# *PVT* Property Measurements for Liquid Chlorobenzene and 1,2-Dichlorobenzene from (278 to 338) K and (0.1 to 300) MPa

Allan J. Easteal

Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand

## Phillip J. Back and Lawrence A. Woolf\*

Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia

The effect of pressure on the volume in the liquid phase for chlorobenzene and 1,2-dichlorobenzene has been measured relative to their volumes at 0.1 MPa with a bellows volumometer for pressures up to 300 MPa over the temperature range (278.15 to 338.13) K. The experimental volume ratios have been represented by two sets of equations to enable interpolation and extrapolation of volumetric properties. The results of one of these representations suggests a means of extrapolating the volumetric properties of these chloro-substituted benzene derivatives. Isothermal compressibilities, thermal expansivities, normalized volume fluctuations, and the change in the isobaric heat capacity from its value at 0.1 MPa have been calculated from the results.

# Introduction

This work on 1,2-dichlorobenzene was initiated to provide isothermal compressibilities for a continuing study by Rodriguez (see Shang et al., 1996) on rotational motions of fullerenes in various liquids. The present results complement some earlier volumetric measurements (Isdale and Spence, 1975) by providing data at both lower (278.15 and 288.14 K) and intermediate temperatures (313.14 and 338.13 K). The work on chlorobenzene was done much earlier (1986/87) but not published. Gibson and Loeffler (1939) made pVT measurements for chlorobenzene at 25, 45, 65, and 85 °C but at a maximum pressure of only 1000 atm (101.3 MPa).

## **Experimental Section**

The chlorobenzene was Mallinckrodt Analytical Reagent of stated purity 99.5%, and the 1,2-dichlorobenzene was Aldrich HPLC grade with a stated minimum purity of 99%. Both were used without further purification. Temperatures were measured with a platinum resistance thermometer and adjusted to ITS-90. They were held constant to  $\pm 0.005$  K and have an accuracy of  $\pm 0.01$  K. The procedure for measuring the densities employs a short-term temperature stability corresponding to a density equivalent of  $\pm 2$  $\times$  10<sup>-3</sup> kg·m<sup>-3</sup> or better (Malhotra and Woolf, 1991a, 1994). Densities of 1,2-dichlorobenzene at atmospheric pressure,  $\rho$  (0.1 MPa), were measured using an Anton Paar Model DMA60 digital densimeter with a DMA602HT external cell; this was frequently and carefully calibrated (Malhotra and Woolf, 1994). The overall reproducibility of the density is estimated to be  $\pm 0.005$  kg·m<sup>-3</sup>. The density was measured at 293.14 and 298.14 K obtaining 1305.89 and 1300.31 kg·m<sup>-3</sup>, respectively. The corresponding literature values (Riddick et al., 1986) are 1305.89 and 1300.33 kg·m<sup>-3</sup> and 1300.2 kg·m<sup>-3</sup> (Isdale and Spence, 1975). It is general experience that the volume ratios used here to measure the effect of pressure on the liquid are affected only within the experimental error by small amounts of impurities.

An automated bellows volumometer (Easteal and Woolf, 1985; Malhotra and Woolf, 1993) was used for the highpressure volumetric measurements of 1,2-dichlorobenzene. This instrument determines the effect of pressure on the volume of a fixed mass of liquid at constant temperature as the ratio of its volume at the experimental pressure, P, to the volume at a lower reference pressure usually chosen as 0.1 MPa. Pressures above 25 MPa were measured with a pressure transducer; the lower pressures were read from a Heise-Bourdon analogue gauge except for those below 5 MPa, which were generated with a dead weight gauge. Both the pressure transducer and Heise-Bourdon gauge had been calibrated with a dead weight gauge with an accuracy of  $\pm 0.05\%$ . Because 1,2-dichlorobenzene would be expected to freeze at pressures less than 300 MPa at 278.15 and 288.14 K, the maximum pressure used at those temperatures was less than that at the higher temperatures. The volumetric measurements for chlorobenzene were made with an earlier version of the volumometer that was not automated and used calibrated Heise-Bourdon analogue gauges for all of the pressure measurements (Easteal and Woolf, 1985). The volume ratios are estimated to have an accuracy of  $\pm 0.05\%$  at and above 50 MPa and  $\pm 0.1\%$  below that pressure.

#### **Results and Discussion**

The volume ratios,  $k = V_{P'}V(0.1 \text{ MPa})$ , are given in Tables 1 and 2. A direct comparison with the corresponding results of Isdale and Spence (1975) for 1,2-dichlorobenzene or Gibson and Loeffler (1939) for chlorobenzene is not possible since they did not publish their values of k. Data provided by Dymond (1996) for unpublished k values of Isdale and Spence (1975) indicates differences of 0.1% between their k and those of Table 1 at 298.14 and 323.14 K; these are within the expected experimental error. The k value can be used with the  $\rho(0.1 \text{ MPa})$  given in the table to obtain densities of the compressed liquid. For 1,2dichlorobenzene the  $\rho(0.1 \text{ MPa})$  for the temperatures at which those densities were not measured were obtained by combining the present values at 293.14 and 298.14 K with those of Isdale and Spence (1975) at 323.14 and 348.13

<sup>\*</sup> To whom correspondence should be addressed.

