Excess Molar Volumes, Viscosities, and Refractive Indices of Diethylene Glycol Dimethyl Ether with Dimethyl Carbonate, Diethyl Carbonate, and Propylene Carbonate at (298.15, 308.15, and 318.15) K

Amalendu Pal* and Arvind Kumar

Department of Chemistry, Kurukshetra University, Kurukshetra-136 119, India

Excess molar volumes, viscosities, and refractive indices for the mixtures of diethylene glycol dimethyl ether + dimethyl carbonate, + diethyl carbonate, and + propylene carbonate are measured over the whole composition range at temperatures of (298.15, 308.15, and 318.15) K and 1 atm pressure. The excess volumes are fitted to the Redlich–Kister polynomial equation to obtain the binary coefficients and the standard errors.

Introduction

In recent years interest has been shown in the accumulation of thermodynamic properties of binary mixtures containing esters of carbonic acid (Muhuri and Hazra, 1995; Francesconi and Comelli, 1995a; Comelli and Francesconi, 1994; Barthel et al., 1995). In view of the importance of esters of carbonic acid as a useful solvent for resins, in the synthesis of pharmaceuticals, and in agricultural chemicals and of diethylene glycol dimethyl ether (or simply diglyme) as a sonar transducer fill fluid in underwater Navy research (Thompson, 1979), it is necessary to obtain some more experimental data on the binary mixtures of these liquids. In spite of the potential application of diethylene glycol dimethyl ether and esters of carbonic acid, there are relatively few experimental thermodynamics studies (Aminabhavi et al. 1994; Francesconi and Comelli, 1996, 1995b; Barthel et al. 1995) of this class of substances. There is no systematic study on the behavior of diethylene glycol dimethyl ether with carbonic acid esters.

In continuation of our program of research on the physicochemical properties of binary organic liquid mixtures (Pal and Singh, 1996a,b), we report here experimental excess molar volume $V_{\rm m}^{\rm E}$, viscosity η , and refractive index $n_{\rm D}$ for diethylene glycol dimethyl ether + dimethyl carbonate, + diethyl carbonate, and + propylene carbonate at (298.15, 308.15, and 318.15) K, over the whole range of mixture composition at atmospheric pressure. The aim of this work is to provide data for the characterization of the molecular interaction of these mixtures.

Experimental Section

Materials. All the chemicals used were of analytical grade and purchased from commercial sources. The manufacturer's estimates of the purity were, in each case, greater than mole fraction 0.99. Dimethyl carbonate, diethyl carbonate, and propylene carbonate were dried over calcium chloride and then fractionally distilled two times before use under reduced nitrogen gas pressure. The middle fraction was collected each time. For the purifica-

Table 1. Comparison of Experimental Densities (ρ)
Viscosities (η) , and Refractive Indices (n_D) of Pure
Liquids with Literature Values at 298.15 K

liquid (source names:	ρ/g	·cm ⁻³	η/n	ıPa∙s	n _D	
purity/mass %)	exptl	lit.	exptl	lit.	exptl	lit.
diethylene glycol dimethyl ether Spectrochem, Bombay: >99)	0.9321	$\begin{array}{c} 0.939 \ 2^{a} \\ 0.939 \ 6^{b} \\ 0.938 \ 4^{c} \end{array}$	0.990	0.973 ^b 0.989 ^c 0.990 ^d	1.4085	1.4074 ^b 1.4058 ^c
dimethyl carbonate (Spectrochem, Bombay > 98.8)	1.0632	1.063 28 ^e 1.063 30 ^f	0.589		1.3710	1.3667 ^e
diethyl carbonate (Sisco-Chem, Bombay; >99)	0.9690	0.969 26 ^e 0.969 27 ^f	0.749		1.3859	
propylene car- bonate (Merck- Schuchardt; >99)	1.1988	1.198 83 ^g	2.493	2.4711 ^g 2.51 ^h	1.4210	

^{*a*} Dethlefsen and Hvidt (1985). ^{*b*} Aminabhavi et al. (1994). ^{*c*} Riddick et al. (1996). ^{*d*} Daubert and Danner (1992). ^{*e*} Francesconi and Comelli (1996). ^{*f*} Francesconi and Comelli (1995b). ^{*g*} Muhuri and Hazra (1995). ^{*h*} Barthel et al. (1995).

tion of diethylene glycol dimethyl ether, details have been given in our earlier paper (Pal and Singh, 1996a). All liquids were stored in dark bottles to prevent contamination from air and dried over 4A molecular sieves (Fluka, AG). The purity of the solvents as found by gas-liquid chromatographic analysis was better than 99.8 mol %. The water content, measured for each sample by Karl-Fischer titration, was always found to be less than 0.002 mass %. The purity of the final sample was checked by measuring and comparing the densities, viscosities, and refractive indices at (298.15 \pm 0.01) K with their corresponding literature values as shown in Table 1. The densities were measured with a bicapillary pycnometer that gave an accuracy of 5 parts in 10⁵. Prior to measurements, all liquids were partially degassed under vacuum.

