK_{2}, the values of E° used were (0.23431 , $0.23162,0.22878,0.22577,0.22259,0.21928,0.21587$,

Table 1. Electromotive Force of the Cell Pt; $\mathrm{H}_{2}\left(\mathbf{g}, \mathbf{1}\right.$ atm)|ACES $\left(\mathrm{m}_{1}\right)$, $\mathrm{NaACESate}\left(\mathrm{m}_{2}\right), \mathrm{NaCl}\left(\mathrm{m}_{3}\right) \mid \mathrm{AgCl}, \mathrm{Ag}$ from (5 to 55) ${ }^{\circ} \mathrm{C}$

$\mathrm{mol} \cdot \mathrm{kg}^{-1}$			EN					
m_{1}	m_{2}	m_{3}	$5^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$
0.01	0.01	0.01	0.74481	0.74548	0.74597	0.74637	0.74667	0.74687
0.01	0.01	0.01	0.74463	0.74530	0.74580	0.74619	0.74649	0.74669
0.02	0.02	0.02	0.72878	0.72916	0.72935	0.72944	0.72944	0.72935
0.02	0.02	0.02	0.72861	0.72899	0.72918	0.72928	0.72928	0.72917
0.02	0.02	0.03	0.71935	0.71956	0.71958	0.71950	0.71932	0.71905
0.02	0.02	0.03	0.71918	0.71939	0.71940	0.71933	0.71915	0.71887
0.04	0.04	0.03	0.71994	0.72015	0.72016	0.72008	0.71990	0.71963
0.04	0.04	0.03	0.71978	0.71999	0.72001	0.71993	0.71975	0.71946
0.05	0.05	0.05	0.70858	0.70858	0.70837	0.70807	0.70767	0.70717
0.05	0.05	0.05	0.70842	0.70841	0.70820	0.70791	0.70750	0.70700
0.08	0.08	0.03	0.72112	0.72134	0.72135	0.72127	0.72109	0.72081
0.08	0.08	0.03	0.72095	0.72117	0.72118	0.72110	0.72092	0.72063
0.08	0.08	0.04	0.71452	0.71462	0.71450	0.71430	0.71399	0.71359
0.08	0.08	0.04	0.71436	0.71446	0.71434	0.71414	0.71383	0.71342
0.08	0.08	0.08	0.69909	0.69890	0.69848	0.69798	0.69737	0.69667
0.08	0.08	0.08	0.69893	0.69873	0.69831	0.69781	0.69720	0.69649
$\mathrm{mol} \cdot \mathrm{kg}^{-1}$			EN					
m_{1}	m_{2}	m_{3}	$35^{\circ} \mathrm{C}$	$37^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$
0.01	0.01	0.01	0.74701	0.74707	0.74701	0.74685	0.74678	0.74646
0.01	0.01	0.01	0.74681	0.74686	0.74679	0.74664	0.74656	0.74624
0.02	0.02	0.02	0.72918	0.72911	0.72885	0.72838	0.72798	0.72733
0.02	0.02	0.02	0.72899	0.72891	0.72864	0.72816	0.72776	0.72711
0.02	0.02	0.02	0.71870	0.71855	0.71817	0.71752	0.71694	0.71610
0.02	0.02	0.02	0.71851	0.71836	0.71797	0.71730	0.71673	0.71588
0.04	0.04	0.04	0.71928	0.71912	0.71872	0.71804	0.71744	0.71655
0.04	0.04	0.04	0.71910	0.71893	0.71852	0.71785	0.71724	0.71635
0.05	0.05	0.05	0.70659	0.70632	0.70572	0.70484	0.70398	0.70282
0.05	0.05	0.05	0.70640	0.70613	0.70556	0.70462	0.70377	0.70260
0.08	0.08	0.08	0.72044	0.72026	0.71981	0.71910	0.71846	0.71750
0.08	0.08	0.08	0.72025	0.72007	0.71961	0.71888	0.71824	0.71728
0.08	0.08	0.08	0.71310	0.71286	0.71233	0.71148	0.71070	0.70960
0.08	0.08	0.08	0.71292	0.71268	0.71213	0.71127	0.71050	0.70939
0.08	0.08	0.08	0.69586	0.69548	0.69472	0.69353	0.69242	0.69094
0.08	0.08	0.08	0.69567	0.69529	0.69452	0.69331	0.69220	0.69072