Table 1. Experimental Pressures, Volume Ratios  $k = V_P/V(0.1 \text{ MPa})$ , and Densities at 0.1 MPa for 1,2-Dichlorobenzene at Temperatures from 278.15 to 338.13 K

| $\begin{array}{c} T = 278.15 \ {\rm K;} \ \rho(0.1) = 1322.34 \ {\rm kg\cdot m^{-3}} \\ 2.547 \ 0.9986 \ 18.939 \ 0.9901 \ 38.47 \ 0.9807 \ 68.14 \ 0.9 \\ 4.996 \ 0.9973 \ 24.085 \ 0.9875 \ 47.23 \ 0.9769 \ 82.38 \ 0.9 \\ 9.339 \ 0.9950 \ 28.52 \ 0.9853 \ 58.12 \ 0.9723 \ 90.03 \ 0.9 \\ 14.651 \ 0.9923 \ T = 288.15 \ {\rm K;} \ \rho(0.1) = 1311.37 \ {\rm kg\cdot m^{-3}} \\ 2.547 \ 0.9986 \ 24.237 \ 0.9868 \ 57.38 \ 0.9714 \ 97.30 \ 0.9 \\ 4.996 \ 0.9972 \ 28.34 \ 0.9848 \ 67.24 \ 0.9673 \ 116.86 \ 0.9 \\ 9.797 \ 0.9945 \ 38.02 \ 0.9801 \ 77.50 \ 0.9633 \ 141.78 \ 0.9 \\ 14.505 \ 0.9919 \ 48.22 \ 0.9754 \ 88.31 \ 0.9591 \ 147.71 \ 0.9 \\ \end{array}$ | k                                                        |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $T = 278.15$ K; $\rho(0.1) = 1322.34$ kg·m <sup>-3</sup> |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 684                                                      |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )630                                                     |  |  |  |  |  |  |  |  |  |  |
| 14.651 0.9923<br>$T = 288.15 \text{ K}; \ \rho(0.1) = 1311.37 \text{ kg} \cdot \text{m}^{-3}$ 2.547 0.9986 24.237 0.9868 57.38 0.9714 97.30 0.9<br>4.996 0.9972 28.34 0.9848 67.24 0.9673 116.86 0.9<br>9.797 0.9945 38.02 0.9801 77.50 0.9633 141.78 0.9<br>14.505 0.9919 48.22 0.9754 88.31 0.9591 147.71 0.9                                                                                                                                                                                                                                                                                                                                                                   | )603                                                     |  |  |  |  |  |  |  |  |  |  |
| $T=288.15~{\rm K};~\rho(0.1)=1311.37~{\rm kg}\cdot{\rm m}^{-3}$ 2.547 0.9986 24.237 0.9868 57.38 0.9714 97.30 0.9<br>4.996 0.9972 28.34 0.9848 67.24 0.9673 116.86 0.9<br>9.797 0.9945 38.02 0.9801 77.50 0.9633 141.78 0.9<br>14.505 0.9919 48.22 0.9754 88.31 0.9591 147.71 0.9                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )559                                                     |  |  |  |  |  |  |  |  |  |  |
| 9.797 0.9945 38.02 0.9801 77.50 0.9633 141.78 0.9<br>14.505 0.9919 48.22 0.9754 88.31 0.9591 147.71 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )491                                                     |  |  |  |  |  |  |  |  |  |  |
| 14.505 0.9919 48.22 0.9754 88.31 0.9591 147.71 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )412                                                     |  |  |  |  |  |  |  |  |  |  |
| 10.255 0.0804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )394                                                     |  |  |  |  |  |  |  |  |  |  |
| 19.255 0.9694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |  |  |  |  |  |  |  |  |  |  |
| $T = 298.14 \text{ K}; \rho(0.1) = 1300.33 \text{ kg} \cdot \text{m}^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |  |  |  |  |  |  |  |  |  |  |
| 2.547 0.9984 23.555 0.9865 67.59 0.9656 136.83 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )402                                                     |  |  |  |  |  |  |  |  |  |  |
| 4.996 0.9970 27.96 0.9842 77.75 0.9614 158.65 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )335                                                     |  |  |  |  |  |  |  |  |  |  |
| 9.993 0.9940 37.39 0.9794 88.29 0.9573 181.74 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 268                                                      |  |  |  |  |  |  |  |  |  |  |
| 14.427 0.9915 47.19 0.9747 97.31 0.9539 196.54 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 228                                                      |  |  |  |  |  |  |  |  |  |  |
| 19.525 0.9887 57.74 0.9699 118.45 0.9463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          |  |  |  |  |  |  |  |  |  |  |
| $T = 313.14 \text{ K}$ : $\rho(0.1) = 1283.95 \text{ kg} \cdot \text{m}^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |  |  |  |  |  |  |  |  |  |  |
| 2.547 0.9983 27.48 0.9832 86.32 0.9553 197.07 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 183                                                      |  |  |  |  |  |  |  |  |  |  |
| 4.996 0.9967 37.72 0.9777 98.44 0.9505 216.09 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 132                                                      |  |  |  |  |  |  |  |  |  |  |
| 9.333 0.9940 47.27 0.9728 116.87 0.9435 235.74 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 081                                                      |  |  |  |  |  |  |  |  |  |  |
| 14.453 0.9908 57.28 0.9680 138.38 0.9361 256.63 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 030                                                      |  |  |  |  |  |  |  |  |  |  |
| 19.581 0.9877 66.62 0.9637 156.99 0.9301 280.28 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3976                                                     |  |  |  |  |  |  |  |  |  |  |
| 24.297 0.9850 76.40 0.9594 176.62 0.9241 285.31 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3965                                                     |  |  |  |  |  |  |  |  |  |  |
| $T = 323.14$ K: $\rho(0.1) = 1272.98$ kg·m <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          |  |  |  |  |  |  |  |  |  |  |
| 2.547 0.9982 28.21 0.9819 118.34 0.9406 222.70 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 082                                                      |  |  |  |  |  |  |  |  |  |  |
| 4.996 0.9965 38.28 0.9763 137.93 0.9336 247.96 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )018                                                     |  |  |  |  |  |  |  |  |  |  |
| 8.774 0.9940 57.23 0.9965 156.52 0.9274 272.35 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3959                                                     |  |  |  |  |  |  |  |  |  |  |
| 14.902 0.9900 77.67 0.9570 178.24 0.9207 289.11 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3921                                                     |  |  |  |  |  |  |  |  |  |  |
| 19.324 0.9873 98.22 0.9483 198.67 0.9148 308.19 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 878                                                      |  |  |  |  |  |  |  |  |  |  |
| 23.892 0.9845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |  |  |  |  |  |  |  |  |  |  |
| $T = 338  13  \text{K}$ : $\rho(0, 1) = 1256  63  \text{kg} \cdot \text{m}^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |  |  |  |  |  |  |  |  |  |  |
| 2.547 0.9981 28.09 0.9805 117.86 0.9369 221.96 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 033                                                      |  |  |  |  |  |  |  |  |  |  |
| 4 996 0 9962 37 87 0 9746 136 77 0 9299 246 83 0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1968                                                     |  |  |  |  |  |  |  |  |  |  |
| 8979 0.9933 58.08 0.9635 156.91 0.9229 271.06 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1907                                                     |  |  |  |  |  |  |  |  |  |  |
| 14 953 0 9891 78 15 0 9537 178 13 0 9160 301 97 0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1838                                                     |  |  |  |  |  |  |  |  |  |  |
| 18 850 0.9865 98 17 0.9448 198 30 0.9100 311 51 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 815                                                      |  |  |  |  |  |  |  |  |  |  |
| 23 702 0 9833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,510                                                     |  |  |  |  |  |  |  |  |  |  |