Excess volumes, which are accurate to ± 0.003 cm³·mol⁻¹, were measured using a continuous dilution dilatometer similar to that described by Dickinson et al. (1975). Details of its calibration, experimental setup, and operational procedure have been described previously (Pal and Singh,

^{*} To whom correspondence should be addressed.

Table 2.	Excess Molar	Volumes (V_m^E)	for Binary	Mixtures at	Various Tem	peratures

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>x</i> ₁	$V_{\rm m}^{\rm E}/{ m cm^{3}\cdot mol^{-1}}$	<i>x</i> ₁	$V_{\rm m}^{\rm E}/{ m cm^3\cdot mol^{-1}}$	<i>x</i> ₁	$V_{\rm m}^{ m E}/{ m cm^3\cdot mol^{-1}}$	<i>x</i> ₁	$V_{\rm m}^{\rm E}/{ m cm^3\cdot mol^{-1}}$	<i>x</i> 1	$V_{\rm m}^{\rm E}/{ m cm^3\cdot mol^{-1}}$	<i>x</i> 1	$V_{\rm m}^{ m E}/{ m cm^3\cdot mol^{-1}}$
$\begin{array}{c} & 288.15 \ K \\ 0.027 \\ 0.053 \\ 0.025 \\ 0.053 \\ 0.025 \\ 0.053 \\ 0.054 \\ 0.054 \\ 0.055 \\ 0.055 \\ 0.071 \\ 0.0545 \\ 0.055 \\ 0.071 \\ 0.0545 \\ 0.055 \\ 0.071 \\ 0.0545 \\ 0.055 \\ 0.071 \\ 0.0545 \\ 0.055 \\ 0.071 \\ 0.0545 \\ 0.071 \\ 0.0545 \\ 0.071 \\ 0.0545 \\ 0.071 \\ 0.0545 \\ 0.071 \\ 0.0545 \\ 0.071 \\ 0.0545 \\ 0.071 \\ 0.0545 \\ 0.071 \\ 0.0545 \\ 0.071 \\ 0.0545 \\ 0.071 \\ 0.0545 \\ 0.071 \\ 0.0545 \\ 0.071 \\ 0.0545 \\ 0.071 \\ 0.055 \\ 0.075 \\ 0.055 \\ $				Diethyle	ne Glycol	Dimethyl Eth	er (1) + D	imethyl Carb	onate (2)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				·	v	298	15 K	·				
0.0538 0.025 0.1871 0.053 0.256 0.074 0.339 0.038 0.268 0.073 0.339 0.038 0.268 0.074 0.339 0.038 0.5148 0.064 0.055 0.705 0.037 0.9333 0.009 0.144 0.053 0.2562 0.074 0.3618 0.083 0.514 0.064 0.065 0.050 0.05 0.050 0	0.0227	0.009	0.1513	0.060	0.2933	0.078	0.3920	0.079	0.5716	0.060	0.7886	0.028
0.0788 0.088 0.2869 0.070 0.3818 0.081 0.4666 0.066 0.037 0.9333 0.009 0.0149 0.053 0.2562 0.074 0.3818 0.083 0.5148 0.064 0.063 0.2122 0.103 0.3813 0.109 0.4672 0.105 0.4583 0.006 0.7574 0.046 0.063 0.2212 0.103 0.3342 0.111 0.4130 0.105 0.5553 0.091 0.3383 0.008 0.1053 0.2211 0.106 0.3342 0.111 0.4130 0.105 0.5553 0.091 0.3383 0.008 0.038 0.066 0.2708 0.115 0.3416 0.119 0.4234 0.108 0.5287 0.096 0.7483 0.054 0.173 0.066 0.2707 0.118 0.3878 0.116 0.4646 0.108 0.5287 0.096 0.7483 0.054 0.173 0.066 0.2707 0.1037 0.414	0.0538	0.025	0.1871	0.063	0.3197	0.080	0.4290	0.074	0.6312	0.050	0.8732	0.016
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0788	0.038	0.2289	0.070	0.3390	0.081	0.4696	0.065	0.7050	0.037	0.9333	0.009
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.1149	0.053	0.2562	0.074	0.3618	0.083	0.5148	0.064				
0.0633 0.018 0.2132 0.100 0.2890 0.109 0.3676 0.105 0.4598 0.102 0.6914 0.061 0.0689 0.039 0.2523 0.103 0.3031 0.109 0.4682 0.108 0.5004 0.0696 0.7574 0.043 0.1022 0.072 0.2748 0.108 0.3505 0.110 0.4596 0.104 0.6228 0.071 0.8338 0.028 0.1222 0.093 0.0446 0.030 0.2658 0.115 0.3415 0.119 0.4293 0.112 0.5179 0.099 0.6586 0.073 0.0838 0.056 0.2703 0.116 0.3663 0.117 0.4534 0.108 0.5287 0.096 0.7483 0.054 0.1315 0.076 0.3017 0.118 0.3878 0.116 0.4696 0.100 0.5476 0.093 0.8250 0.039 0.1773 0.096 0.3067 0.120 0.4072 0.114 0.5004 0.101 0.5871 0.083 0.8250 0.039 0.1773 0.096 0.3067 0.120 0.4072 0.114 0.5004 0.101 0.5871 0.088 0.9149 0.021 0.0766 0.025 0.2782 0.051 0.3758 0.057 0.4922 0.058 0.6542 0.054 0.8112 0.031 0.0766 0.025 0.2782 0.051 0.3758 0.057 0.4922 0.058 0.6542 0.054 0.8112 0.031 0.0766 0.025 0.2782 0.051 0.3758 0.057 0.4922 0.058 0.6542 0.054 0.8112 0.031 0.0766 0.025 0.2782 0.051 0.3758 0.057 0.4922 0.058 0.5642 0.054 0.8112 0.031 0.0766 0.025 0.2782 0.051 0.3758 0.057 0.4922 0.058 0.5642 0.074 0.8112 0.031 0.0766 0.025 0.2782 0.051 0.3368 0.059 0.510 0.059 0.7508 0.041 0.9326 0.012 0.1802 0.047 0.3354 0.055 0.4510 0.060						308.	15 K					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0363	0.018	0.2132	0.100	0.2890	0.109	0.3676	0.105	0.4598	0.102	0.6914	0.061
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0699	0.039	0.2323	0.103	0.3031	0.109	0.4082	0.108	0.5004	0.096	0.7574	0.043
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1003	0.053	0.2511	0.106	0.3342	0.111	0.4130	0.105	0.5553	0.091	0.8338	0.028
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.1525	0.072	0.2748	0.108	0.3505	0.110	0.4596	0.104	0.6228	0.071	0.9439	0.008
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.2020	0.093										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0440	0.000	0.0050	0.115	0.0410	318.1	15 K	0.110	0 5150	0.000	0.0500	0.070
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0446	0.030	0.2658	0.115	0.3410	0.119	0.4293	0.112	0.5179	0.099	0.6586	0.073
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000	0.056	0.2703	0.116	0.3003	0.117	0.4554	0.108	0.5267	0.096	0.7465	0.034
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1515	0.010	0.3067	0.120	0.4072	0.110	0.5004	0.100	0.5470	0.055	0.9149	0.023