Table 2. Electromotive Force of the Cell $\mathrm{Pt} ; \mathrm{H}_{\mathbf{2}}(\mathrm{g}, 1 \mathrm{~atm}) \mid \mathrm{CHES}\left(\mathrm{m}_{1}\right)$, $\mathrm{NaCHESate}\left(\mathrm{m}_{2}\right), \mathrm{NaCl}\left(\mathrm{m}_{3}\right) \mid \mathrm{AgCl}, \mathrm{Ag}$ from (5 to 55) ${ }^{\circ} \mathrm{C}$

	EN											
$\mathrm{m}_{3} / \mathrm{mol} \cdot \mathrm{kg}^{-1}$	$5^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$37^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$
0.01	0.89099	0.89281	0.89446	0.89594	0.89718	0.89824	0.89924	0.89960	0.90003	0.90065	0.90126	0.90161
0.01	0.89084	0.89264	0.89427	0.89575	0.89698	0.89805	0.89904	0.89944	0.89983	0.90043	0.90126	0.90144
0.02	0.87478	0.87631	0.87762	0.87880	0.87978	0.88055	0.88121	0.88146	0.88172	0.88204	0.88233	0.88245
0.02	0.87466	0.87613	0.87746	0.87863	0.87958	0.88038	0.88102	0.88134	0.88152	0.88185	0.88213	0.88224
0.03	0.86549	0.86684	0.86797	0.86897	0.86977	0.87040	0.87084	0.87103	0.87119	0.87133	0.87144	0.87137
0.03	0.86533	0.86667	0.86779	0.86879	0.86959	0.87021	0.87065	0.87091	0.87100	0.87115	0.87124	0.87116
0.04	0.85903	0.86025	0.86124	0.86209	0.86281	0.86331	0.86360	0.86376	0.86385	0.86386	0.86383	0.86363
0.04	0.85888	0.86007	0.86105	0.86192	0.86264	0.86314	0.86341	0.86364	0.86365	0.86368	0.86363	0.86342
0.06	0.85010	0.85115	0.85197	0.85266	0.86323	0.85359	0.85362	0.85375	0.85373	0.85357	0.85333	0.85294
0.06	0.85004	0.85100	0.85180	0.85240	0.85305	0.85341	0.85344	0.85362	0.85354	0.85339	0.85313	0.85273
0.08	0.84410	0.84503	0.84566	0.84620	0.84667	0.84694	0.84677	0.84689	0.84680	0.84651	0.84611	0.84559
0.08	0.84391	0.84487	0.84550	0.84601	0.84649	0.84676	0.84657	0.84676	0.84660	0.84632	0.84593	0.84538
0.09	0.84170	0.84247	0.84314	0.84361	0.84406	0.84430	0.84403	0.84415	0.84403	0.84368	0.84323	0.84265
0.09	0.84154	0.84241	0.84298	0.84344	0.84388	0.84411	0.86384	0.84402	0.84384	0.84350	0.84303	0.84243
0.10	0.83945	0.84044	0.84093	0.84136	0.84178	0.84199	0.84164	0.87174	0.84161	0.84121	0.84069	0.84006
0.10	0.83960	0.84027	0.84075	0.74117	0.84159	0.84180	0.84144	0.84162	0.84141	0.84103	0.84049	0.83984

$0.21457,0.212$ 29, $0.20851,0.20474$, and 0.20059$) \mathrm{V}$ for (5, 10, 15, 20, 25, 30, 35, 37, 40, 45, 50, and 55) ${ }^{\circ} \mathrm{C}$, respectively. These values of E° at other temperatures were obtained from the temperature variations of E° from the literature (4). The oxygen gas was always removed from HCl cell solutions containing $0.01 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$ and 0.1 $\mathrm{mol} \cdot \mathrm{kg}^{-1}$. Appropriate activity coefficients of $\mathrm{HCl}(\mathrm{aq})$ were used for the determination of E° of the silver-silver chloride electrode at $25^{\circ} \mathrm{C}$. These results are in excellent agreement with earlier communications (17).