K and representing them by a linear equation

$$\rho(0.1 \text{ MPa})/\text{kg}\cdot\text{m}^{-3} = 1627.527 - 1.0972(T/\text{K})$$
 (1)

with a standard deviation of  $0.078 \text{ kg} \cdot \text{m}^{-3}$ , which enabled interpolation and extrapolation.

No densities were measured in this work for chlorobenzene; those given in Table 2 were obtained from a cubic spline fit of data along the liquid–vapor coexistence curve from 0 to 90 °C (Timmermans, 1950). Those data were used because of their extensive temperature range and the large scatter in the alternative data at atmospheric pressure. For both chlorobenzene and 1,2-dichlorobenzene the minimum error in the estimated density is  $\pm 0.1$  kg·m<sup>-3</sup>.

The *k* values were represented by either of eqs 2 or 3

$$K = P/(1 - k) = a_0 + a_1 P + a_2 P^2 + a_3 P^3 \qquad (2)$$

$$1 - k = C \log[(B + P)/(B + 0.1)]$$
(3)

with the coefficients, given in Table 3, obtained by a leastsquares fit. K is the secant bulk modulus, and eq 2 provides the most accurate representation of the experimental k values.

Equation 3, the modified Tait equation, is particularly useful for interpolation or extrapolation outside the experimental temperature and pressure range for liquids (Malhotra and Woolf, 1991b), including the liquid-vapor coexistence region (Malhotra and Woolf, 1993). For that purTable 2. Experimental Pressures, Volume Ratios  $k = V_P/V(0.1 \text{ MPa})$ , and Densities at 0.1 MPa for Chlorobenzene at Temperatures from 278.15 to 338.13 K

| P/MPa  | k      | <i>P</i> /MPa | k         | <i>P</i> /MPa | k        | <i>P</i> /MPa | k      |
|--------|--------|---------------|-----------|---------------|----------|---------------|--------|
|        | Т      | = 278.1       | 5 K; ρ(0. | 1) = 1122     | 2.5 kg•m | -3            |        |
| 2.201  | 0.9985 | 30.211        | 0.9815    | 90.35         | 0.9530   | 200.07        | 0.9160 |
| 4.707  | 0.9968 | 40.149        | 0.9761    | 100.33        | 0.9490   | 220.71        | 0.9104 |
| 10.178 | 0.9933 | 50.787        | 0.9707    | 120.92        | 0.9413   | 239.99        | 0.9054 |
| 15.206 | 0.9902 | 60.068        | 0.9662    | 141.30        | 0.9341   | 260.11        | 0.9005 |
| 19.891 | 0.9874 | 69.397        | 0.9619    | 160.46        | 0.9279   | 281.76        | 0.8955 |
| 24.740 | 0.9846 | 80.228        | 0.9572    | 180.62        | 0.9217   |               |        |
|        | Т      | = 288.1       | 5 K; ρ(0. | l) = 111      | 1.6 kg∙m | -3            |        |
| 1.878  | 0.9987 | 29.91         | 0.9810    | 90.35         | 0.9512   | 200.67        | 0.9128 |
| 4.653  | 0.9968 | 40.20         | 0.9752    | 100.53        | 0.9469   | 220.61        | 0.9072 |
| 9.492  | 0.9935 | 50.34         | 0.9699    | 121.37        | 0.9388   | 240.34        | 0.9019 |
| 14.421 | 0.9903 | 60.12         | 0.9650    | 139.80        | 0.9321   | 259.91        | 0.8970 |
| 19.661 | 0.9870 | 70.45         | 0.9601    | 160.41        | 0.9251   | 281.46        | 0.8919 |
| 24.354 | 0.9842 | 80.48         | 0.9555    | 181.07        | 0.9186   |               |        |
|        | Т      | = 298.14      | 4 K; ρ(0. | 1) = 1100     | 0.8 kg∙m | -3            |        |
| 2.448  | 0.9982 | 29.71         | 0.9799    | 90.30         | 0.9485   | 200.17        | 0.9092 |
| 5.092  | 0.9962 | 39.95         | 0.9738    | 100.38        | 0.9441   | 220.26        | 0.9035 |
| 10.097 | 0.9927 | 50.04         | 0.9682    | 120.27        | 0.9361   | 240.14        | 0.8981 |
| 15.260 | 0.9892 | 60.27         | 0.9628    | 140.40        | 0.9285   | 260.06        | 0.8930 |
| 19.983 | 0.9860 | 70.35         | 0.9578    | 160.82        | 0.9215   | 281.71        | 0.8879 |
| 25.23  | 0.9827 | 80.08         | 0.9531    | 180.52        | 0.9151   |               |        |
|        | Т      | = 313.14      | 4 K; ρ(0. | 1) = 1084     | 4.6 kg∙m | -3            |        |
| 2.326  | 0.9981 | 29.91         | 0.9779    | 89.95         | 0.9447   | 200.02        | 0.9037 |
| 5.016  | 0.9959 | 39.90         | 0.9715    | 101.03        | 0.9397   | 220.21        | 0.8978 |
| 10.007 | 0.9921 | 50.19         | 0.9654    | 121.02        | 0.9312   | 241.04        | 0.8921 |
| 15.091 | 0.9883 | 60.37         | 0.9596    | 140.05        | 0.9238   | 259.91        | 0.8872 |
| 20.007 | 0.9847 | 70.20         | 0.9544    | 160.87        | 0.9163   | 282.06        | 0.8818 |
| 25.12  | 0.9811 | 79.73         | 0.9496    | 180.37        | 0.9098   |               |        |
|        | Т      | = 323.14      | 4 K; ρ(0. | 1) = 1074     | 4.2 kg∙m | -3            |        |
| 2.405  | 0.9979 | 30.31         | 0.9765    | 90.41         | 0.9419   | 200.57        | 0.8995 |
| 4.653  | 0.9960 | 40.15         | 0.9699    | 101.08        | 0.9368   | 220.71        | 0.8934 |
| 9.872  | 0.9917 | 50.84         | 0.9632    | 120.92        | 0.9281   | 240.24        | 0.8879 |
| 15.044 | 0.9877 | 59.92         | 0.9579    | 140.55        | 0.9202   | 259.91        | 0.8825 |
| 19.902 | 0.9840 | 70.45         | 0.9521    | 160.87        | 0.9126   | 283.11        | 0.8767 |
| 25.75  | 0.9797 | 80.53         | 0.9468    | 180.57        | 0.9059   |               |        |
|        | Т      | = 338.13      | 3 K; ρ(0. | 1) = 1058     | 8.1 kg∙m | -3            |        |
| 2.380  | 0.9977 | 30.06         | 0.9745    | 90.35         | 0.9382   | 200.07        | 0.8949 |
| 4.890  | 0.9953 | 40.50         | 0.9671    | 101.23        | 0.9329   | 220.46        | 0.8887 |
| 9.989  | 0.9907 | 50.29         | 0.9607    | 120.92        | 0.9240   | 239.89        | 0.8831 |
| 15.369 | 0.9861 | 60.42         | 0.9545    | 140.45        | 0.9159   | 260.71        | 0.8774 |
| 20.217 | 0.9821 | 70.30         | 0.9488    | 160.62        | 0.9083   | 282.66        | 0.8718 |