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.2207	0.106	0.3304	0.119	0.4012	0.114	0.0004	0.101	0.0011	0.000	0.0140	0.021
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				Diathal	one Cluse	Dimothul Et	$hom(1) \perp 1$	Diathyl Carbo	nata (9)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Dietifyn	ene Giyco.	Dimethyi Eu	uer (1) + 1	Dietifyl Carbo	nate (2)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0400	0.014	0.0050	0.051	0.0550	298.3	15 K	0.050	0.0540	0.054	0.0110	0.001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0430	0.014	0.2352	0.051	0.3758	0.057	0.4922	0.058	0.6542	0.054	0.8112	0.031
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0700	0.025	0.2782	0.051	0.3908	0.059	0.5376	0.059	0.7010	0.049	0.0000	0.024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1191	0.038	0.3198	0.054	0.4220	0.039	0.3310	0.005	0.7508	0.041	0.3520	0.012
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.1008	0.011	0.0001	0.000	0.1010	0.000	1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0300	0.000	0 1990	0.026	0 2687	0.068	15 K 0 2702	0.078	0 5456	0.075	0 7702	0.044
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0300	0.003	0.1550	0.030	0.3026	0.072	0.3793	0.078	0.0400	0.075	0.7705	0.044
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0405	0.025	0.1836	0.049	0.3356	0.075	0.4454	0.079	0.6962	0.060	0.9406	0.011
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.1140	0.031	0.2282	0.061	0.3607	0.077	0.4962	0.076	0.000			0.011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						318	15 K					•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0227	0.013	0.2174	0.073	0.3916	0.089	0.5147	0.076	0.6239	0.061	0.7900	0.034
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0820	0.033	0.2881	0.086	0.4347	0.085	0.5423	0.073	0.6304	0.058	0.8644	0.018
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1325	0.052	0.3408	0.090	0.4747	0.080	0.5597	0.071	0.6960	0.049	0.9564	0.006
Diethylene Glycol Dimethyl Ether (1) + Propylene Carbonate (2) 298.15 K 0.0133 -0.014 0.1675 -0.180 0.2722 -0.285 0.3577 -0.356 0.4543 -0.404 0.7000 -0.397 0.0453 -0.051 0.1986 -0.211 0.2851 -0.297 0.3709 -0.360 0.5066 -0.416 0.7726 -0.334 0.0867 -0.094 0.2354 -0.248 0.3025 -0.310 0.4014 -0.379 0.5752 -0.429 0.8643 -0.221 0.1200 -0.127 0.2641 -0.275 0.3307 -0.337 0.4244 -0.390 0.6609 -0.419 0.9505 -0.081 0.0209 -0.049 0.2185 -0.455 0.3166 -0.612 0.4368 -0.727 0.5421 -0.760 0.8282 -0.471 0.0495 -0.114 0.2539 -0.513 0.3484 -0.640 0.4517 -0.733 0.6114 -0.743 0.8933 -0.329 0.1137	0.1751	0.064	0.3823	0.089	0.4809	0.079	0.5897	0.066				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Diethyler	ne Glycol I	Dimethyl Ethe	$er(1) + P_1$	ropylene Carb	onate (2)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				5	0	208	15 K	15				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0133	-0.014	0 1675	-0.180	0.2722	-0.285	0.3577	-0.356	0 4543	-0 404	0 7000	-0.397
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0453	-0.051	0.1986	-0.211	0.2851	-0.297	0.3709	-0.360	0.5066	-0.416	0.7726	-0.334
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0867	-0.094	0.2354	-0.248	0.3025	-0.310	0.4014	-0.379	0.5752	-0.429	0.8643	-0.221
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1200	-0.127	0.2641	-0.275	0.3307	-0.337	0.4244	-0.390	0.6609	-0.419	0.9505	-0.081
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						308 -	15 K					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0209	-0.049	0 2185	-0.455	0.3166	-0.612	0 4368	-0.727	0 5421	-0.760	0.8282	-0 474
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0495	-0.114	0.2539	-0.513	0.3484	-0.640	0.4517	-0.733	0.6114	-0.743	0.8933	-0.324
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0858	-0.194	0.2660	-0.534	0.3590	-0.659	0.4666	-0.741	0.6894	-0.690	0.9267	-0.229
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1137	-0.253	0.2810	-0.554	0.3896	-0.684	0.4983	-0.756	0.7725	-0.584	0.9768	-0.076
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.1649	-0.363	0.3051	-0.588	0.4050	-0.698	0.5220	-0.763				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						318	15 K					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0207	-0.070	0.1394	-0.362	0.2781	-0.615	0.3676	-0.733	0.5701	-0.852	0.8309	-0.505
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0353	-0.114	0.1667	-0.415	0.2956	-0.644	0.3940	-0.760	0.6159	-0.833	0.8900	-0.342
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0587	-0.180	0.2001	-0.484	0.3081	-0.665	0.4192	-0.784	0.6575	-0.799	0.9396	-0.193
0.1127 -0.308 0.2533 -0.575 0.3487 -0.711 0.5279 -0.850 0.7770 -0.632	0.0834	-0.240	0.2281	-0.531	0.3241	-0.686	0.4672	-0.819	0.7224	-0.731	0.9667	-0.101
	0.1127	-0.308	0.2533	-0.575	0.3487	-0.711	0.5279	-0.850	0.7770	-0.632		