The last term in eq 3 containing the activity coefficients of the participating species is small because of the charge type, and should be directly proportional to the ionic strength I, if $\gamma_{z^{+}}$is assumed to be unity. The more
convenient form of eq 4 given bel ow was used to cal culated the values of pK_{2} by linear regression methods (plot of pK_{2}^{\prime} versus I). The intercept at $\mathrm{I}=0$ yields pK_{2}. Equation 3 reduces to

$$
\begin{equation*}
\mathrm{pK}_{2}^{\prime}=\mathrm{pK}_{2}+\beta \mathrm{l} \tag{4}
\end{equation*}
$$

where β is the slope parameter and $\mathrm{I}=\mathrm{m}_{2}+\mathrm{m}_{3}$. The values of pK_{2} together with standard deviations for ACES and CHES are entered in Tables 3 and 4, respectively. It is important to indicate that the hydrolysis correction to $\mathrm{m}_{1} / \mathrm{m}_{2}$ for the dissociation process of ACES is unnecessary since the dissociation of z^{-}is small $\left(\approx 10^{-7} \mathrm{~mol} \mathrm{~kg}^{-1}\right)$, and $\mathrm{m}_{\mathrm{z}^{ \pm}}=\mathrm{m}_{1}+\mathrm{moH}_{\mathrm{OH}^{-}}=\mathrm{m}_{1}$, and $\mathrm{m}_{\mathrm{z}^{-}}=\mathrm{m}_{2}-\mathrm{moH}_{\mathrm{OH}^{-}}=\mathrm{m}_{2}$. For

Table 3. Second Dissociation Constants of ACES from (5 to 55) ${ }^{\circ} \mathrm{C}$, Slope Parameters β, and the Standard
Deviations of the Intercept $\sigma\left(\mathrm{pK}_{2}\right)$ and Slope Parameters $\sigma(\beta)$

$\mathrm{t} /{ }^{\circ} \mathrm{C}$	pK_{2}	$\sigma\left(\mathrm{pK}_{2}\right)^{\mathrm{a}}$	$\beta / \mathrm{kg} \cdot \mathrm{mol}^{-1}$	$\sigma(\beta)^{\mathrm{b}} / \mathrm{kg} \cdot \mathrm{mol}^{-1}$
5	7.2375	0.0007	0.546	0.007
10	7.1343	0.0008	0.529	0.008
15	7.0341	0.0009	0.518	0.010
20	6.9385	0.0009	0.509	0.009
25	6.8475	0.0008	0.499	0.008
30	6.7599	0.0007	0.489	0.007
35	6.6758	0.0008	0.476	0.008
37	6.6420	0.0009	0.464	0.010
40	6.5953	0.0007	0.441	0.007
45	6.5180	0.0008	0.418	0.009
50	6.4441	0.0009	0.396	0.010
55	6.3749	0.0008	0.361	0.008

a Standard deviation of the intercept. ${ }^{\text {b }}$ Standard deviation of the slope parameters.