pose a value of C is chosen, usually close to the average, to represent those determined independently for all the temperatures of the measurements and a corresponding set of *B*'s calculated from the *k*. Those *B* values for C = 0.21 and the accuracy of the fit to *k* for that *C* are given in the second to the last and the last columns of Table 3. The B values are plotted against  $1/T_r$ , where  $T_r$  (= $T/T_c$ ) is the reduced temperature, in Figure 1. The  $T_c$  of 632.4 K (chlorobenzene) and 697.3 K (dichlorobenzene) were from Riddick et al. (1986). The two sets of *B* values are almost parallel with slopes of 104.2 (variance 0.6) for 1,2-dichlorobenzene and 101.5 (variance 0.7) for chlorobenzene suggesting that they can be combined. Also shown in the figure are B(chlorobenzene), which have been adjusted by adding 6.28 MPa, which is the difference between B(1,2-dichlorobenzene) and B(chlorobenzene) at an arbitrarily chosen  $1/T_r$ of 2.2. The difference is, of course, a measure of the effect on *B* of substituting the second chlorine into the benzene ring. The combined data suggest that the chlorobenzene results can be extrapolated to higher values of  $1/T_r$  while a corresponding extrapolation to lower values appears feasible for 1,2-dichlorobenzene. For those purposes the combined data shown in Figure 1 can be represented by

0.9779 79.93 0.9436 180.77 0.9012

25.55

$$B/MPa = -93.96 + 102.87/T_r$$
(4)

with a standard deviation in B of 0.6 MPa.

Table 3. Coefficients of Equations 2 and 3 and Standard Deviation of Their Fit to the Volume Ratio  $k = V_{P}/V(0.1 \text{ MPa})$  for 1,3-Dichlorobenzene and Chlorobenzene<sup>a</sup>

| <i>T</i> /K         | a <sub>0</sub> /MPa | $a_1$  | $-a_2/(GPa)^{-1}$ | $a_3/(GPa)^{-2}$ | $10^2 \langle \Delta k/k \rangle$ | <i>B</i> /MPa | С      | $10^2 \langle \Delta k/k \rangle$ | <i>B</i> /MPa | $10^2 \langle \Delta k / k \rangle$ |
|---------------------|---------------------|--------|-------------------|------------------|-----------------------------------|---------------|--------|-----------------------------------|---------------|-------------------------------------|
| 1,2-Dichlorobenzene |                     |        |                   |                  |                                   |               |        |                                   |               |                                     |
| 278.15              | 1824.32             | 4.0376 | -16.2300          | -72.961          | 0.002                             | 154.40        | 0.1996 | 0.004                             | 163.41        | 0.011                               |
| 288.15              | 1739.05             | 4.0392 | -14.3893          | -66.887          | 0.004                             | 152.25        | 0.2060 | 0.002                             | 155.67        | 0.010                               |
| 298.14              | 1620.62             | 5.3730 | 3.8722            | 2.605            | 0.001                             | 146.14        | 0.2085 | 0.003                             | 146.98        | 0.016                               |
| 313.14              | 1492.17             | 5.4625 | 4.9121            | 4.531            | 0.001                             | 138.78        | 0.2133 | 0.009                             | 135.49        | 0.017                               |
| 323.14              | 1416.30             | 5.3033 | 4.0992            | 2.949            | 0.001                             | 132.14        | 0.2143 | 0.011                             | 128.02        | 0.019                               |
| 338.13              | 1290.68             | 5.4509 | 5.2973            | 5.128            | 0.001                             | 120.47        | 0.2135 | 0.013                             | 117.18        | 0.023                               |
|                     |                     |        |                   | Ch               | lorobenzene                       |               |        |                                   |               |                                     |
| 278.15              | 1459.13             | 5.7971 | 8.2882            | 11.787           | 0.005                             | 140.89        | 0.2190 | 0.010                             | 132.53        | 0.030                               |
| 288.15              | 1408.43             | 5.5438 | 7.9775            | 12.099           | 0.007                             | 139.27        | 0.2253 | 0.007                             | 126.34        | 0.059                               |
| 298.14              | 1328.99             | 5.0779 | 4.6108            | 5.364            | 0.003                             | 126.75        | 0.2208 | 0.003                             | 118.35        | 0.051                               |
| 313.14              | 1209.70             | 4.9393 | 3.6838            | 3.368            | 0.001                             | 113.06        | 0.2178 | 0.003                             | 107.49        | 0.043                               |
| 323.14              | 1149.07             | 4.7501 | 3.1205            | 2.288            | 0.002                             | 109.31        | 0.2224 | 0.004                             | 101.08        | 0.076                               |
| 338.13              | 1021.95             | 5.4050 | 6.6940            | 8.453            | 0.005                             | 95.87         | 0.2150 | 0.010                             | 92.34         | 0.026                               |