Table 3. Values of the Parameters of Eq 1 and Standard Deviation $s(V_m^E)$ at 298.15, 308.15, and 318.15 K

	<i>T</i> /K	a_1	a_2	a_3	a_4	$s(V_{\rm m}^{\rm E})/{\rm cm^3 \cdot mol^{-1}}$
diethylene glycol dimethyl ether (1) + dimethyl carbonate (2)	298.15	0.268	-0.241	0.076	0.043	0.003
	308.15	0.389	-0.336	-0.336	0.020	0.003
	318.15	0.407	-0.347	0.136	0.127	0.001
diethylene glycol dimethyl ether (1) + diethyl carbonate (2)	298.15	0.238	-0.005	0.047	-0.166	0.002
	308.15	0.313	-0.119	-0.075	0.131	0.003
	318.15	0.316	-0.247	-0.005	0.103	0.002
diethylene glycol dimethyl ether (1) + propylene carbonate (2)	298.15	-1.695	-0.536	0.215	0.183	0.004
	308.15	-3.020	-0.578	-0.105	0.044	0.003
	318.15	-3.360	-0.804	0.102	0.876	0.004

Table 4.	Densities (p) a	and Viscosities	(η) for	Binary	Mixtures at	Various	Temperatures
			\	· · · · · · · · · · · · · · · · · · ·			

