497

Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of Ethenylbenzene with *N*,*N*-Dimethylacetamide, Tetrahydrofuran, *N*,*N*-Dimethylformamide, 1,4-Dioxane, Dimethyl Sulfoxide, Chloroform, Bromoform, and 1-Chloronaphthalene in the Temperature Interval (298.15–308.15) K

Tejraj M. Aminabhavi* and Virupakshagouda B. Patil

Department of Chemistry, Karnatak University, Dharwad 580 003, India

Density, viscosity, and refractive index at 298.15, 303.15, and 308.15 K and speed of sound at 298.15 K in the binary mixtures of etheny1benzene with *N*,*N*-dimethylacetamide, tetrahydrofuran, *N*,*N*-dimethylformamide, 1,4-dioxane, dimethyl sulfoxide, chloroform, bromoform, and 1-chloronaphthalene are presented. Using these results, excess molar volume, V^{E} , deviations in viscosity, $\Delta \eta$, molar refraction, ΔR , speed of sound, Δu , and isentropic compressibility, Δk_{S} , have been calculated. These quantities are fitted to Redlich–Kister type equation to estimate the binary coefficients and standard errors between the experimental and fitted quantities.

Introduction

In the literature of liquid-state chemistry, binary mixtures containing ethenylbenzene (styrene) have attracted considerable interest in view of the widely varying type of molecular interactions with liquids (Aminabhavi and Patil, 1997; Haijun et al., 1994a,b; Haijun et al., 1995a,b,c; Miller, 1975). In continuation of this research and as a part of our ongoing program of study toward the accumulation of binary mixture physical property data, we now present experimental results on density, ρ , viscosity, η , and refractive index, n_D at 298.15, 303.15, and 308.15 K and speed of sound, u, at 298.15 K for the binary mixtures of ethenylbenzene with N,N-dimethylacetamide (DMAc), tetrahydrofuran (THF), N,N-dimethylformamide (DMF), 1,4dioxane, dimethyl sulfoxide (DMSO), chloroform, bromoform, and 1-chloronaphthalene (1-CNP). Using these data, excess molar volume, V^{E} , deviations in viscosity, $\Delta \eta$, molar refracton, ΔR , speed of sound, Δu , and isentropic compressibility, $\Delta k_{\rm S}$, have been calculated. These results are fitted to Redlich-Kister type equation (1948) to estimate the binary coefficients and standard errors between the data derived from experiments and those of the computed values.

Experimental Section

Materials and Methods. High-purity spectral grade samples of ethenylbenzene, THF, DMF, DMAc, chloroform, and bromoform were purchased from s.d. fine Chemicals Ltd., Mumbai, India. 1-Chloronaphthalene was purchased from Fluka, Germany; DMSO was purchased from Sisco Research Laboratories, Mumbai. 1,4-Dioxane was procured from E. Merck, Germany. The GLC analyses of these liquids indicated a mol % purity of 99.7, 99.2, 99.2, 99.1, 99.4, 99.3, 99.7, 99.3, and 99.2, respectively. The analyses were performed at 353.15 K on a gas chromatograph, HP Series 6890, using a flame ionization detector with fused

* Author for correspondence. Fax: 91-836-747884. E-mail: karuni@ bom2.vsnl. net.in.

Table 1. Comparison of Experimental Densit	ies (ρ) and
Refractive Indices (n _D) of Pure Liquids with I	Literature
Values at 298.15 K	

	ho/g.	cm ⁻³	r	1 _D
liquid (mol % purity)	exptl	lit.	exptl	lit.
ethenylbenzene (99.7)	0.9016	0.9015 ^a	1.5440	1.5440^{b}
DMAc (99.1)	0.9367	0.9363^{b}	1.4363	1.4356^{b}
DMSO (99.3)	1.0957	1.0954^{b}	1.4767	1.4775^{b}
DMF (99.2)	0.9445	0.9439^{b}	1.4289	1.4282^{b}
THF (99.2)	0.8833	0.8892^{d}	1.4050	1.4050^{d}
1,4-dioxane (99.2)	1.0286	1.0280 ^c	1.4194	1.4203 ^c
chloroform (99.4)	1.4788	1.4797^{b}	1.4432	1.4430^{b}
bromoform (99.3)	2.8788	2.8779^{b}	1.5948	1.5956^{b}
1- chloronaphthalene (99.7)	1.1880	1.1878^{e}		