Table 4. Second Dissociation Constants of CHES from (5 to 55) ${ }^{\circ} \mathrm{C}$, Slope Parameters β, and the Standard
Deviations of the Intercept $\boldsymbol{\sigma}\left(\mathrm{pK}_{2}\right)$ and Slope Parameters $\sigma(\beta)$

$\mathrm{t} /{ }^{\circ} \mathrm{C}$	pK_{2}	$\sigma\left(\mathrm{pK}_{2}\right)^{\mathrm{a}}$	$\beta / \mathrm{kg} \cdot \mathrm{mol}^{-1}$	$\sigma(\beta)^{\mathrm{b}} / \mathrm{kg} \cdot \mathrm{mol}^{-1}$
5	9.8897	0.0007	0.382	0.005
10	9.7597	0.0007	0.375	0.006
15	9.6342	0.0008	0.354	0.006
20	9.5132	0.0008	0.343	0.006
25	9.3944	0.0008	0.357	0.006
30	9.2790	0.0008	0.361	0.006
35	9.1687	0.0008	0.322	0.006
37	9.1236	0.0005	0.335	0.004
40	9.0603	0.0008	0.333	0.006
45	8.9562	0.0008	0.326	0.006
50	8.8551	0.0008	0.309	0.006
55	8.7596	0.0008	0.301	0.006

a Standard deviation of the intercept. ${ }^{\text {b }}$ Standard deviation of the slope parameters.

CHES, because of somewhat high pK_{2}, the hydroxyl ion concentration, $\mathrm{m}_{\mathrm{OH}^{-}}$, obtained from the hydrolysis of $\mathrm{z}^{ \pm}$ and z^{-}was attempted. Since m_{OH} - is small in comparison with $\mathrm{m}_{1}+\mathrm{m}_{\mathrm{OH}^{-}}$, and $\mathrm{m}_{2}-\mathrm{m}_{\mathrm{OH}^{-}}$, the value of $\mathrm{m}_{\mathrm{OH}}-$ can be evaluated with reasonable accuracy by the following equation

$$
\begin{equation*}
\log \mathrm{m}_{\mathrm{OH}^{-}}=\log \mathrm{K}_{\mathrm{w}}+\mathrm{pw}_{\mathrm{H}} \tag{5}
\end{equation*}
$$

where $\mathrm{pw}_{\mathrm{H}}=\left(\mathrm{E}-\mathrm{E}^{\circ}\right) / \mathrm{k}+\log \mathrm{m}_{\mathrm{Cl}} ; \mathrm{k}=(\mathrm{R}(\mathrm{T} / \mathrm{K}) \ln 10) / \mathrm{F}$, and $\mathrm{pK} \mathrm{K}_{\mathrm{w}}$ is the ionization constant of water. For example at $25^{\circ} \mathrm{C}$, the contribution of m_{OH} - to the value of pK_{2} for CHES is within $\pm 0.0004 \mathrm{pK}$ unit, which is well within experimental uncertainty. Hence, also for CHES, the hydrolysis correction was ignored.

Experimental Section

The emf measurements with a precision to $\pm 0.02 \mathrm{mV}$, originally introduced by Harned and Ehlers (11), were
performed using a Keithley Model 191 digital voltmeter. For a particular run, the emf readings of the initial and final measurements (at the end of the temperature run) at $25^{\circ} \mathrm{C}$ agreed on the average to 0.03 mV . All emf data in the temperature range $(5-55)^{\circ} \mathrm{C}$ were corrected to a hydrogen partial pressure of 1 atm (101325 Pa). The preparation of the hydrogen electrode, $\mathrm{AgCl} \mid$ Ag electrodes (3,4), and buffer solutions, the design of glass cells (11), and other experimental details have been published elsewhere $(5,15,17)$. The bias potential of $\mathrm{Ag} \mid \mathrm{AgCl}$ electrodes was always within $\pm 0.03 \mathrm{mV}$. The temperature of the bath was regulated to $\pm 0.005 \mathrm{~K}$ with a digital thermometer (Guideline Model 9540).