<sup>*a*</sup> The values of *B* in the second to the last column are for C = 0.2100.

Table 4. Isothermal Compressibility,  $\kappa_T$ , Molar Volume,  $V_m$ , Isobaric Expansivity,  $\alpha$ , Normalized Volume Fluctuaton,  $\langle (\Delta V V)^2 \rangle$ , and Change in Molar Heat Capacity,  $\Delta C_P$ , for 1,2-Dichlorobenzene

|                                                                          |        |        |            | <i>P</i> /MPa |        |        |        |
|--------------------------------------------------------------------------|--------|--------|------------|---------------|--------|--------|--------|
|                                                                          | 0.1    | 20     | 40         | 60            | 80     | 100    | 150    |
|                                                                          |        |        | T = 278.15 | К             |        |        |        |
| $\kappa_T / 10^{-4} \text{ MPa}^{-1}$                                    | 5.48   | 5.03   | 4.58       | 4.16          | 3.80   |        |        |
| V <sub>m</sub> /cm <sup>3</sup> ⋅mol <sup>-1</sup>                       | 111.16 | 110.01 | 108.95     | 108.01        | 107.15 |        |        |
| $\alpha/10^{-3} \text{ K}^{-1}$                                          | 0.83   | 0.78   | 0.74       | 0.71          | 0.67   |        |        |
| $\langle (\Delta V/V)^2 \rangle$                                         | 0.0114 | 0.0106 | 0.0097     | 0.0089        | 0.0082 |        |        |
| $-\Delta C_P / \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$ | 0.0    | 0.7    | 1.0        | 1.2           | 1.2    |        |        |
|                                                                          |        |        | T = 288.15 | К             |        |        |        |
| $\kappa \pi / 10^{-4} \text{ MPa}^{-1}$                                  | 5.75   | 5.26   | 4.78       | 4.34          | 3.97   | 3.67   | 3.33   |
| $V_{\rm m}/{\rm cm^3 \cdot mol^{-1}}$                                    | 112.09 | 110.87 | 109.76     | 108.77        | 107.87 | 107.05 | 105.22 |
| $\alpha/10^{-3} \text{ K}^{-1}$                                          | 0.84   | 0.78   | 0.74       | 0.70          | 0.67   | 0.64   | 0.59   |
| $\langle (\Delta V/V)^2 \rangle$                                         | 0.0123 | 0.0114 | 0.0104     | 0.0096        | 0.0088 | 0.0082 | 0.0076 |
| $-\Delta C_P / \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$ | 0.0    | 0.7    | 1.1        | 1.2           | 1.2    | 1.2    | 1.1    |
|                                                                          |        |        | T = 298.14 | к             |        |        |        |
| $\kappa \pi / 10^{-4} \text{ MPa}^{-1}$                                  | 6.17   | 5.51   | 4.97       | 4.53          | 4.16   | 3.86   | 3.27   |
| $V_{\rm m}/{\rm cm^3 \cdot mol^{-1}}$                                    | 113.04 | 111.74 | 110.58     | 109.54        | 108.59 | 107.72 | 105.83 |
| $\alpha/10^{-3} \text{ K}^{-1}$                                          | 0.84   | 0.78   | 0.74       | 0.70          | 0.67   | 0.63   | 0.58   |
| $\langle (\Lambda V/V)^2 \rangle$                                        | 0.0135 | 0.0122 | 0.0111     | 0.0103        | 0.0095 | 0.0089 | 0.0077 |
| $-\Delta C_P / \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$ | 0.0    | 0.8    | 14.2       | 1.3           | 1.3    | 1.2    | 1.2    |
|                                                                          |        |        | T = 313.14 | к             |        |        |        |
| $\kappa \pi 10^{-4} \text{ MPa}^{-1}$                                    | 6.70   | 5.91   | 5.29       | 4.80          | 4.39   | 4.06   | 3.43   |
| $V_{\rm m}/{\rm cm^3 \cdot mol^{-1}}$                                    | 114.49 | 113.06 | 111.80     | 110.68        | 109.67 | 108.75 | 106.74 |
| $\alpha/10^{-3} \text{ K}^{-1}$                                          | 0.85   | 0.79   | 0.74       | 0.69          | 0.66   | 0.63   | 0.57   |
| $\langle (\Lambda V/V)^2 \rangle$                                        | 0.0152 | 0.0136 | 0.0123     | 0.0113        | 0.0104 | 0.0097 | 0.0084 |
| $-\Delta C_P/J\cdot mol^{-1}\cdot K^{-1}$                                | 0.0    | 0.8    | 1.2        | 1.4           | 1.3    | 1.3    | 1.2    |
|                                                                          |        |        | T = 323.14 | к             |        |        |        |
| $\kappa \pi 10^{-4} \text{ MPa}^{-1}$                                    | 7.06   | 6.21   | 5.54       | 5.01          | 4.57   | 4.20   | 3.53   |
| $V_{\rm m}/{\rm cm^3 \cdot mol^{-1}}$                                    | 115.47 | 113.96 | 112.63     | 111.45        | 110.39 | 109.43 | 107.35 |
| $\alpha/10^{-3} \text{ K}^{-1}$                                          | 0.86   | 0.79   | 0.73       | 0.69          | 0.65   | 0.62   | 0.56   |
| $\langle (\Delta V/V)^2 \rangle$                                         | 0.0164 | 0.0147 | 0.0132     | 0.0121        | 0.0111 | 0.0103 | 0.0088 |
| $-\Delta C_P / \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$ | 0.0    | 0.9    | 1.3        | 1.4           | 1.4    | 1.4    | 1.2    |
|                                                                          |        |        | T = 338.13 | к             |        |        |        |
| $\kappa \pi 10^{-4} \text{ MPa}^{-1}$                                    | 7.74   | 6.71   | 5.92       | 5.31          | 4.82   | 4.42   | 3.69   |
| $V_{\rm m}/{\rm cm^3 \cdot mol^{-1}}$                                    | 116.98 | 115.32 | 113.87     | 112.60        | 111.47 | 110.45 | 108.25 |
| $\alpha/10^{-3} \text{ K}^{-1}$                                          | 0.87   | 0.79   | 0.73       | 0.68          | 0.65   | 0.62   | 0.55   |
| $\langle (\Delta V/V)^2 \rangle$                                         | 0.0186 | 0.0164 | 0.0146     | 0.0133        | 0.0122 | 0.0113 | 0.0096 |
| $-\Delta C_P / \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$ | 0.0    | 1.0    | 1.4        | 1.5           | 1.5    | 1.4    | 1.3    |