^{*a*} Haijun, et al., 1995a. ^{*b*} Riddick, et al., 1986. ^{*c*} Suri and Naorem, 1987. ^{*d*} Ramkumar and Kudchadkar, 1989. ^{*e*} Wilhelm et al., 1986.

silica columns, having a sensitivity better than 10^{-8} g of fatty acid/µL of the solvent. All the samples were used without further purification. Experimental values of ρ and $n_{\rm D}$ of the pure liquids are compared in Table 1 at 298.15 K with the published results.

Preparations of the binary mixtures, mass, density, refractive index, speed of sound, and viscosity measurements of the pure liquids and their binary mixtures have been described previously (Aralaguppi et al., 1991). The mass measurements (± 0.01 mg) were made using an electronic balance (Mettler AE 240, Switzerland) and the reproducibility in mole fraction was within ± 0.0001 units.

Densities of pure liquids and their mixtures were measured using a pycnometer having a bulb volume of 15 cm³ and a capillary bore with an internal diameter of 1 mm. Density values are accurate to ± 0.0002 g·cm⁻³. Viscosities have been measured using a Cannon Fenske Viscometer (size 75, Industrial Research Glassware, Ltd., Roselle, NJ). An electronic digital stopwatch with a readability of ± 0.01 s was used for the flow time measurements. The measured viscosity values are accurate to ± 0.001 mPa·s. Calibrations of the pycnometer and the viscometer are the same

Table 2. Experimental Densities (ρ), Viscosities (η), Refractive Indices (n_D), and Speeds of Sound (u) of Binary Mixtures at Different Temperatures