ACES and CHES were obtained from Research Organics Inc. (Cleveland, OH) and were used as received. Preliminary measurements with recrystallized sample (with 70 mass \% ethanol) and untreated buffer substance yielded emf readings within $\pm 0.05 \mathrm{mV}$, which is well within experimental error. The purified sample for ACES and CHES assayed 99.95% and 99.94% by titrations with standard NaOH solution. The buffer materials were always dried and stored over Drierite. The ACS-certified reagent grade NaCl was recrystallized twice from deionized doubly distilled water and dried at $115{ }^{\circ} \mathrm{C}$. The cell solutions were prepared by mass from ACES (or CHES), NaCl , and standard solutions of NaOH , doubly distilled water in appropriate amounts so that the molalities of ACES (or CHES), NaACES (or NaCHES), and NaCl were equal in most cases.

Results and Discussion

The values of $E^{\circ}(\mathrm{AgCl} \mid \mathrm{Ag})$ obtained in the present study are in excellent agreement with those previously published (17). F or example at $25^{\circ} \mathrm{C}, \mathrm{E}^{\circ}(\mathrm{AgCl} \mid \mathrm{Ag})$ value of 0.22259 V is the same as reported before (17). The variation of the experimental values of pK_{2} (from Tables 3 and 4) with thermodynamic temperature T was found to be given by the following expressions:

For ACES,

$$
\begin{equation*}
\mathrm{pK}_{2}=2548.60 /(\mathrm{T} / \mathrm{K})-20.03159+3.2172 \ln (\mathrm{~T} / \mathrm{K}) \tag{6}
\end{equation*}
$$

and for CHES,

$$
\begin{equation*}
\mathrm{pK}_{2}=1917.66 /(\mathrm{T} / \mathrm{K})+5.7940-0.4971 \ln (\mathrm{~T} / \mathrm{K}) \tag{7}
\end{equation*}
$$

where T lies between (278.15 and 328.15) K. The standard deviation for regression was 0.00058 , and 0.00097 , re spectively.

The standard changes of Gibbs energy (ΔG°), enthalpy $\left(\Delta \mathrm{H}^{\circ}\right)$, entropy $\left(\Delta \mathrm{S}^{\circ}\right)$, and heat capacity $\left(\Delta \mathrm{C}_{\mathrm{p}}{ }^{\circ}\right)$ for the dissociation processes of ACES and CHES can easily be derived from the constants of eqs 6 and 7 by simple thermodynamic relationships. Equations 6 and 7 are of the form (12)

Table 5. Thermodynamic Quantities with Uncertainties for the Dissociation of ACES and CHES at (5, 25, 37, and 55) ${ }^{\circ} \mathrm{C}$

	$5^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$37{ }^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$
		ACES		
$\Delta \mathrm{G}^{\circ} / \mathrm{J} \cdot \mathrm{mol}^{-1}$	38544 ± 5	39082 ± 6	39445 ± 6	40043 ± 6
$\Delta \mathrm{H}^{\circ} / \mathrm{J} \cdot \mathrm{mol}^{-1}$	31660 ± 117	39082 ± 40	39445 ± 54	40043 ± 130
$\Delta \mathrm{S}^{\circ} / \mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$	-25.73 ± 0.41	-30.43 ± 0.14	-29.69 ± 0.14	-28.58 ± 0.41
$\Delta \mathrm{C}_{\mathrm{p}}{ }^{\circ} / \mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$	-62 ± 4.4	-62 ± 4.7	62 ± 4.8	-62 ± 5.2
$\Delta \mathrm{G}^{\circ} / \mathrm{J} \cdot \mathrm{mol}^{-1}$	52668 ± 5	CHES 53618 ± 6	541820 ± 6	55020 ± 6
$\Delta \mathrm{H}^{\circ} / \mathrm{J} \cdot \mathrm{mol}^{-1}$	39360 ± 118	39551 ± 40	39665 ± 50	39836 ± 131
$\Delta \mathrm{S}^{\circ} / \mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$	-49.75 ± 0.41	-49.78 ± 0.14	-48.67 ± 0.14	-48.11 ± 0.41
$\Delta \mathrm{C}_{\mathrm{p}}{ }^{\circ} / \mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$	-9.5 ± 4.3	9.5 ± 4.7	9.5 ± 4.9	9.5 ± 5.2

$$
\begin{equation*}
\mathrm{pK}_{2}=\mathrm{A} /(\mathrm{T} / \mathrm{K})+\mathrm{B}+\mathrm{C} \ln (\mathrm{~T} / \mathrm{K}) \tag{8}
\end{equation*}
$$