<i>X</i> ₁	$ ho/{ m g}{\cdot}{ m cm}^{-3}$	η/mPa∙s	<i>X</i> 1	$ ho/{ m g}{\cdot}{ m cm}^{-3}$	η/mPa∙s	<i>X</i> ₁	$ ho/{ m g}{\cdot}{ m cm}^{-3}$	η/mPa•s
		Diethyle	ne Glycol Dime	ethyl Ether (1) +	- Dimethyl Carl	oonate (2)		
0000	1 0000	0 500	0.0007	298.15 K	0 70 4	0.0044	0.0471	0.050
	1.0032	0.389	0.3937	0.9970	0.784	0.0944	0.94/1	0.958
0.0428	1.0342	0.008	0.4775	0.9873	0.818	0.9047	0.9403	0.901
J.0832	1.0403	0.626	0.5765	0.9763	0.855	0.9232	0.9449	0.966
0.1490	1.0343	0.660	0.6623	0.9676	0.884	0.9316	0.9442	0.969
0.2102	1.0240	0.693	0.7219	0.9619	0.903	0.9372	0.9438	0.970
0.2752	1.0140	0.723	0.8014	0.9548	0.930	0.9528	0.9426	0.975
.3253	1.0068	0.752	0.8649	0.9495	0.949	1.0000	0.9391	0.990
.0000	1.0508	0.520	0.3937	308.15 K 0.9865	0.674	0.8944	0.9374	0.813
0428	1.0420	0.536	0.4775	0.9765	0.701	0.9047	0.9366	0.816
0832	1.0342	0.550	0.5765	0.9657	0.733	0.9232	0.9352	0.821
1490	1.0224	0.576	0.6623	0.9573	0.758	0.9316	0.9346	0.823
.2102	1.0125	0.600	0.7219	0.9518	0.774	0.9372	0.9341	0.823
.2752	1.0025	0.626	0.8014	0.9449	0.792	0.9528	0.9330	0.826
.3253	0.9954	0.647	0.8649	0.9397	0.807	1.0000	0.9296	0.839
	4.0077	0.470	0.0007	318.15 K	0 500	0.0044	0.0000	0 700
.0000	1.0377	0.472	0.3937	0.9749	0.592	0.8944	0.9269	0.708
.0428	1.0291	0.485	0.4775	0.9651	0.615	0.9047	0.9261	0.710
.0832	1.0214	0.496	0.5765	0.9546	0.641	0.9232	0.9248	0.713
.1490	1.0099	0.516	0.6623	0.9463	0.661	0.9316	0.9241	0.714
.2102	1.0000	0.536	0.7219	0.9409	0.675	0.9372	0.9237	0.715
.2752	0.9905	0.556	0.8014	0.9342	0.691	0.9528	0.9226	0.718
.3253	0.9836	0.571	0.8649	0.9291	0.702	1.0000	0.9193	0.728
		Diethyle	ene Glycol Din	nethyl Ether (1)	+ Diethyl Carb	onate (2)		
0000	0.0000	0 740	0.0007	298.15 K	0.040	0 7010	0.0454	0.000
.0000	0.9690	0.749	0.3935	0.9557	0.849	0.7618	0.9451	0.933
.048/	0.9672	0.761	0.4303	0.9545	0.857	0.8134	0.9438	0.945
.08/1	0.9658	0.774	0.4835	0.9529	0.870	0.8478	0.9429	0.952
.1307	0.9640	0.787	0.5570	0.9508	0.886	0.9380	0.9406	0.970
.1800	0.9625	0.798	0.6202	0.9490	0.899	0.9718	0.9398	0.979
.2021	0.9598	0.817	0.6549	0.9480	0.907	0.9927	0.9393	0.987
.3060	0.9584	0.828	0.7104	0.9465	0.920	1.0000	0.9391	0.990
0000	0 9577	0.658	0 3035	308.15 K	0 731	0 7618	0 9352	0 700
0487	0.5577	0.038	0.3333	0.3430	0.731	0.7010	0.03352	0.733
0871	0.9300	0.009	0.4303	0.3433	0.739	0.0134	0.3340	0.009
1367	0.0047	0.074	0.4033	0.0425	0.747	0.0470	0.0001	0.014
1800	0.0516	0.000	0.3370	0.0400	0.700	0.0300	0.0310	0.02J 0.839
2621	0.0310	0.007	0.65/0	0.000	0.782	0.0710	0.0002	0.032
.3060	0.9476	0.713	0.7104	0.9365	0.790	1.0000	0.9296	0.839
				318.15 K				
.0000	0.9438	0.578	0.3935	0.9326	0.640	0.7618	0.9242	0.695
.0487	0.9423	0.572	0.4303	0.9317	0.652	0.8134	0.9231	0.702
.0871	0.9411	0.593	0.4835	0.9305	0.656	0.8478	0.9224	0.707
.1367	0.9396	0.600	0.5570	0.9288	0.665	0.9380	0.9206	0.719
.1800	0.9383	0.607	0.6202	0.9273	0.674	0.9718	0.9199	0.725
.2621	0.9360	0.618	0.6549	0.9266	0.679	0.9927	0.9194	0.727
.3060	0.9349	0.626	0.7104	0.9253	0.687	1.0000	0.9193	0.728
		Diethylei	ne Glycol Dime	thyl Ether (1) +	Propylene Car	bonate (2)		
0000	1 1000	0.400	0.0444	298.15 K	1 700	0.0044	0.0007	4 4 4 0
.0000	1.1988	2.493	0.3441	1.0807	1.782	0.8341	0.9685	1.148
.0210	1.1901	2.421	0.3813	1.0704	1.719	0.0120	0.9014	1.107
.0421	1.1816	2.312	0.4148	1.0015	1.009	0.92/5	0.9315	1.060
.0759	1.1684	2.295	0.4853	1.0436	1.5/3	0.9513	0.94/4	1.035
.09/6	1.1603	2.245	0.5455	1.0291	1.488	0.9796	0.9425	1.005
.1//9	1.1319	2.081	0.6708	1.0012	1.324	1.0000	0.9391	0.990
.2468	1.1096	1.953	0.7643	0.9820	1.223			
.0000	1 1897	2 041	0 3441	308.15 K 1 0743	1 458	0 8341	0 9605	0 959
0210	1 181/	2 000	0 3815	1 0640	1 419	0 8795	0 9531	0.000
0491	1 1729	1 9/0	0.11/12	1 0550	1 369	0 0975	0.0001	0.320
0759	1 1605	1 870	0 4853	1 0370	1 291	0.9513	0.9384	0.874
0976	1 1596	1 835	0 5455	1 0294	1 996	0 9796	0 0333	0.874
1770	1 19/0	1 602	0.5455	0 00/0	1 101	1 0000	0.0006	0.002 N 890
.2468	1.1029	1.595	0.7643	0.9744	1.017	1.0000	0.3630	0.023
				318.15 K				
0.0000	1.1780	1.718	0.3441	1.0637	1.216	0.8341	0.9501	0.829
0.0210	1.1699	1.666	0.3815	1.0534	1.176	0.8725	0.9426	0.804
.0421	1.1619	1.641	0.4148	1.0446	1.145	0.9275	0.9322	0.774
.0759	1.1493	1.565	0.4853	1.0267	1.083	0.9513	0.9279	0.758
.0976	1.1415	1.529	0.5455	1.0122	1.038	0.9796	0.9229	0.739
0.1779	1.1140	1.420	0.6708	0.9838	0.938	1.0000	0.9193	0.728
).2468	1.0920	1.332	0.7643	0.9641	0.877			