	density/	viscosity/	refrac- tive	speed of sound/		density/	viscosity/	refrac- tive	speed of sound/		density/	viscosity/	refrac- tive	speed of sound/
<i>X</i> 1	g·cm ⁻³	mPa∙s	index	m/s	<i>X</i> 1	g·cm ⁻³	mPa∙s	index	m/s	<i>X</i> 1	g·cm ⁻³	mPa∙s	index	m/s
					E	Ethenylbe	nzene (1) -	+ DMSO	0 (2)					
							298.15 K							
0.0000	1.0957	1.848	1.4767	1490	0.3987	0.9995	1.237	1.5156	1445	0.8010	0.9311	0.887	1.5380	1407
0.1017	1.0670	1.642	1.4888	1478	0.5010	0.9801	1.139	1.5220	1434	0.8960	0.9170	0.802	1.5411	1399
0.2022	1.0419	1.475	1.4985	1467	0.6007	0.9626	1.058	1.5281	1425	1.0000	0.9016	0.708	1.5440	1390
0.3096	1.0177	1.326	1.5084	1455	0.6968	0.9471	0.982	1.5333	1416					
0 0000	1 0007	1 669	1 4747		0 2007	0.0045	303.15 K	1 5 1 9 6		0.0010	0.0266	0.007	1 5947	
0.0000	1.0907	1.002	1.4/4/		0.3967	0.9945	1.112	1.5120		0.0010	0.9200	0.827	1.5347	
0.1017	1.0021	1 343	1.4003		0.5010	0.9734	0.976	1 5240		1 0000	0.3123	0.745	1.5501	
0.3096	1.0129	1.191	1.5057		0.6968	0.9425	0.910	1.5309		1.0000	0.0071	0.000	1.0111	
							308.15 K							
0.0000	1.0858	1.498	1.4727		0.3987	0.9900	1.014	1.5096		0.8010	0.9220	0.763	1.5315	
0.1017	1.0573	1.335	1.4839		0.5010	0.9708	0.957	1.5167		0.8960	0.9079	0.700	1.5351	
0.2022	1.0323	1.204	1.4935		0.6007	0.9533	0.899	1.5213		1.0000	0.8926	0.623	1.5385	
0.3096	1.0081	1.083	1.5030		0.6968	0.9379	0.837	1.5278						
						Ethenylb	enzene (1)	+ DMF	(2)					
							298.15 K							
0.0000	0.9445	0.816	1.4289	1486	0.3998	0.9281	0.858	1.4886	1439	0.8049	0.9116	0.825	1.5289	1405
0.1090	0.9399	0.831	1.4479	1472	0.5052	0.9240	0.860	1.5011	1428	0.8976	0.9076	0.794	1.5375	1398
0.2013	0.9361	0.845	1.4616	1461	0.6012	0.9201	0.856	1.5107	1420	1.0000	0.9016	0.708	1.5440	1390
0.2959	0.9323	0.854	1.4752	1450	0.6979	0.9161	0.847	1.5206	1413					
							303.15 K							
0.0000	0.9397	0.766	1.4267		0.3998	0.9235	0.804	1.4863		0.8049	0.9070	0.768	1.5262	
0.1090	0.9352	0.780	1.4455		0.5052	0.9193	0.802	1.4981		0.8976	0.9030	0.735	1.5345	
0.2013	0.9314	0.790	1.4394		0.6070	0.9155	0.798	1.5070		1.0000	0.8971	0.003	1.3414	
0.2333	0.3270	0.001	1.4720		0.0373	0.3110	0.750	1.5127						
0 0000	0.0240	0 799	1 4945		0 2000	0.0190	308.15 K	1 1010		0 00 40	0.0095	0 717	1 5995	
0.0000	0.9349	0.722	1.4245		0.3998	0.9109	0.730	1.4040		0.8049	0.9025	0.717	1.525	
0.2013	0.9267	0.742	1.4561		0.6012	0.9109	0.746	1.5045		1.0000	0.8926	0.623	1.5385	
0.2959	0.9229	0.749	1.4699		0.6979	0.9070	0.739	1.5150						
					F	Ethenvlbe	enzene (1)	+ DMAc	(2)					
					_	j	208 15 K		()					
0 0000	0 9367	0 937	1 4363	1468	0 4002	0 9258	0 929	1 4879	1454	0 8005	0 9115	0.851	1 5284	1418
0.1090	0.9341	0.938	1.4505	1466	0.5004	0.9227	0.921	1.4987	1448	0.9015	0.9071	0.808	1.5369	1406
0.1994	0.9316	0.936	1.4630	1463	0.6012	0.9193	0.903	1.5090	1439	1.0000	0.9016	0.708	1.5440	1390
0.2958	0.9289	0.937	1.4752	1459	0.7027	0.9155	0.881	1.5192	1428					
							303.15 K							
0.0000	0.9321	0.878	1.4346		0.4002	0.9213	0.863	1.4851		0.8005	0.9071	0.795	1.5253	
0.1090	0.9297	0.874	1.4481		0.5004	0.9182	0.857	1.4960		0.9015	0.9028	0.753	1.5338	
0.1994	0.9271	0.873	1.4605		0.6012	0.9148	0.841	1.5063		1.0000	0.8971	0.663	1.5414	
0.2958	0.9243	0.872	1.4725		0.7027	0.9111	0.821	1.5164						
0.0000	0.0075	0.000	1 4010		0.4000	0.0100	308.15 K	1 4007		0.0007	0.0000	0 7 4 9	1 5000	
0.0000	0.9275	0.823	1.4319		0.4002	0.9168	0.807	1.4825		0.8005	0.9026	0.742	1.5223	
0.1090	0.9200	0.817	1.4438		0.5004	0.9137	0.800	1.4933		0.9015	0.8984	0.700	1.5308	
0.2958	0.9220	0.815	1.4699		0.7027	0.9066	0.766	1.5137		1.0000	0.0320	0.025	1.5565	
						Ethonylh	onzono (1)	+ THE	(2)					
						Lenenyib	909 15 V		(~)					
0 0000	0 8833	0 479	1 /052	1204	0 /010	0 8076	290.10 K	1 /779	1249	0 8017	0 0024	0 749	1 5 9 5 9	1376
0.0000	0.8884	0.472	1 4263	1310	0.4010	0.8995	0.032	1 4911	1352	0.8017	0.9024	0.742	1.5258	1384
0.1990	0.8918	0.535	1.4441	1324	0.6002	0.9009	0.695	1.5035	1358	1.0000	0.9016	0.708	1.5440	1390
0.3001	0.8953	0.595	1.4624	1336	0.6993	0.9019	0.721	1.5149	1366				5	
							303.15 K							
0.0000	0.8779	0.450	1.4028		0.4010	0.8926	0.599	1.4748		0.8017	0.8978	0.695	1.5230	
0.1011	0.8831	0.490	1.4228		0.4963	0.8946	0.625	1.4876		0.8979	0.8982	0.699	1.5322	
0.1990	0.8867	0.528	1.4411		0.6002	0.8961	0.658	1.5005		1.0000	0.8971	0.663	1.5414	
0.3001	0.8901	0.562	1.4593		0.6993	0.8972	0.677	1.5119						
							308.15 K							
0.0000	0.8724	0.429	1.4004		0.4010	0.8876	0.564	1.4718		0.8017	0.8933	0.652	1.5202	
0.1011	0.8778	0.463	1.4192		0.4963	0.8897	0.589	1.4841		0.8979	0.8936	0.651	1.5291	
0.1990	0.8815	0.498	1.4381		0.6002	0.8913	0.616	1.4978		1.0000	0.8926	0.623	1.5385	
0.3001	0.0000	0.032	1.4001		0.0993	0.0920	0.037	1.0108						