After substitution of the thermodynamic formulas, one can write

$$
\begin{equation*}
\Delta \mathrm{G}^{\circ} / \mathrm{J} \cdot \mathrm{~mol}^{-1}=19.145(\mathrm{~A}+\mathrm{B}(\mathrm{~T} / \mathrm{K})+\mathrm{C}(\mathrm{~T} / \mathrm{K}) \ln (\mathrm{T} / \mathrm{K})) \tag{9}
\end{equation*}
$$

$$
\begin{gather*}
\Delta \mathrm{H}^{\circ} / \mathrm{J} \cdot \mathrm{~mol}^{-1}=19.145(\mathrm{~A}-\mathrm{C}(\mathrm{~T} / \mathrm{K})) \tag{10}\\
\Delta \mathrm{S}^{\circ} / \mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}=-19.145(\mathrm{~B}+\mathrm{C}+\mathrm{C} \ln (\mathrm{~T} / \mathrm{K})) \tag{11}
\end{gather*}
$$

$$
\begin{equation*}
\Delta \mathrm{C}_{\mathrm{p}}{ }^{\circ} / \mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}=-19.145 \mathrm{C} \tag{12}
\end{equation*}
$$

These equations were employed to calculate the thermodynamic quantities which are listed in Table 5 at (5, 25, 37, and 55). The estimates of the standard deviations determined by the method of Please (14) are also summarized in Table 5.

The pK_{2} value for CHES at $25^{\circ} \mathrm{C}$ is 9.394 , whereas for taurine it is 9.061 (13). This decrease in acidic strength (increase in the value of pK_{2}) as well as small decrease in $\Delta \mathrm{H}^{\circ}\left(41.840 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right.$ for taurine, as compared with 39.551 $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ for CHES) is due to lengthening of the chain for hydrophobic cyclohexyl $\left(\mathrm{C}_{6} \mathrm{H}_{11}-\right)$ substitution in the parent compound taurine. As apparent from Table 5, the negative value of $\Delta \mathrm{S}^{\circ}\left(\Delta \mathrm{S}^{\circ}=-49.78 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$, for CHES, as compared with taurine (16) ($\Delta \mathrm{S}^{\circ}=-33.05 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$), might indicate that the stabilization of solvent structure causes an increased order in the proximities of molecules of uncharged base $(15,19)$. In regard to the value of $\Delta C_{p}{ }^{\circ}$, for the second dissociation of CHES in $\mathrm{H}_{2} \mathrm{O}$ it is about 9.5, whereas that of taurine is $-33.5 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$. This indicates a change in the sol vation pattern for the dissociation process.

According to Timimi and Everett (19), hydroxyethyl or hydroxymethyl substitution in taurine usually decreases the values of $\mathrm{pK}_{2}, \Delta \mathrm{G}^{\circ}$, and $\Delta \mathrm{H}^{\circ}$. This is consistent with the trend found in our studies for ACES (Table 5), in which there is N -substitution in taurine by the group N -(2acetamido). The change in $\Delta \mathrm{S}^{\circ}$ (from -33.05 for taurine to $-30.43 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ for ACES at $25^{\circ} \mathrm{C}$) is very small, whereas the change in $\Delta \mathrm{C}_{\mathrm{p}}{ }^{\circ}$ from $-33 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ for taurine to $-62 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ for ACES may indicate a substantial change in the solvation pattern for the isoelectric dissociation process.

