Densities, Relative Permittivities, and Refractive Indices for the Binary Liquid System Propylene Carbonate + p-Xylene at (15, 20, 25, 30, and 35) ${ }^{\circ} \mathrm{C}$

Aikaterini Konti, George Moumouzias, and George Ritzoulis*
Laboratory of Physical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54006 Thessal oniki, Greece

Densities, relative permittivities, and refractive indices of propylene carbonate +p -xylene mixtures at (15, 20, 25, 30, and 35$)^{\circ} \mathrm{C}$ were measured. Excess molar volumes were calculated, as well as deviations in relative permittivity and molar refraction. All the above quantities were found to be negative.

Introduction

Dipolar, aprotic solvents are used in many chemical or electrochemical applications as media where various reactions take place. One of these solvents is propylene carbonate, which is widely used as a nonaqueous electrolyte in high-energy lithium batteries (Gabano, 1983). Thermophysical properties of binary liquid mixtures with propylene carbonate are systematically studied in our laboratory (Moumouzias et al., 1991; Moumouzias and Ritzoulis, 1992).

This paper is part of a general work studying the physicochemical properties and the intermolecular interactions in mixtures of propylene carbonate with aromatic hydrocarbons. Here, density, relative permittivity and refractive index measurements of propylene carbonate + p -xylene mixtures at ($15,20,25,30$, and 35) ${ }^{\circ} \mathrm{C}$ are reported. Excess molar volumes and deviations in relative permittivity and in molar refractivity are also calculated.

Experimental Section

Propylene carbonate (Merck, >99\%) was treated by distillation, and the middle part was collected. Before distillation it was stored in a flask with molecular sieves ($5 \AA$) for at least 24 h. p-Xylene (Fluka, puriss p.a. $>99 \%$) was fractionally distilled twice, and the middle fraction of the second distillation was collected.

All solutions were prepared by mass, with a Shimadzu AEG-220 analytical balance of four decimal places. The solutions were prepared under a dry nitrogen atmosphere. Corrections for the weight in air to that in vacuum were taken into account. The error in the mole fraction was estimated to be lower than ± 0.00003. The atomic masses were taken from the atomic mass table of IUPAC (1986).

Density measurements were made with an Anton-Paar DMA (measuring cell 602 and processing unit 60) vibrating tube densimeter, which was calibrated with air and doubledistilled water. The temperature was regulated by a Haake F3-K Digital thermostat with a stability of ± 0.02 deg and measured by a DT 100-30 Anton-Paar digital thermometer. The accuracy in density values was better than $\pm 5 \times 10^{-5} \mathrm{~g} \mathrm{~cm}^{-3}$ and in excess volume values ± 0.007 $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$.

Permittivities were measured with a Wissenschaftlich Technische Werkstatten GmbH, model WTW DM-01, dipolmeter. A YSI (model 72) thermostat with a stability of ± 0.005 deg was used to regulate the temperature of the dipolmeter's cell. The dipolmeter was calibrated with carbon tetrachloride, benzene, chlorobenzene, 1,2-dichloroethane, benzyl alcohol, nitrobenzene, and water, in accor-

Figure 1. Variation of density d with the mole fraction of propylene carbonate x_{1}. The dotted curves are to indicate general trends only.

Figure 2. Variation of relative permittivity ϵ with the mole fraction of propylene carbonate x_{1}. The dotted curves are to indicate general trends only.

Table 1. Densities, Relative Permittivities, and Refraction Indices of Propylene Carbonate (1) + p-Xylene (2) at (15, 20, $25,30$, and 35$)^{\circ} \mathrm{C}$

Table 2. Experimental and Literature Values of Physical Properties of the Pure Liquids at $25^{\circ} \mathrm{C}$

	$\mathrm{d} / \mathrm{g} \mathrm{cm}^{-3}$		ϵ		n_{D}	
	propylene carbonate	p-xylene	propylene carbonate	p-xylene	propylene carbonate	p-xylene
this work	1.1978	0.8566	65.16	2.26	1.4194	1.4931
Kronick and Fuoss, 1955	1.1970		65.10			
Wu and Friedman, 1966	1.1980					
Hanna and Al-Sudani, 1987	1.1989		65.04			
Payne and Theodorou, 1972			64.92			
Buep and Baron, 1988		0.85673		2.262		1.49312
Nath and Narain, 1982 Tasioula-Margari and Demetropoul os, 1992		0.8566		2.26		1.4932