1994, 1995). The mole fraction of each mixture was obtained from the measured apparent masses of the components with an accuracy of 1×10^{-4} . All the mass measurements were made on an electric balance (Dhona 200D, India) accurate to ±0.01 mg. Corrections were made for buoyancy. Each run covered just over half of the range of x_1 so as to give an overlap between two runs.

The kinematic viscosities of the pure components and the mixtures were measured using a suspended Ubbelohde type viscometer. The viscometer was calibrated with thrice-distilled water and twice-distilled benzene and kept in a water thermostat controlled to ± 0.01 K. Care was taken to reduce evaporation during the measurements. An average of four or five sets of flow time for each fluid was taken for the purpose of the calculation of viscosity. After multiplication by density, the dynamic viscosity, η , was deduced with a relative error of ± 0.003 mPa·s. The flow– time measurements were made with an electronic stopwatch having a precision of ± 0.01 s. The performance of the viscometer was assessed by measuring and comparing the viscosities of the pure liquids with the value reported in the literature (Riddick et al., 1986).

Refractive indices were measured with a thermostated Bausch and Lomb Abbe 3L refractometer with an error of less than 0.0001 units. Water was circulated into the prisms of the refractometer by using a circulation pump connected from a constant temperature bath. The instrument was calibrated by measuring the refractive index of purified water, benzene, *n*-hexane, and carbon tetrachloride at known temperatures (Riddick et al., 1986). The sample mixtures were directly injected into the prism assembly of the instrument by means of an airtight hypodermic syringe, and the refractive index values were noted after the liquid mixtures attained the constant temperature of the refractometer. An average of triplicate measurements was considered for the calculation of refractive index values.

Results and Discussion

The experimental excess molar volumes, viscosities, and refractive indices of the different binary mixtures as a function of the mole fraction of diglyme at (298.15, 308.15, and 318.15) K are shown in Tables 2, 4, and 5.

Excess volumes at various temperatures have been fitted by a least-squares technique to the equation (Redlich and Kister, 1948)

$$V_{\rm m}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1} = x_1 x_2 \sum_{j=1}^n a_j (x_2 - x_1) f^{-1}$$
 (1)

where x_1 and x_2 are the mole fractions of diethylene glycol dimethyl ether and esters of carbonic acid molecules, respectively. The values of the coefficients, a_j , are summarized in Table 3 along with standard deviations $s(V_m^E)$. In each case, the optimum number of coefficients was ascertained from an examination of the variation of the standard deviation with n

$$s(V_{\rm m}^{\rm E}) = \left[\sum (V_{\rm m,exptl}^{\rm E} - V_{\rm m,calcd}^{\rm E})^2 / (p-n)\right]^{1/2}$$
 (2)

where *p* is the total number of experimental data and *n* is the number of parameters considered.

Plots of excess molar volume at 298.15 K versus mole fraction of diglyme for the three system are shown in Figure 1. Mixtures containing propylene carbonate have negative V_m^E values, while those with dimethyl carbonate or diethyl carbonate have (smaller) positive values of V_m^E . The binary mixtures with propylene carbonate show

