Excess Volumes of Cyclohexane with 2-Propanone, 2-Butanone, 3-Pentanone, 4-Methyl-2-pentanone, 1-Propanol, and 2-Propanol and Ethanoic Acid + 1-Propanol Systems

Liang-sun Lee* and Min-lang Chuang
Department of Chemical Engineering, National Central University, Chung-li, Taiwan 32054, Republic of China

Abstract

Excess molar volumes of seven binary mixtures of cydlohexane + 2-propanone, cydohexane +2 -butanone, cyclohexane +3 -pentanone, cyclohexane +4 -methyl-2-pentanone, cyclohexane +1 -propanol , cyclohexane + 2-propanol, and ethanoic acid + 1-propanol were derived from density measurements and correlated by Redlich-Kister equation.

Introduction

The excess molar volume of a mixture is an important thermodynamic property. In this study the excess volumes of cyclohexane +2 -propanone, cyclohexane +2 -butanone, cyclohexane + 3-pentanone, cyclohexane +4 -methyl-2pentanone, cyclohexane +1 -propanol , cyclohexane +2 -propanol, and ethanoic acid + 1-propanol are obtained from density measurements at thetemperatures of 298.15 K and 303.15 K over the entire range of concentration. Puri et al. (1974) and Radojkovic et al. (1977) have published results for cycl ohexane + 2-propanone at the temperature 298.15 K, whileJ anssens and Ruel (1972) have measured cyclohexane + 1-propanol at 298.15 K . The results were plotted and correlated with the Redlich-K ister equation.

Experimental Section

Cyclohexane (GR grade, $+99.5 \%$) was purchased from Aldrich, 2-propanone (GR grade, $+99.8 \%$), 2-butanone (GR grade, $+99.5 \%$), 3-pentanone (GR grade, $+99.0 \%$), 4-meth-yl-2-pentanone (GR grade, $+99.0 \%$), 1-propanol (GR grade, $+99.8 \%$), 2-propanol (GR grade, $+99.8 \%$), and ethanoic acid (GR grade, $+99.8 \%$) were purchased from Riedel-deH aen. The deionized water (electric resistance, $18.2 \mathrm{M} \Omega \cdot \mathrm{cm}^{-1}$) was generated by a Millipore distilled water generator. All the chemicals were verified for purity by GC analysis and carefully dried with Riedel-deH aen Type 4A molecule sieve and were used directly without further purification.

Density was measured with $25 \mathrm{~cm}^{3}$ pycnometers (Blaubrand, Gay-Lussac type). The internal volumes of pycnometers were calibrated with pure water at the experimental temperatures. Since the room temperature was always higher than 298.15 K (one of experimental temperature), two thermostats were used. One thermostat (Neslab, RTE-221) with operating temperature range 218 K-423 K was used for the lower temperature experiments, and another thermostat (Tamson, TV-2000) was used for the higher temperature experiments. Both thermostats were controlled within the accuracy of $\pm 0.01 \mathrm{~K}$. The temperatures were measured with a platinum-resistance thermometer (Hart Scientific, 5614) calibrated with an IPTS-68. The accuracy of temperature measurement is within $\pm 0.01 \mathrm{~K}$.

[^0]Table 1. Densities of Pure Solvents at 298.15 K and 303.15 K

		$\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}$		
solvent	T / K	experimental	literature	source
cyclohexane	298.15	0.77385	$0.77386,0.77387$	a, f
	303.15	0.76914	$0.76845,0.76918$	$\mathrm{~b}, \mathrm{f}$
2-propanone	298.15	0.78455	0.78440	b
	303.15	0.77876	0.78033	b
2-butanone	298.15	0.79992	0.79993	c
	303.15	0.79464	0.79460	b
3-pentanone	298.15	0.80977	$0.80945,0.80945$	$\mathrm{~b}, \mathrm{f}$
	303.15	0.80486		
4-methyl-2-	298.15	0.79649	$0.79630,0.79610$	b
pentaneone	303.15	0.79191		
1-propanol	298.15	0.79967	$0.79962,0.79975$	$\mathrm{~d}, \mathrm{f}$
	303.15	0.79567	0.79570	f
2-propanol	298.15	0.78086	$0.78092,0.78126$	e, f
ethanoic acid	303.15	0.77661	0.77700	f
	398.15	1.04462	$1.04392,1.04391$	$\mathrm{~b}, \mathrm{f}$
	303.15	1.03895	1.03825	f

${ }^{\text {a }}$ Radojkovic et al. (1977). ${ }^{\text {b }}$ Riddick et al. (1986). c Fermeglia et
 modynamic Tables.