Table 2 (Continued)

	density∕ g∙cm ⁻³	viscosity/ mPa·s	refrac- tive index	speed of sound/ m/s	<i>X</i> 1	density∕ g∙cm ⁻³	viscosity/ mPa·s	refrac- tive index	speed of sound/ m/s	<i>X</i> 1	density/ g·cm ⁻³	viscosity/ mPa·s	refrac- tive index	speed of sound/ m/s
					Eth	enylbenz	ene (1) + 1	,4-Dioxa	ane (2)					
0.0000 0.1012 0.2139 0.2989	1.0282 1.0119 0.9950 0.9830	1.178 1.119 1.069 1.043	1.4210 1.4369 1.4548 1.4661	1358 1362 1366 1368	0.3996 0.5054 0.6016 0.7019	0.9695 0.9563 0.9448 0.9336	298.15 K 1.005 0.966 0.929 0.891	1.4804 1.4937 1.5050 1.5157	1369 1371 1373 1376	0.8050 0.9021 1.0000	0.9226 0.9123 0.9016	0.853 0.819 0.708	1.5250 1.5350 1.5440	1380 1385 1390
0.0000 0.1012 0.2139 0.2989	1.0225 1.0063 0.9896 0.9777	1.086 1.034 0.987 0.959	1.4180 1.4345 1.4524 1.4637		0.3996 0.5054 0.6016 0.7019	0.9644 0.9513 0.9400 0.9289	303.15 K 0.929 0.893 0.873 0.829	1.4779 1.4909 1.5025 1.5129		0.8050 0.9021 1.0000	0.9179 0.9078 0.8971	0.795 0.766 0.663	1.5226 1.5324 1.5414	
0.0000 0.1012 0.2139 0.2989	1.0168 1.0008 0.9843 0.9725	0.999 0.957 0.915 0.889	1.4156 1.4323 1.4500 1.4613		0.3996 0.5054 0.6016 0.7019	0.9593 0.9463 0.9351 0.9241	308.15 K 0.862 0.830 0.802 0.774	1.4755 1.4885 1.4999 1.5103		0.8050 0.9021 1.0000	0.9133 0.9032 0.8926	0.744 0.716 0.623	1.5203 1.5297 1.5385	
					Eth	nenylbenz	zene $(1) + 0$	Chlorofo	rm (2)					
0.0000 0.1010 0.2004 0.3009	1.4788 1.3992 1.3271 1.2598	0.5565 0.5838 0.6109 0.6357	1.4432 1.4581 1.4698 1.4824	1018 1036 1064 1098	0.4022 0.5055 0.5997 0.7050	1.1968 1.1372 1.0865 1.0335	298.15 K 0.6615 0.6849 0.7054 0.7267	1.4939 1.5038 1.5118 1.5210	1136 1178 1216 1259	0.7962 0.9000 1.0000	$0.9906 \\ 0.9444 \\ 0.9016$	0.7443 0.7286 0.7082	1.5272 1.5350 1.5440	1297 1342 1390
0.0000 0.1010 0.2004 0.3009	1.4692 1.3904 1.3190 1.2523	0.5344 0.5575 0.5816 0.6033	1.4399 1.4555 1.4676 1.4797		0.4022 0.5055 0.5997 0.7050	1.1899 1.1311 1.0806 1.0280	303.15 K 0.6280 0.6463 0.6686 0.6832	1.4911 1.5010 1.5091 1.5183		0.7962 0.9000 1.0000	0.9854 0.9378 0.8971	0.6993 0.6841 0.6627	1.5250 1.5341 1.5414	
0.0000 0.1010 0.2004 0.3009	1.4594 1.3816 1.3110 1.2448	0.5133 0.5324 0.5513 0.5742	1.4369 1.4529 1.4650 1.4770		0.4022 0.5055 0.5997 0.7050	1.1830 1.1245 1.0747 1.0226	308.15 K 0.5915 0.6109 0.6272 0.6447	1.4884 1.4982 1.5065 1.5157		0.7962 0.9000 1.0000	0.9803 0.9349 0.8926	0.6581 0.6521 0.6231	1.5228 1.5333 1.5385	