The isothermal compressibilities,  $\kappa_{T}$ , given in Tables 4 and 5 have been calculated from eq 1 using the relation

$$\kappa_T = -\{1/(P - K)\}\{1 - (P/K) (\partial K/\partial P)_T\}$$
(5)

with the differentiation performed analytically. The  $\kappa_T$  for chlorobenzene agree within 1% at 0.1 MPa with those available in the literature (Freyer et al., 1929; Gibson and Loeffler, 1939), but at 298.14 K and 100 MPa there is a difference of 2% between the present value and that of Gibson and Loeffler (1939). The  $\kappa_T$  were used to obtain the normalized volume fluctuations given in Tables 4 and

5 by using the relation (Koga, 1995)

$$\langle (\Delta V/V)^{z} \rangle = (RT_{\kappa_{T}}/V_{m}) \tag{6}$$

with  $V_{\rm m}$  the molar volume.  $V_{\rm m}$  at pressures above 0.1 MPa were determined by multiplying the  $V_{\rm m}$  at 0.1 MPa, obtained from the densities in Tables 1 and 2, by the *k* obtained from eq 2 using the coefficients of Table 3. Both the  $\kappa_{\rm T}$  and the  $\langle (\Delta V/V)^2 \rangle$  have an estimated error of  $\pm 1-$ 2%. The variation of these two related quantities with pressure is free of anomalies for each substance as would

| Table 5.                           | Isothermal  | <b>Compressibility</b> , <i>k</i> | T, Molar Volume             | , V <sub>m</sub> , Isobaric | Expansivity, α, | Normalized V | olume F | luctuation, |
|------------------------------------|-------------|-----------------------------------|-----------------------------|-----------------------------|-----------------|--------------|---------|-------------|
| $\langle (\Delta V / V)^2 \rangle$ | , and Chang | e in Molar Heat Ca                | apacity, $\Delta C_P$ , for | Chlorobenze                 | ne              |              |         |             |