Table 3. Coefficients a_{j} from Equation 2 and Standard Deviation σ for Propylene Carbonate (1) + p-Xylene (2)

$\mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$	a_{0}	a_{1}	a_{2}	a_{3}	$\sigma / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$
15	-0.781	0.201	-0.122	0.499	0.011
20	-0.848	0.138	-0.148	0.698	0.019
25	-0.937	0.039	-0.149	1.081	0.026
30	-0.976	0.033	-0.196	0.935	0.025
35	-1.025	0.072	-0.403	0.612	0.035

dance with National Bureau of Standards Circular 514 (Weast, 1987-1988). The uncertainty was better than 0.3\%.

An Abbe refractometer (aus J ENA, model G) of closed type was used for measuring the refractive indices. All values were obtained for Na D light with an error better than ± 0.0002 units. The same thermostat mentioned in relative permittivity was used. The refractometer was checked with distilled water and a-bromonaphthalene.

Results and Discussion

The experimental results of densities, relative permittivities, and refractive indices are given in Table 1. The experimental values of the pure components at $25^{\circ} \mathrm{C}$ are listed in Table 2 in comparison with literature values. As can be seen, our values are in an agreement with the values reported in the literature.

Variations of density, relative permittivity, and refractive index with the mole fraction of propylene carbonate are

Table 4. Calculated Values of V^{E} from Equation 2, for the Used Values of Mole Fraction x_{1} for Propylene Carbonate (1) + p-Xylene (2)

	V^{E}				
x_{1}	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1036	-0.1175	-0.1298	-0.1486	-0.1477	-0.1522
0.2063	-0.1706	-0.1836	-0.2014	-0.2051	-0.2178
0.3083	-0.1928	-0.2051	-0.2206	-0.2282	-0.2444
0.4094	-0.1993	-0.2132	-0.2310	-0.2404	-0.2550
0.5098	-0.1942	-0.2112	-0.2340	-0.2438	-0.2558
0.6094	-0.1756	-0.1945	-0.2200	-0.2306	-0.2433
0.7082	-0.1410	-0.1582	-0.1795	-0.1920	-0.2110
0.8062	-0.0920	-0.1029	-0.1126	-0.1273	-0.1549
0.9035	-0.0380	-0.0407	-0.0379	-0.0511	-0.0792
1.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Table 5. Coefficients b_{j} from Equation 4 and Standard Deviation σ for Propylene Carbonate (1) + p-Xylene (2)

$\mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$	b_{0}	$\mathrm{~b}_{1}$	$\mathrm{~b}_{2}$	$\mathrm{~b}_{3}$	$\mathrm{~b}_{4}$	σ
15	-18.16	12.70	-2.76	-8.92	-6.63	0.304
20	-18.24	10.59	2.29	-6.03	-13.77	0.183
25	-18.85	10.17	2.50	-4.28	-11.52	0.160
30	-18.48	10.43	-0.86	-5.91	-7.55	0.260
35	-18.28	10.19	1.55	-5.90	-11.16	0.203

given in Figures 1-3, respectively. On increasing the mole fraction of propylene carbonate, density and relative permittivity values increase, whereas refractive index values decrease. This is the same for the five temperatures where

Table 6. Calculated Values of $\Delta \epsilon$ from Equation 4, for the Used Values of Volume Fraction ϕ_{1} for Propylene Carbonate (1) + p-Xylene (2)

$15^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}$		$35^{\circ} \mathrm{C}$	
ϕ_{1}	$\Delta \epsilon$								
0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000
0.0737	-1.977	0.0737	-1.989	0.0736	-1.987	0.0736	-1.930	0.0735	-1.913
0.1518	-3.462	0.1518	-3.309	0.1517	-3.344	0.1516	-3.336	0.1515	-3.247
0.2348	-4.468	0.2347	-4.204	0.2346	-4.277	0.2344	-4.303	0.2343	-4.173
0.3231	-4.966	0.3230	-4.734	0.3228	-4.838	0.3226	-4.839	0.3225	-4.723
0.4172	-4.937	0.4171	-4.842	0.4169	-4.974	0.4167	-4.915	0.4166	-4.841
0.5178	-4.422	0.5177	-4.460	0.5175	-4.617	0.5173	-4.525	0.5172	-4.477
0.6255	-3.587	0.6254	-3.652	0.6253	-3.809	0.6251	-3.761	0.6249	-3.697
0.7412	-2.693	0.7411	-2.690	0.7410	-2.777	0.7408	-2.827	0.7407	-2.741
0.8656	-1.830	0.8656	-1.811	0.8655	-1.751	0.8654	-1.838	0.8653	-1.805
1.0000	0.000	1.0000	0.000	1.0000	0.000	1.0000	0.000	1.0000	0.000