					Etl	nenylbenz	zene (1) + I	Bromofo	rm (2)					
						J	298.15 K							
$\begin{array}{c} 0.0000\\ 0.1005\\ 0.2006\\ 0.2981 \end{array}$	2.8788 2.6258 2.3890 2.1713	1.9767 1.8342 1.6973 1.5615	$\begin{array}{c} 1.5948 \\ 1.5882 \\ 1.5821 \\ 1.5761 \end{array}$	928 948 977 1004	0.3985 0.5060 0.6032 0.7008	1.9597 1.7455 1.5624 1.3879	$\begin{array}{c} 1.4262 \\ 1.2838 \\ 1.1635 \\ 1.0537 \end{array}$	$\begin{array}{c} 1.5709 \\ 1.5655 \\ 1.5608 \\ 1.5562 \end{array}$	1037 1075 1122 1172	0.7712 0.8948 1.0000	1.2671 1.0648 0.9016	0.9849 0.8704 0.7082	$1.5536 \\ 1.5489 \\ 1.5440$	1216 1296 1390
0.0000 0.1005 0.2006 0.2981	2.8659 2.6137 2.3779 2.1610	$1.8566 \\ 1.7136 \\ 1.5865 \\ 1.4616$	1.5917 1.5851 1.5788 1.5730		0.3985 0.5060 0.6032 0.7008	1.9503 1.7370 1.5548 1.3810	303.15 K 1.3318 1.1981 1.0839 0.9817	1.5678 1.5626 1.5578 1.5532		0.7712 0.8948 1.0000	1.2609 1.0595 0.8971	0.9179 0.8129 0.6627	1.5506 1.5460 1.5414	
0.0000 0.1005 0.2006 0.2981	2.8530 2.6018 2.3668 2.1508	1.7333 1.6026 1.4806 1.3607	1.5886 1.5820 1.5756 1.5700		0.3985 0.5060 0.6032 0.7008	1.9409 1.7286 1.5471 1.3741	308.15 K 1.2399 1.1165 1.0104 0.9176	1.5647 1.5596 1.5548 1.5502		0.7712 0.8948 1.0000	1.2546 1.0542 0.8926	0.8595 0.7620 0.6231	1.5476 1.5432 1.5385	
					I	Ethenylbe	enzene (1) -	+ 1-CNF	P (2)					
0.0000 0.1076 0.2005 0.3010	1.1880 1.1621 1.1388 1.1129	2.8060 2.3565 2.0704 1.7785		1462 1458 1454 1446	0.4032 0.5003 0.6015 0.6840	1.0855 1.0585 1.0293 1.0047	298.15 K 1.5495 1.3789 1.2161 1.1076		1436 1424 1413 1406	0.7992 0.9033 1.0000	0.9688 0.9348 0.9016	0.9675 0.8331 0.7082		1400 1396 1390
0.0000 0.1076 0.2005 0.3010	1.1839 1.1580 1.1346 1.1087	2.4873 2.1030 1.8637 1.6172			0.4032 0.5003 0.6015 0.6840	1.0812 1.0542 1.0250 1.0004	303.15 K 1.4116 1.2586 1.1155 1.0129			0.7992 0.9033 1.0000	0.9645 0.9310 0.8971	0.9100 0.8013 0.6627		
0.0000 0.1076 0.2005 0.3010	1.1798 1.1537 1.1304 1.1044	2.2138 1.8840 1.6769 1.4695			0.4032 0.5003 0.6015 0.6840	1.0770 1.0499 1.0206 0.9960	308.15 K 1.2834 1.1523 1.0360 0.9455			0.7992 0.9033 1.0000	0.9603 0.9264 0.8926	0.8446 0.7413 0.6231		