 Table 5. Refractive Indices (nD) for Binary Mixtures at

 Various Temperatures

<i>X</i> 1	n _D	<i>X</i> ₁	n _D	<i>X</i> ₁	n _D
Diethylen	e Clycol Di	methyl Eth	ar(1) + Di	methyl Car	honate (2)
Dictilyicii	c diyeoi Di			incuryi car	bollate (2)
0 0000	1 0710	298.	15 K	0.0040	1 4077
0.0000	1.3/10	0.4863	1.3950	0.9340	1.4077
0.0227	1.3722	0.5051	1.3979	0.9082	1.4002
0.0000	1.3772	0.0520	1 4038	0.9783	1 4083
0.1987	1.3818	0.8742	1.4065	0.9927	1.4085
0.2725	1.3858	0.9050	1.4070	1.0000	1.4085
0.3921	1.3910				
		308	15 K		
0 0000	1 3661	0 4863	1 3905	0 9340	1 4035
0.0227	1.3675	0.5651	1.3935	0.9682	1.4043
0.0853	1.3710	0.6520	1.3965	0.9783	1.4044
0.1127	1.3725	0.7598	1.3999	0.9827	1.4045
0.1987	1.3773	0.8742	1.4025	0.9927	1.4046
0.2725	1.3809	0.9050	1.4031	1.0000	1.4047
0.3921	1.3864				
		318.	15 K		
0.0000	1.3629	0.4863	1.3863	0.9340	1.3990
0.0227	1.3640	0.5651	1.3892	0.9682	1.3998
0.0853	1.3676	0.6520	1.3922	0.9783	1.3999
0.1127	1.3693	0.7598	1.3955	0.9827	1.4000
0.1987	1.3740	0.8742	1.3971	0.9927	1.4001
0.2725	1.3775	0.9050	1.3982	1.0000	1.4002
0.3921	1.3826				
Diethyle	ne Glycol D	imethyl Et	her (1) + D	iethyl Carb	onate (2)
5	5	208	15 K	5	
0 0000	1 3859	0 4860	1 3980	0 9155	1 4074
0.0087	1.3861	0.5584	1.4000	0.9502	1.4080
0.0619	1.3870	0.6730	1.4025	0.9635	1.4082
0.1978	1.3909	0.7540	1.4040	0.9911	1.4084
0.2501	1.3918	0.8782	1.4060	1.000	1.4085
0.3717	1.3949				
		308	15 K		
0.0000	1.3809	0.4860	1.3934	0.9155	1.4030
0.0087	1.3810	0.5584	1.3955	0.9502	1.4035
0.0619	1.3825	0.6730	1.3980	0.9635	1.4040
0.1978	1.3864	0.7540	1.3998	0.9911	1.4045
0.2501	1.3875	0.8782	1.4013	1.0000	1.4047
0.3717	1.3908				
		318.	15 K		
0.0000	1.3769	0.4860	1.3891	0.9155	1.3984
0.0087	1.3770	0.5584	1.3910	0.9502	1.3990
0.0619	1.3785	0.6730	1.3936	0.9635	1.3995
0.1978	1.3818	0.7540	1.3952	0.9911	1.3999
0.2501	1.3831	0.8782	1.3965	1.0000	1.4002
0.3717	1.3860				
Diethylen	e Glycol Dii	methyl Eth	er(1) + Pro	pylene Car	bonate (2)
5	5	208	15 V	15	
0 0000	1 4210	£90. 0 5893	1 4 1 4 0	0 9579	1 4090
0.0504	1.4203	0.6647	1.4130	0.9632	1.4090
0.1130	1.4195	0.7477	1.4119	0.9744	1.4088
0.1969	1.4185	0.7942	1.4113	0.9893	1.4086
0.2660	1.4176	0.8955	1.4099	0.9914	1.4086
0.3752	1.4164	0.9112	1.4097	1.0000	1.4085
0.4943	1.4151	0.9241	1.4095		
		308.	15 K		
0.0000	1.4185	0.5893	1.4120	0.9579	1.4058
0.0504	1.4180	0.6647	1.4107	0.9632	1.4056
0.1130	1.4173	0.7477	1.4093	0.9744	1.4053
0.1969	1.4163	0.7942	1.4086	0.9893	1.4050
0.2660	1.4156	0.8955	1.4069	0.9914	1.4048
0.3752	1.4144	0.9112	1.4066	1.0000	1.4047
0.4943	1.4132	0.9241	1.4064		
		318.	15 K		
0.0000	1.4139	0.5893	1.4080	0.9579	1.4014
0.0504	1.4135	0.6647	1.4070	0.9632	1.4012
0.1130	1.4131	0.7477	1.4056	0.9744	1.4009
0.1969	1.4123	0.7942	1.4045	0.9893	1.4006
0.2660	1.4116	0.8955	1.4027	0.9914	1.4004
0.3752	1.4105	0.9112	1.4023	1.0000	1.4002
0.4943	1.4092	0.9241	1.4020		

Figure 1. Comparison of the excess molar volume (V_m^E) of different mixtures at 298.15 K: (\bigcirc) dimethyl carbonate, (\triangle) diethyl carbonate, and (\square) propylene carbonate.

 $V_{\rm m}^{\rm E}$ values that decrease with an increase in temperature, while for the mixtures with dimethyl carbonate or diethyl carbonate $V_{\rm m}^{\rm E}$ shows a negligible temperature dependence. However, this dependence is not shown graphically to avoid overcrowding of graphs. The temperature coefficient $(\partial V^{\rm E}/\partial T)_p$ is positive for mixtures with propylene carbonate and negative for mixtures with dimethyl carbonate or diethyl carbonate over the whole mole fraction range.