Figure 3. Variation of refractive index n_{D} with the mole fraction of propylene carbonate x_{1}. The dotted curves are to indicate general trends only.

Table 7. Coefficients c_{j} from Equation 6 and Standard Deviation σ for Propylene Carbonate (1) + p-Xylene (2)

$\mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$	c_{0}	c_{1}	c_{2}	$\sigma / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$
15	-5.634	1.027	-0.088	0.042
20	-5.646	0.994	-0.210	0.046
25	-5.650	1.045	-0.246	0.030
30	-5.670	1.031	-0.168	0.044
35	-5.705	1.041	-0.254	0.051

measurements were made. On increasing thetemperature, all the above quantities decrease.

Excess volume V^{E} was determined from density measurements using the equation

$$
\begin{equation*}
\mathrm{V}^{\mathrm{E}}=\mathrm{M}_{1} \mathrm{x}_{1}\left(\frac{1}{\mathrm{~d}}-\frac{1}{\mathrm{~d}_{1}}\right)+\mathrm{M}_{2} \mathrm{x}_{2}\left(\frac{1}{\mathrm{~d}}-\frac{1}{\mathrm{~d}_{2}}\right) \tag{1}
\end{equation*}
$$

where M_{i} and x_{i} are respectively the molar mass and the mole fraction of the ith component, d is the density of the mixture, and d_{i} is the density of the ith pure component. The results where fitted through least squares to a Redlich-Kister type equation (Redlich and Kister, 1948)

$$
\begin{equation*}
\mathrm{V}^{\mathrm{E}}=\mathrm{x}_{1} \mathrm{x}_{2} \sum_{\mathrm{j}=0} \mathrm{a}_{\mathrm{j}}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{\mathrm{j}} \tag{2}
\end{equation*}
$$

The values of coefficients a_{j} and the standard deviations are summarized in Table 3. The calculated values of VE^{E} from eq 2 are given in Table 4.

Figure 4. Plot of V^{E} against mole fraction of propylene carbonate x_{1}. Curves are least squares representations by eq 2.

Figure 5. Plot of $\Delta \epsilon$ against volume fraction of propylene carbonate ϕ_{1} : (-) $15{ }^{\circ} \mathrm{C}$; (\cdots) $25^{\circ} \mathrm{C}$; (---) $35{ }^{\circ} \mathrm{C}$. Curves are least squares representations by eq 4 .

The deviation in relative permittivity $\Delta \epsilon$ was calculated from the equation

$$
\begin{equation*}
\Delta \epsilon=\epsilon-\left(\phi_{1} \epsilon_{1}+\phi_{2} \epsilon_{2}\right) \tag{3}
\end{equation*}
$$

Table 8. Calculated Values of $\Delta[R]$ from Equation 6, for the Used Values of Volume Fraction ϕ_{1} for Propylene Carbonate (1) + p-Xylene (2)

$15^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}$		$35^{\circ} \mathrm{C}$	
ϕ_{1}	$\Delta[\mathrm{R}]$								
0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000
0.0737	-0.449	0.0737	-0.453	0.0736	-0.458	0.0736	-0.455	0.0735	-0.462
0.1518	-0.823	0.1518	-0.829	0.1517	-0.836	0.1516	-0.832	0.1515	-0.842
0.2348	-1.115	0.2347	-1.120	0.2346	-1.127	0.2344	-1.124	0.2343	-1.136
0.3231	-1.314	0.3230	-1.317	0.3228	-1.323	0.3226	-1.324	0.3225	-1.334
0.4172	-1.412	0.4171	-1.414	0.4169	-1.417	0.4167	-1.421	0.4166	-1.430
0.5178	-1.398	0.5177	-1.401	0.5175	-1.402	0.5173	-1.407	0.5172	-1.416
0.6255	-1.261	0.6254	-1.267	0.6253	-1.266	0.6251	-1.271	0.6249	-1.280
0.7412	-0.990	0.7411	-1.001	0.7410	-0.999	0.7408	-1.001	0.7407	-1.011
0.8656	-0.573	0.8656	-0.585	0.8655	-0.584	0.8654	-0.583	0.8653	-0.592
1.0000	0.000	1.0000	0.000	1.0000	0.000	1.0000	0.000	1.0000	0.000