|                                                                          | <i>P</i> /MPa |        |        |         |        |        |        |        |        |        |
|--------------------------------------------------------------------------|---------------|--------|--------|---------|--------|--------|--------|--------|--------|--------|
|                                                                          | 0.1           | 20     | 40     | 60      | 80     | 100    | 150    | 200    | 250    | 275    |
|                                                                          |               |        |        | T = 278 | .15 K  |        |        |        |        |        |
| $\kappa_T / 10^{-4} \text{ MPa}^{-1}$                                    | 6.85          | 5.99   | 5.35   | 4.85    | 4.45   | 4.13   | 3.53   | 3.08   | 2.69   | 2.49   |
| V <sub>m</sub> /cm <sup>3</sup> ⋅mol <sup>-1</sup>                       | 100.27        | 99.00  | 97.89  | 96.90   | 96.00  | 95.18  | 93.38  | 91.85  | 90.54  | 89.95  |
| $\alpha/10^{-3} \text{ K}^{-1}$                                          | 0.97          | 0.97   | 0.85   | 0.80    | 0.75   | 0.70   | .062   | 0.58   | 0.54   | 0.52   |
| $\langle (\Delta V/V)^2 \rangle$                                         | 0.0158        | 0.0140 | 0.0126 | 0.0116  | 0.0107 | 0.0100 | 0.0088 | 0.0078 | 0.0069 | 0.0064 |
| $-\Delta C_P / J \cdot mol^{-1} \cdot K^{-1}$                            | 0.0           | 0.4    | 0.5    | 0.5     | 0.6    | 0.8    | 1.6    | 2.5    | 3.2    | 4.0    |
|                                                                          |               |        |        | T = 288 | .15 K  |        |        |        |        |        |
| $\kappa T / 10^{-4} \text{ MPa}^{-1}$                                    | 7.10          | 6.22   | 5.56   | 5.05    | 4.64   | 4.30   | 3.67   | 3.19   | 2.75   | 2.53   |
| $V_{\rm m}/{\rm cm^3 \cdot mol^{-1}}$                                    | 101.25        | 99.92  | 98.76  | 97.72   | 96.78  | 95.92  | 94.03  | 92.43  | 91.07  | 90.47  |
| $\alpha / 10^{-3} \text{ K}^{-1}$                                        | 0.97          | 0.91   | 0.85   | 0.79    | 0.74   | 0.70   | 0.63   | 0.58   | 0.55   | 0.52   |
| $\langle (\Delta V/V)^2 \rangle$                                         | 0.0168        | 0.0149 | 0.0135 | 0.0124  | 0.0115 | 0.0108 | 0.0094 | 0.0083 | 0.0072 | 0.0067 |
| $-\Delta C_P$ /J·mol <sup>-1</sup> ·K <sup>-1</sup>                      | 0.0           | 0.5    | 0.5    | 0.5     | 0.6    | 0.8    | 1.6    | 2.6    | 3.4    | 3.8    |
|                                                                          |               |        |        | T = 298 | .14 K  |        |        |        |        |        |
| $\kappa T / 10^{-4} \text{ MPa}^{-1}$                                    | 7.52          | 6.61   | 5.90   | 5.33    | 4.86   | 4.48   | 3.75   | 3.24   | 2.82   | 2.64   |
| $V_{\rm m}/{ m cm^3}\cdot{ m mol^{-1}}$                                  | 102.25        | 100.82 | 99.57  | 98.46   | 97.46  | 96.56  | 94.60  | 92.97  | 91.58  | 90.95  |
| $\alpha / 10^{-3} \text{ K}^{-1}$                                        | 0.98          | 0.90   | 0.84   | 0.78    | 0.74   | 0.70   | 0.63   | 0.58   | 0.55   | 0.53   |
| $\langle (\Delta V/V)^2 \rangle$                                         | 0.0182        | 0.0163 | 0.0147 | 0.0134  | 0.0124 | 0.0115 | 0.0098 | 0.0086 | 0.0076 | 0.0072 |
| $-\Delta C_P / \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$ | 0.0           | 0.5    | 0.5    | 0.5     | 0.6    | 0.8    | 1.7    | 2.6    | 3.5    | 4.0    |
|                                                                          |               |        |        | T = 313 | .14 K  |        |        |        |        |        |
| $\kappa_T / 10^{-4} \text{ MPa}^{-1}$                                    | 8.26          | 7.20   | 6.37   | 5.71    | 5.17   | 4.73   | 3.91   | 3.34   | 2.92   | 2.74   |
| $V_{ m m}/ m cm^3\cdot mol^{-1}$                                         | 103.77        | 102.19 | 100.82 | 99.61   | 98.54  | 97.57  | 95.50  | 93.79  | 92.34  | 91.68  |
| $\alpha/10^{-3} \text{ K}^{-1}$                                          | 0.99          | 0.90   | 0.83   | 0.78    | 0.73   | 0.70   | 0.64   | 0.59   | 0.55   | 0.54   |
| $\langle (\Delta V/V)^2 \rangle$                                         | 0.0207        | 0.0183 | 0.0164 | 0.0149  | 0.0137 | 0.0126 | 0.0107 | 0.0093 | 0.0082 | 0.0078 |
| $-\Delta C_P / \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$ | 0.0           | 0.5    | 0.6    | 0.5     | 0.6    | 0.8    | 1.7    | 2.8    | 3.7    | 4.2    |
|                                                                          |               |        |        | T = 323 | .14 K  |        |        |        |        |        |
| $\kappa_T / 10^{-4} \text{ MPa}^{-1}$                                    | 8.70          | 7.57   | 6.68   | 5.97    | 5.40   | 4.93   | 4.06   | 3.46   | 3.03   | 2.86   |
| V <sub>m</sub> /cm <sup>3</sup> ⋅mol <sup>-1</sup>                       | 104.78        | 103.10 | 101.64 | 100.37  | 99.23  | 98.22  | 96.05  | 94.27  | 92.75  | 92.07  |
| $\alpha/10^{-3} \text{ K}^{-1}$                                          | 0.99          | 0.89   | 0.82   | 0.77    | 0.73   | 0.70   | 0.64   | 0.59   | 0.56   | 0.54   |
| $\langle (\Delta V/V)^2 \rangle$                                         | 0.0223        | 0.0197 | 0.0177 | 0.0160  | 0.0146 | 0.0135 | 0.0114 | 0.0099 | 0.0088 | 0.0083 |
| $-\Delta C_P / \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$ | 0.0           | 0.5    | 0.6    | 0.5     | 0.6    | 0.8    | 1.8    | 2.9    | 3.8    | 4.4    |
|                                                                          |               |        |        | T = 338 | .13 K  |        |        |        |        |        |
| $\kappa_T / 10^{-4} \text{ MPa}^{-1}$                                    | 9.78          | 8.21   | 7.07   | 6.23    | 5.58   | 5.08   | 4.18   | 3.56   | 3.07   | 2.84   |
| $V_{\rm m}/{ m cm^3}\cdot{ m mol^{-1}}$                                  | 106.37        | 104.49 | 102.91 | 101.56  | 100.37 | 99.31  | 97.05  | 95.20  | 93.64  | 92.95  |
| $\alpha / 10^{-3} \text{ K}^{-1}$                                        | 1.00          | 0.88   | 0.81   | 0.76    | 0.73   | 0.70   | 0.64   | 0.60   | 0.56   | 0.55   |
| $\langle (\Delta V/V)^2 \rangle$                                         | 0.0258        | 0.0221 | 0.0193 | 0.0172  | 0.0156 | 0.0144 | 0.0121 | 0.0105 | 0.0092 | 0.0086 |
| $-\Delta C_P / \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$ | 0.0           | 0.6    | 0.6    | 0.5     | 0.6    | 0.8    | 1.9    | 3.0    | 4.0    | 4.6    |



**Figure 1.** *B* values for eq 3 with C = 0.21 for chlorobenzene and 1,2-Dichlorobenzene.  $\bullet$ , chlorobenzene,  $\blacktriangle$ , 1,2-dichlorobenzene,  $\bigcirc$ , chlorobenzene. *B* value increased by 6.28 Mpa.

be expected for conditions that are well below the critical region.