The η and n_D results of the mixtures at all the three temperatures follow the sequence dimethyl carbonate < diethyl carbonate < propylene carbonate. At any particular temperature as x_1 increases, the η and n_D of dimethyl carbonate and diethyl carbonate increases whereas for propylene carbonate it decreases. There is a systematic decrease in η and n_D with a rise in temperature for all mixtures. A further comparison of data at different temperatures reveals that the temperature coefficient $(\partial \eta / \partial T)_p$ or $(\partial n / \partial T)_p$ is decreasing in values for the three mixtures with increasing temperature.

Literature Cited

Aminabhavi, T. M.; Phayde, H. T. S.; Khinnavar, R. S.; Gopalakrishna, B.; Hansen, K. C. Densities, Refractive Indices, Speeds of Sound, and Shear Viscosities of Diethylene Glycol Dimethyl Ether with Ethyl Acetate, Methyl Benzoate, Ethyl Benzoate, and Diethyl Succinate in the Temperature Range from 298.15 to 318.15 K. J. Chem. Eng. Data 1994, 39, 251–260.

- Barthel, J.; Utz, M.; GroB, K.; Gores, H.-J. Temperature and Composition Dependence of Viscosity I. Propylene Carbonate–Dimethoxy Ethane Mixtures and Thermodynamics of Fluid Flow. *J. Solution Chem.* **1995**, *24* (11), 1109–1123.
- Comelli, F.; Francesconi, R. Densities and Excess Molar Volumes of Dimethyl Carbonate–Six Methyl n-Alkyl Ketones at 298.15 K and Atmospheric Pressure. J. Chem. Eng. Data 1994, 39, 108–110.
- Dethlefsen, C.; Hvidt, A. Densities and derived volume functions of binary mixtures; (an ethylene glycol derivative + water) at 298.15 K. J. Chem. Thermodyn. 1985, 17, 193–199.
- Daubert, T. E.; Danner, R. P. Physical and Thermodynamic Properties of Pure Chemicals, Data Compilation, Hemisphere Publishing Corp.: Washington, DC, 1992; Part I.
- Dickinson, E.; Hunt, D. C.; McLure, I. A. Excess volumes of mixing of nearly spherical molecules 2. Mixtures containing cyclic dimethylsiloxanes. J. Chem. Thermodyn. 1975, 7, 731–740.
- Francesconi, R.; Comelli, F. Excess Molar Volumes of Binary Mixtures Containing Diethyl Carbonate + Linear and Cyclic Ethers at 298.15 K. J. Chem. Eng. Data 1995a, 40, 512–514.
- Francesconi, R.; Comelli, F. Excess Molar Enthalpies, Densities, and Excess Molar Volumes of Binary Mixtures Containing Esters of Carbonic Acid at 298.15 and 313.15 K. J. Chem. Eng. Data 1995b, 40, 811–814.
- Francesconi, R.; Comelli, F. Vapor-Liquid Equilibria, Excess Molar Enthalpies, and Excess Molar Volumes of Dimethyl Carbonate + 1,2-Epoxybutane at 288.15, 298.15, or 313.15 K. J. Chem. Eng. Data 1996, 41, 736-740.
- Muhuri, P. K.; Hazra, D. K. Density and Viscosity of Propylene Carbonate + 2-Methoxyethanol at 298.15, 308.15, and 318.15 K. J. Chem. Eng. Data **1995**, 40, 582–585.
- Pal, A.; Singh, W. Excess Molar Volumes of Linear and Cyclic Ethers + Chloroethenes at 298.15 K. J. Chem. Eng. Data 1996a, 41, 428– 430.
- Pal, A.; Singh, W. Excess molar volumes and excess partial molar volumes of { $xCH_3O(CH_2)_2OH + (1-x)H(CH_2)_vO(CH_2)_2O(CH_2)_2OH$ }, ($\nu = 1, 2, and 4$) at the temperature 298.15 K. *J. Chem. Thermodyn.* **1996b**, *28*, 227–232.
- Pal, A.; Singh, Y. P. Excess molar volumes and apparent molar volumes of ${xH(CH_2)_{\nu}O(CH_2)_2O(CH_2)_2OH + (1-x)H_2O]}$ at the temperature 298.15 K. *J. Chem. Thermodyn.* **1994**, *26*, 1063–1070.
- Pal, A.; Singh, Y. P. Excess Molar Volumes and Apparent Molar Volumes of Some Amide + Water Systems at 303.15 and 308.15 K. J. Chem. Eng. Data 1995, 40, 818–822.
- Riddick, J. A.; Bunger, W. S.; Sakano, T. Organic Solvents. Techniques of Chemistry, 4th ed.; John Wiley and Sons: New York, 1986; Vol. II.
- Redlich, O.; Kister, A. T. Algebraic representation of thermodynamic properties and the classification of solutions. *Ind. Eng. Chem.* **1948**, 40, 345–348.
- Thompson, C. M. The Use of Polyalkylene Glycol in Sonar Transducers. Navy Research Laboratory Report; Washington, DC, Feb 1979.

Received for review August 5, 1997. Accepted October 14, 1997.^{\otimes} The authors are thankful to the Department of Science and Technology (DST), New Delhi, for the financial support (Grant No. SP/SI/H-16/94) to carry out this work.

JE9701902

[®] Abstract published in Advance ACS Abstracts, December 1, 1997.