Figure 6. Plot of $\Delta[R]$ against volume fraction of propylene carbonate ϕ_{1} : (-) $15{ }^{\circ} \mathrm{C}$; ($\left.\cdot \cdot\right) 25^{\circ} \mathrm{C}$; (---) $35{ }^{\circ} \mathrm{C}$. Curves are least square representations by eq 6.
where ϵ_{i} is the relative permittivity of the ith pure component, ϵ is the relative permittivity of the mixture, and ϕ_{i} is the volume fraction of the ith component, defined by $\phi_{i}=x_{i} V_{i} / \sum_{i=1}^{2} x_{i} V_{i}$. The values of the deviations were fitted to the equation

$$
\begin{equation*}
\Delta \epsilon=\phi_{1} \phi_{2} \sum_{j=0} \mathrm{~b}_{\mathrm{j}}\left(\phi_{1}-\phi_{2}\right)^{\mathrm{j}} \tag{4}
\end{equation*}
$$

The values of coefficients b_{j} and the standard deviations are given in Table 5, whereas the calculated values of $\Delta \epsilon$ are in Table 6.

The quantity $\Delta[R]$, which gives the deviation in molar refractivity with the volume fraction, was calculated from the equation based on the Lorentz-Lorentz mixing rule (Lorentz, 1909; Áminabhavi et al., 1993)

$$
\begin{equation*}
\Delta[\mathrm{R}]=[\mathrm{R}]-\left(\phi_{1}[\mathrm{R}]_{1}+\phi_{2}[\mathrm{R}]_{2}\right) \tag{5}
\end{equation*}
$$

where $[R]$ is the molar refractivity of the mixture and $[R]_{1}$ is the molar refractivity of the ith pure component. Molar refractivity is defined by $[R]=\left[\left(n_{D}^{2}-1\right) /\left(n_{D}^{2}+2\right)\right] \mathrm{V}$, where n_{D} is the refractive index and V is the molar volume. The values of the $\Delta[R]$ were also fitted by the least squares method to the Redlich-Kister type equation

$$
\begin{equation*}
\Delta[R]=\phi_{1} \phi_{2} \sum_{j=0} \zeta_{j}\left(\phi_{1}-\phi_{2}\right)^{j} \tag{6}
\end{equation*}
$$

Values of coefficients c_{j} and standard deviations are summarized in Table 7, and calculated values of $\Delta[R]$ are in Table 8.

Variation of excess volume with the mole fraction of propylene carbonate is given in Figure 4. The deviations from ideality are negative, with a minimum at about $x_{1} \approx$ 0.5 , at all temperatures. On increasing the temperature, the minimum becomes more negative. This has been observed in many systems (J anelli et al., 1983; Lopez et al., 1983; Moumouzias et al., 1991; Moumouzias and Ritzoulis 1992). The negative values of V^{E} can be attributed to the different sizes of propylene carbonate and p -xylene molecules and to the specific interactions due to a dipoleinduced dipole effect (Prigogine, 1957; Palepu, 1985; Fort and Moore, 1965).

The variation of $\Delta \epsilon$ with the volume fraction of propylene carbonate is shown in Figure 5. $\Delta \epsilon$ is found to be negative with a minimum at about $\phi_{1} \approx 0.45$, without considerable changes over the temperature range studied. The negative values of deviations in permittivity occur in mixtures of high relative permittivity liquids with nonpolar liquids (Payne and Theodorou, 1972).

In Figure 6, the variation of $\Delta[R]$ with the volume fraction of propylene carbonate is shown. Values are negative here too, with a minimum at about $\phi_{1} \approx 0.45$. The temperature contribution was not found to be very important.