All mixtures were prepared by directly weighing the constituent components to give a mole fraction accuracy within $\pm 10^{-4}$. In order to minimize the errors attributed to evaporation of chemicals, the denser component was charged first in preparing the solutions. Buoyancy corrections were made in this study for density measurement with pycnomerter.

For each experimental run, the pycnometer was immersed in the thermostat for 30 min to ensure temperature equilibrium. Three consecutive measurements were performed and averaged. The density was measured within accuracy of $\pm 10^{-4} \mathrm{~g} \cdot \mathrm{~cm}^{-3}$.

Results and Discussion

Before the experiments on mixtures were conducted, the densities of pure compounds were measured and compared to the literature values to ensure the reliability of our experimental procedure. The results are given in Table 1. The present experimental values agree to literature values and data from TRC Thermodynamic Tables with the average absol ute differences (AAD) of 3.44×10^{-4} and 3.06 $\times 10^{-4} \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, respectively.

Table 2. Densities and Excess Molar Volumes of Mixtures

x_{1}	$\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}$		x_{1}	$\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}$	$\underset{\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}}{\mathrm{~V}_{\mathrm{xpp}}{ }^{\mathrm{E}}}$	X_{1}	$\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}$	$\begin{gathered} V_{{ }_{\text {exp }}^{\mathrm{E}}} \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1} \end{gathered}$	x_{1}	$\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}$	$\begin{gathered} V^{\mathrm{Exp}} / \\ \mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1} \end{gathered}$
Cyclohexane (1) + 2-Propanone (2)											
$\mathrm{T}=298.15 \mathrm{~K}$											
0.0801	0.77968	0.3017	0.4588	0.76835	1.0855	0.2543	0.77214	0.8258	0.6985	0.76813	0.9766
0.1356	0.77665	0.5085	0.5366	0.76799	1.0831	0.3186	0.77044	0.9504	0.7937	0.76905	0.8036
0.1954	0.77407	0.6891	0.6204	0.76788	1.0508	0.3886	0.76911	1.0438	0.8922	0.77083	0.5027
$\mathrm{T}=303.15 \mathrm{~K}$											
0.0801	0.77352	0.3510	0.4588	0.76274	1.1518	0.2543	0.76618	0.8953	0.6985	0.76292	1.0263
0.1356	0.77042	0.5769	0.5366	0.76246	1.1518	0.3186	0.76458	1.0202	0.7937	0.76400	0.8408
0.1954	0.76802	0.7548	0.6204	0.76255	1.1056	0.3886	0.76340	1.1113	0.8922	0.76594	0.5235
Cyclohexane (1) + 2-Butanone (2)											
$\mathrm{T}=298.15 \mathrm{~K}$											
0.0939	0.79453	0.2883	0.5089	0.77836	0.9055	0.2938	0.78535	0.7131	0.7785	0.77367	0.6972
0.1575	0.79134	0.4448	0.5840	0.77662	0.8985	0.3582	0.78293	0.8037	0.8622	0.77313	0.5178
0.2228	0.78828	0.5909	0.6846	0.77480	0.8305	0.4349	0.78040	0.8772	0.9346	0.77306	0.3087
$\mathrm{T}=303.15 \mathrm{~K}$											
0.0939	0.78931	0.2927	0.5089	0.77333	0.9263	0.2938	0.78018	0.7323	0.7785	0.76875	0.7201
0.1575	0.78616	0.4515	0.5840	0.77165	0.9168	0.3582	0.77780	0.8245	0.8622	0.76825	0.5388
0.2228	0.78313	0.6010	0.6846	0.76983	0.8552	0.4349	0.77529	0.9023	0.9346	0.76823	0.3252
Cyclohexane (1) + 3-Pentanone (2)											
$\mathrm{T}=298.15 \mathrm{~K}$											