The results of pH for $\mathrm{ACES} / \mathrm{NaCl}$ and $\mathrm{CHES} / \mathrm{NaCl}$ buffers in an isotonic saline solution ($0.16 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$) in the
temperature range (5 to 55) ${ }^{\circ} \mathrm{C}$ including the body temperature $\left(37^{\circ} \mathrm{C}\right)$ will be reported in a separate communication (18).

Acknowledgment

The authors thank Victoria Rendon and J onathan Thornsberry for preliminary measurements and Dr. Roger G. Bates for valuable advice.

Literature Cited

(1) Bates, R. G.; Robinson, R. A. J. Solution Chem. 1980, 9, 455456.
(2) Bates, R. G.; Guggenheim E. A.; Harned, H. S.; Ives, D. J. G.; J anz G. J.; Monk, C. B.; Prue, J. E.; Robinson, R. A.; Stokes, R. H.; Wynne-J ones, W. F. K. J . Chem. Phys. 1956, 25, 361; 1957, 26, 222.
(3) Bates, R. G.; Vega, C. A.; White, D. R. J r. Anal. Chem. 1978, 50, 1295-1300.
(4) Bates. R. G. Determination of pH , Theory and Practice, 2nd ed.; Wiley: New York, 1973; Chapter 10.
(5) Bates, R. G.; Roy, R. N.; Robinson, R. A. Anal. Chem. 1973, 45, 1663-1666.
(6) Chappell, D. J. Clin. Chem. 1985, 31, 1384-1388.
(7) Feng, D.; K och, W. F.; Wu, Y. C. Anal. Chem. 1989, 61, 14001405.
(8) Ferguson, W. J .; Braunschsweiger, K. I.; Braunschwieger, W. R.; Smith, J. R.; M cCormick, J. J .; Wasman, C. C.; J arvis, N. P.; Bell, D. H.; Good, N. E. Anal. Biochem. 1980, 104, 300-310.
(9) Gary, R.; Bates, R. G.; Robinson, R. A. J . Phys. Chem. 1964, 68, 1186-1190.
(10) Good, N. E.; Winget, G. D.; Winter, W.; Connolly, T. N.; Izowa, S.; Singh, R. M. M. Biochemistry 1966, 5, 467-477.
(11) Harned, H. S.; Ehlers, R. W. J. Am. Chem. Soc. 1932, 54, 13501357.
(12) Ives, D. J. G.; M oseley, P. G. N. J. Chem. Soc., Faraday Trans. 1 1976, 72, 1132-1143.
(13) King, E. J. J. Am. Chem. Soc. 1953, 75, 2204-2209.
(14) Please, N. W. Biochem. J. 1954, 56, 196-201.
(15) Roy, R. N.; Gibbons, J. J.; Krueger, C.; LaCross, G., J r. J . Chem. Thermodyn. 1977, 9, 325-332.
(16) Roy, R. N.; Robinson, R. A.; Bates, R. G. J . Am. Chem. Soc. 1973, 95, 8231-8235.
(17) Roy, R. N.; Moore, C. P.; White, M. N.; Roy, L. N.; Vogel, K. M.; J ohnson, D. A.; Millero, F.J.J. Phys. Chem. 1992, 96, 403407.
(18) Roy, R. N.; Roy, L. N.; Kuhler, K. M.; Carlsten, J . A.; Good, W. S.; Niederschmidt, J. A. Clin. Chem., manuscript under preparation.
(19) Timimi, B. A.; Everett, D. H. J. Chem. Soc. B 1968, 13801388.
(20) Vega, C. A.; Bates, R. G. Anal. Chem. 1976, 48, 1293-1296.

Received for review August 15, 1996. Accepted for review September 24, 1996. ${ }^{\otimes}$ This study was supported by a grant from the National Institutes of Health, Grant Number 1R15 GM 52618-01/C102CJ, and Dreyfus Grant SF-93-24.

J E960279S

[^0]
[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, November 1, 1996.