Literature Cited

Aminabhavi, T. M.; Aralaguppi, M. I.; Harogoppad, S. B.; Balundgi, R. H. Densities, Viscosities, Refractive Indices, and Speeds of Sound for Methyl Acetoacetate + Aliphatic Alcohols (C1-C8). J . Chem. Eng. Data 1993, 38, 31-39.
Buep, A. H.; Barón, M. Dielectric Properties of Binary Systems. 7. Carbon Tetrachloride with Benzene, with Toluene, and with pXylene at 298.15 and 308.15 K. J . Phys. Chem. 1988, 92, 840-843.
Fort, R. J .; Moore, W. R. Adiabatic Compressibilities of Binary Liquid Mixtures. Trans. Faraday Soc. 1965, 61, 2102-2111.
Gabano, J.-P., Ed. Lithium Batteries; Academic Press: New York, 1983.
Hanna, E. M.; AI-Sudani, K. Conductance Studies of some Ammonium and Alkali Metal Salts in Propylene carbonate. J. Solution Chem. 1987, 16, 155-162.
IUPAC. Pure Appl. Chem. 1986, 58, 1677.
J annelli, L.; Lopez, A.; Salello, S. Excess Volumes and Dielectric Constants of Benzonitrile + Nitrobenzene and Acetonitrile + Nitrobenzene Systems. J. Chem. Eng. Data 1983, 28, 169-173.
Kronick, P. L.; Fuoss, R. M. Quaternization Kinetics. II. Pyridine and 4-Picoline in Propylene carbonate. J. Am. Chem. Soc. 1955, 77, 6114.
Lopez, A.; J anelli, L.; Pansini M. Thermodynamic and Physical Properties of Binary Systems Involving Sulfolane + 2-M ethylpropionitrile and Sulfolane+2,2-Dimethylpropionitrile. J. Chem. Eng. Data 1983, 28, 176-179.
Lorentz, H. A. Theory of Electrons; Teubner: Leipzig, 1909.
Moumouzias, G.; Ritzoulis, G. Viscosities and Densities for Propylene carbonate + Toluene at 15, 20, 25, 30, and $35^{\circ} \mathrm{C}$. J. Chem. Eng. Data 1992, 37, 482-483.
Moumouzias, G.; Panopoulos, D.; Ritzoulis, G. Excess Properties of the Binary Liquid System Propylene carbonate + Acetonitrile. J . Chem. Eng. Data 1991, 36, 20-23.
Nath, J.; Narain, B. Binary Systems of Tetrachloroethylene with Benzene, Toluene, p-Xylene, Carbon Tetrachloride, and Cyclohex-
ane. 1. Ultrasonic Velocities and Adiabatic Compressibilities at 293.15 and 303.15 K, Dielectric Constants at 298.15 and 308.15 K, and Refractive Indexes at 298.15 K. J. Chem. Eng. Data 1982, 27, 308-312.
Palepu, R.; Oliver, J.; MacKinnon, B. Viscosities and Densities of Binary Liquid Mixtures of m-Cresol with Substituted Anilines. Part 3. Can. J. Chem. 1985, 63, 1024-1030.

Payne, R.; Theodorou, I. Dielectric Properties and Relaxation in Ethylene carbonate and Propylene carbonate. J. Phys. Chem. 1972, 76, 2892-2900.
Prigogine, I. The Molecular Theory of Solutions; North-Holland: Amsterdam, 1957.
Redlich, O.; Kister, A. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345-348.
Tasioula-Margari, M.; Demetropoulos, I. Viscosities of Dilute Solutions of the Triglycerides Triolein, Trilinolein, Tristearin, Tripalmitin, and Trimyristin in Benzene and p-Xylene. J. Chem. Eng. Data 1992, 37, 77-79.

Weast, R., Ed. Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, 1987-1988 (from National Bureau of Standards Circular 514).

Wu, Y.; Friedman, H. L. Heats of Solution of Some Trifluoroacetates, Tetraphenylborate, Iodides, and Perchlorates in Water and in Propylene carbonate and the Relative Enthalpies of Solvation of the Alkali Metal Ions in Propylene carbonate. J. Phys. Chem. 1966, 70, 501-509.

Received for review October 17, 1996. Accepted February 20, 1997. ${ }^{\otimes}$

J E960329T
${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, April 1, 1997.