0.8846	0.77497	0.4123	0.4370	0.78855	0.7253	0.6613	0.78042	0.7495	0.2173	0.79834	0.4664
0.8080	0.77649	0.5770	0.3655	0.79156	0.6636	0.5898	0.78275	0.7775	0.1459	0.80195	0.3301
0.7353	0.77823	0.6906	0.2930	0.79482	0.5731	0.5115	0.78563	0.7619	0.0684	0.80595	0.1730
$\mathrm{T}=303.15 \mathrm{~K}$											
0.8846	0.77019	0.4243	0.4370	0.78369	0.7403	0.6613	0.77559	0.7666	0.2173	0.79347	0.4738
0.8080	0.77168	0.5931	0.3655	0.78671	0.6731	0.5898	0.77793	0.7903	0.1459	0.79705	0.3362
0.7353	0.77346	0.7002	0.2930	0.78998	0.5796	0.5115	0.78075	0.7822	0.0684	0.80097	0.1863
Cyclohexane (1) + 4-Methyl-2-pentanonee (2)											
$\mathrm{T}=298.15 \mathrm{~K}$											
0.9008	0.77388	0.3608	0.4810	0.78161	0.7228	0.7004	0.77660	0.6952	0.2488	0.78826	0.4909
0.8329	0.77456	0.5123	0.4038	0.78369	0.6731	0.6285	0.77800	0.7460	0.1668	0.79094	0.3427
0.7698	0.77536	0.6255	0.3273	0.78592	0.5914	0.5546	0.77971	0.7528			
$\mathrm{T}=303.15 \mathrm{~K}$											
0.9008	0.76909	0.3790	0.4810	0.77692	0.7400	0.7004	0.77190	0.7088	0.2488	0.79363	0.5010
0.8329	0.76981	0.5277	0.4038	0.77897	0.6944	0.6285	0.77326	0.7663	0.1668	0.78633	0.3481
0.7698	0.77064	0.6397	0.3273	0.78124	0.6073	0.5546	0.77499	0.7717			
Cyclohexane (1) + 1-Propanol (2)											
$\mathrm{T}=298.15 \mathrm{~K}$											
0.1548	0.79230	0.1992	0.5176	0.78050	0.4103	0.2794	0.78758	0.3016	0.7887	0.77518	0.3539
0.2073	0.79022	0.2453	0.6033	0.77850	0.4190	0.3101	0.78646	0.3297	0.8388	0.77453	0.3127
0.2408	0.78888	0.2811	0.7404	0.77590	0.3853	0.4866	0.78125	0.4082	0.9018	0.77389	0.2413
$\mathrm{T}=303.15 \mathrm{~K}$											
0.1548	0.78806	0.2095	0.5176	0.77598	0.4252	0.2794	0.79321	0.3168	0.7887	0.77051	0.3677
0.2073	0.78591	0.2594	0.6033	0.77397	0.4283	0.3101	0.78210	0.3421	0.8388	0.76979	0.3314
0.2408	0.78457	0.2931	0.7404	0.77125	0.3998	0.4866	0.77680	0.4169	0.9018	0.76918	0.2509
Cyclohexane(1) + 2-Propanol (2)											
$\mathrm{T}=298.15 \mathrm{~K}$											
0.1755	0.77636	0.3061	0.5773	0.77133	0.6073	0.4129	0.77269	0.5452	0.7451	0.77110	0.5373
0.2727	0.77454	0.4303	0.6422	0.77109	0.5989	0.4388	0.77235	0.5686	0.8410	0.77155	0.4203
0.3397	0.77353	0.4968	0.7027	0.77099	0.5764	0.4943	0.77183	0.5960	0.8945	0.77191	0.3386
0.5193	0.77165	0.6026									
$\mathrm{T}=303.15 \mathrm{~K}$											
0.1755	0.77185	0.3260	0.5773	0.76648	0.6513	0.4129	0.76794	0.5835	0.7451	0.76624	0.5755
0.2727	0.76988	0.4633	0.6422	0.76626	0.6381	0.4388	0.76758	0.6085	0.8410	0.76668	0.4546
0.3397	0.76884	0.5309	0.7027	0.76611	0.6194	0.4943	0.76700	0.6412	0.8945	0.76708	0.3643
0.5193	0.76682	0.6473									
Ethanoic Acid (1) + 1-Propanol (2)											
$\mathrm{T}=298.15 \mathrm{~K}$											
0.1021	0.81991	-0.0571	0.5829	0.92938	-0.2197	0.3558	0.87480	-0.1872	0.7871	0.98331	-0.1668
0.1894	0.83814	-0.1137	0.6540	0.94768	-0.2153	0.4330	0.89277	-0.2097	0.8517	1.00134	-0.1284
0.2707	0.85566	-0.1498	0.7233	0.96593	-0.1918	0.5097	0.91116	-0.2168	0.9108	1.01832	-0.0871
$\mathrm{T}=303.15 \mathrm{~K}$											
0.1021	0.81571	-0.0510	0.5829	0.92447	-0.2169	0.3558	0.87020	-0.1791	0.7871	0.97801	-0.1632
0.1894	0.83374	-0.1011	0.6540	0.94261	-0.2102	0.4330	0.88804	-0.2013	0.8517	0.99591	-0.1246
0.2707	0.85117	-0.1398	0.7233	0.96076	-0.1890	0.5097	0.90631	-0.2091	0.9108	1.01281	-0.0857