The isobaric thermal expansivity,  $\alpha$ , is defined by

$$\alpha = (\partial (\ln V_{\rm m}) / \partial T)_P \tag{7}$$

The  $\alpha$  given in Tables 4 and 5 were obtained by analytical differentiation of the ln  $V_m$  expressed as a quadratic in *T*. For 1,2-dichlorobenzene the volumetric data for all six temperatures were used to obtain the  $\alpha$  at 278.15 K, but the data at that temperature were excluded to enable the calculations to be extended to 150 MPa at

higher temperatures. The estimated fractional uncertainties in  $\alpha$  are  $\pm(0.02$  to 0.03) for  $P \ge 50$  MPa and possibly greater below that pressure. The values at 0.1 MPa and 298.14 K for 1,2-dichlorobenzene and chlorobenzene are in good agreement with  $0.85 \times 10^{-3} \ K^{-1}$  and  $0.99 \times 10^{-3} \ K^{-1}$ , respectively, given in the literature (Riddick et al., 1986).

The  $\alpha$  values enable calculation of the change in the isobaric molar heat capacity

$$\Delta C_P = C_P(P) - C_P(0.1 \text{ MPa}) = -\int_{0.1\text{ MPa}}^P (TM/\rho) \{(\partial \alpha/\partial T)_P + \alpha^2\} dP$$
(8)

where *M* is the molar mass and  $\rho$  the density at *P*. The  $\alpha$  values were represented by a quadratic in *T* to enable analytic differentiation. The  $\Delta C_P$  given in Tables 4 and 5 are estimated to have an error of  $\pm 1 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$  on the basis of previous work for heptane (Malhotra and Woolf, 1991c). Their variation with pressure is negligibly small in comparison to  $C_P(0.1 \text{ MPa})$  at 298.14 K of 221.67 J·(mol·K)<sup>-1</sup> for 1,2-dichlorobenzene and 148.83 J·(mol·K)<sup>-1</sup> for chlorobenzene (Riddick et al., 1986).

#### **Literature Cited**

- Dymond, J. H. University of Glasgow, private communication, 1996. Easteal, A. J.; Woolf, L. A (p,  $V_m$ , T, x) Measurements for {(1 – x)H<sub>2</sub>O + xCH<sub>3</sub>OH} in the Range 278 to 323 K and 0.1 to 280 MPa I. Experimental Results, Isothermal Compressibilities, Thermal Expansivities, and Partial Molar Volumes. *J. Chem. Thermodyn.* **1985**, *17*, 49–62.
- Freyer, E. B.; Hubbard, J. C.; Andrews, D. H. Sonic Studies of the Physical Properties of Liquids I. The Sonic Interferometer. J. Am. Chem. Soc. 1929, 51, 759–767.

- Gibson, R. E.; Loeffler, O. H. Pressure-Volume Relations in Solutions. I. J. Phys. Chem. 1939, 43, 207-217.
  Isdale, J. D.; Spence, C. M. High Pressure Viscosities and Densities of Eight Halogenated Hydrocarbons. NEL Report 604; National En-gineering Laboratory: Glasgow, U.K., 1975.
  Koga, Y. Fluctuations in Aqueous Solutions of Some Hydrophobic Solutes. Chem. Phys. Lett. 1995, 240, 340-344.
  Malhotra, R.; Woolf, L. A. Thermodynamic Properties and Excess Volumes of 2,2,4-Trimethylpentane + n-Heptane Mixtures from 298 to 338 K for Pressures up to 400 MPa. Int. J. Thermophys. 1991a, 12, 163-170.
  Malhotra, R.: Woolf, L. A. Extrapolation of C. M. T. D.
- Malhotra, R.; Woolf, L. A. Extrapolation of (p, V, T) Data for Liquids. *High Temp.-High Press.* 1991b, 23, 107–110.
  Malhotra, R.; Woolf, L. A. Volume Ratios {V(p)/V(0.1 MPa)} for *n*-Heptane at Temperatures from 278 K to 338 K for Pressures up to 400 MDs. to 400 MPa. J. Chem. Thermodyn. 1991c, 23, 49-57.
- Malhotra, R.; Woolf, L. A. An Automated Volumometer: Thermodynamic Properties of 1,1-Dichloro-2,2,2-trifluoroethane (R123) for Temperatures of 278.15 to 338.15 K and Pressures of 0.1 to 380 MPa. Int. J. Thermophys. 1993, 14, 1021-1038.

- Malhotra, R.; Woolf, L. A.  $(p, V_{nv}, T, x)$  Measurements for Liquid Mixtures of 1,2-Dichloroethane with 2,2,4-Trimethylpentane. I. Experimental Results, Isothermal Compressibilities, Isobaric Expansivities, and Heat Capacities. *Fluid Phase Equilib.* **1994**, *94*, 227–251.
- Riddick, J. A.; Bunger, W.; Sakano, T. K. Organic Solvents: Physical Properties and Methods of Purification, 4th ed.; John Wiley &
- Sons: New York, 1986. Shang, X.; Fisher, L. A.; Rodriguez, A. A. <sup>13</sup>C Spin–Lattice Relaxation and Molecular Dynamics of  $C_{60}$  in 1,2-Dichlorobenzene- $d_4$ . J. Phys. Chem. **1996**, 100, 4361–4364.
- Timmermans, J. Physico-Chemical Constants of Pure Organic Compounds; Elsevier: New York, 1950.

Received for review July 10, 1997. Accepted September 8, 1997.®

#### JE970166O

<sup>®</sup> Abstract published in Advance ACS Abstracts, October 15, 1997.