Figure 1. Excess volumes of binary systems at 298.15 K : cyclohexane (1) +2 -propanone (2): ∇, Puri et al. (1974); Δ, Radojkovic et al. (1977); O, this work; *, cyclohexane (1) + 2-butanol (2); ■, cyclohexane (1) + 3-pentanone (2); ©, cyclohexane (1) + 4-methyl-2-pentanone (2); -, correlated.

Figure 2. Excess volumes of binary systems at 303.15 K : O , cyclohexane (1) + 2-propanone (2); \uparrow, cyclohexane (1) + 2-butanone (2); ■, cyclohexane (1) + 3-pentanone (2); ©, cyclohexane (1) + 4-methyl-2-pentanone (2); -, correlated.

The experimental excess molar volumes of all seven mixtures at 298.15 K and 303.15 K are listed in Table 2. The excess molar volume was calculated by the following equation

$$
\begin{equation*}
V^{\mathrm{E}}=\frac{\left(\mathrm{x}_{1} \mathrm{M}_{1}+\mathrm{x}_{2} \mathrm{M}_{2}\right)}{\rho_{\mathrm{m}}}-\frac{\mathrm{x}_{1} \mathrm{M}_{1}}{\rho_{1}}-\frac{\mathrm{x}_{2} \mathrm{M}_{2}}{\rho_{2}} \tag{1}
\end{equation*}
$$

where $x_{i}, \mathbf{M}_{\mathrm{i}}$, and $\rho_{\mathrm{i}}=1,2$, are the mole fractions, molar masses, and densities of the constituent components, respectively, and ρ_{m} is the density of the mixture.

The experimental excess molar volumes were correlated by Redlich-Kister equation

Figure 3. Excess volumes of binary systems at 298.15 K : cyclohexane (1) + 1-propanol (2): O, this work; ∇, J anssens and Ruel (1972); © cyclohexane (1) + 2-propanol (2); -, correlated.

Figure 4. Excess volumes of binary systems at 303.15 K : O , cyclohexane (1) + 1-propanol (2); \uparrow, cyclohexane (1) + 2-propanol (2); - correlated.

$$
\begin{align*}
\mathrm{V}^{\mathrm{E}} /\left(\mathrm{x}_{1} \mathrm{x}_{2}\right)=\mathrm{A}_{0}+\mathrm{A}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)+\mathrm{A}_{2}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+ \\
\mathrm{A}_{3}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{3} \tag{2}
\end{align*}
$$

where the parameters given in Table 3 were determined by nonweighed least-squares fit.
The figures showing the experimental data and the correlated values aregiven in Figures 1-5. Figure 1 shows the excess volumes of mixtures of cyclohexane with 2-propanone, 2-butanone, 3-pentanone, and 4-methyl-2-pentanone at 298.15 K . In this figure, the literature values of the cyclohexane + 2-propanone mixture of Puri et al. (1974) and of Radojkovic et al. (1977) are also shown. This figure shows the positive excess volumes of mixtures of this group and the good agreement of experimental and correlated values. The excess volumes of the same mixtures of the temperature of 303.15 K were given in Figure 2. Similar to Figure 1, this same group of mixtures also exhibit

Table 3. Parameters A_{k} of Equation 2 for Excess Molar Volume

mixture	T / K	A_{0}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\sigma\left(\mathrm{~V}^{\mathrm{E}}\right) / \mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$
cyclohexane (1)	298.15	4.38191	-0.15256	0.67151	-0.83517	0.0076
+ 2-propanone (2)	303.15	4.63781	-0.90050	0.89207	-0.51741	
cyclohexane (1)	298.15	3.59598	-0.41336	0.52845	-0.61434	
+ 2-butanone (2)	303.15	3.68371	-0.40372	0.58387	-0.81567	
cyclohexane (1)	298.15	3.03807	-0.80931	0.50303	-0.09541	0.0067
+ 3-pentanone (2)	303.15	3.09296	-0.86396	0.55126	-0.01581	0.0099
cyclohexane (1)	298.15	2.94507	-0.78609	0.36582	-0.32783	0.0038
+ 4-methyl-2-pentanone (2)	303.15	3.01652	-0.74980	0.35992	-0.56735	0.0064
cyclohexane (1)	298.15	1.62863	-0.37644	0.61606	-0.55235	0.0073
+ 1-propanol (2)	303.15	1.67329	0.36585	0.73134	0.61506	
cyclohexane (1)	298.15	2.37243	0.60730	0.58862	0.47749	
+ 2-propanol (2)	303.15	2.54276	-0.63932	0.63400	-0.58343	
ethanoic acid (1)	298.15	-0.87557	0.19524	0.03669	0.09451	
+ 1-propanol (2)	303.15	-0.85000	0.23695	0.08413	0.08340	
a $\sigma(\mathrm{V}$ E) standard deviation.					0.0058	

Figure 5. Excess volumes of ethanoic acid (1) + 1-propanol (2): O, at 298.15 K ; at 303.15 K ; - , correlated.
positive excess volumes. Figure 3 shows the excess volumes of cydohexane +1 -propanol and cyclohexane + 2-propanol mixtures at the temperature of 298.15 K . The literature values of J anssens and Ruel (1972) are also included in this figure. This figure shows the positive
excess volume of these two mixtures. The same mixtures at temperature of 303.15 K are given in Figure 4. We can also observe that the excess volumes are larger at the higher temperature for the mixtures shown in these figures. The excess volumes of the last mixture, consisting of an associating component and a polar component, ethanoic acid + 1-propanol at 298.15 K and 303.15 K , are given in Figure 5. This mixture exhibits negative excess molar volume, which is the opposite behavior compared with that shown for the previous mixtures.

Literature Cited

Fermeglia, M.; Lapasin, M. Excess Volumes and Viscosities of Binary Mixtures of Organics. J. Chem. Eng. Data 1988, 33, 415-417.
J anssens, J.-M.; Ruel, M. A New Semi-Continuous Dilatometer. Can. J. Chem. Eng. 1972, 50, 591-594.

Puri, P. S.; Polak, J.; Ruether, J. A. Vapor-Liquid Equilibria of Acetone + Cyclohexane and Acetone + I sopropanol Systems at $25^{\circ} \mathrm{C} . \mathrm{J}$. Chem. Eng. Data 1974, 19, 87-89.
Radojkovic, N.; Tasic, A.; Grozdanic, D.; Djordjevic, B.; Malic, D. Excess Volumes of Acetone + Benzene, Acetone + Cyclohexane, and Acetone + Benzene + Cyclohexane. J. Chem. Thermodyn. 1977, 9, 349-356.
Riddick, J. K.; Bunger, W. B.; Sakano, K.; Organic Solvents, 4th ed.; Wiley-I nterscience, New Y ork: 1986; Vol. II.
Singh, K. C.; Kalra, K. C.; Maken, S.; Yadav, B. L. Excess Volumes of 1-Propanol and 2-Propanol with Arromatic Hydrocarbons at 298.15 K. J. Chem. Eng. Data 1994, 39, 241-244.

Received for review October 24, 1996. Accepted May 1, $1997 .{ }^{*}$
J E 9603335
${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, J une 1, 1997.

[^0]: * To whom correspondence should be addressed.