as described earlier (Aminabhavi and Bindu, 1995; Aminabhavi et al., 1994).

Refractive indices for the sodium $D\ line\ were\ measured$ with a thermostatically controlled Abbe refractometer

Table 3. Redlich–Kister	Coefficients and	Standard Deviation
-------------------------	------------------	--------------------

function	temp/K	A_0	A_1	A_2	σ	function	temp/K	A_0	A_1	A_2	σ
				Ethen	ylbenze	ene (1) + DMSO (2)					
<i>V</i> ^E /10 ^{−6} (m ³ ·mol ^{−1})	298.15	-1.740	1.096	-0.617	0.012	$\Delta R / 10^{-6} \text{ (m}^{3} \cdot \text{mol}^{-1}\text{)}$	298.15	-7.456	-1.872	-0.543	0.012
	303.15	-1.750	1.149	-0.712	0.010		303.15	-7.616	-2.065	-0.604	0.031
	308.15	-1.794	1.141	-0.645	0.012		308.15	-7.624	-2.030	-0.827	0.026
$\Delta \eta / (mPa \cdot s)$	298.15	-0.546	-0.514	-0.136	0.005	$\Delta u/(\text{m}\cdot\text{s}^{-1})$	298.15	-21.840	0.020	9.940	0.302
	303.15	-0.488	-0.508	-0.022	0.008	$\Delta k_{\rm s}/({\rm TPa}^{-1})$	298.15	-64.390	-16.520	-13.150	0.383
	308.15	-0.429	-0.483	-0.111	0.008	/					
$I E / 10 - 6 (m^3 m o l - 1)$	200 15	9 907	0.064	Ethe:	nylbenz	ene (1) + DMF (2) $A P/10^{-6} (m^3 mol^{-1})$	200 15	6 441	1 595	0 5 1 0	0 099
<i>V²</i> /10 ° (III°•III01 ⁻)	202 15	-2.207	0.904	-0.013	0.021	$\Delta K/10^{\circ}$ (III • III • III • I	202 15	-0.441	-1.525	-0.319	0.022
	208 15	-2.231	0.977	-0.070	0.021		208 15	-6.402	-1 522	-1.270	0.070
$\Lambda n/(m Pars)$	208.15	-2.230	-0.250	-0.878	0.021	$\Lambda u/(me^{-1})$	208 15	-36.2	-0.2	-0.837	0.030
$\Delta \eta / (\min a^{-}s)$	202 15	0.367	-0.210	0.220	0.003	$\Delta k_{\rm c}/({\rm TD}_2^{-1})$	208 15	7	-9.0	-20.3	0.331
	308.15	0.334	-0.188	0.101	0.003	$\Delta MS/(11a)$	230.15	20.7	5.0	20.5	0.407
	000.10	0.010	0.100	Ethor	vilhona	$(1) \perp DMAc(9)$					
$V^{E}/10^{-6}$ (m ³ ·mol ⁻¹)	208 15	-2/131	0.915	=0.648	0 011	$\Delta R/10^{-6} (m^3 \cdot mol^{-1})$	298 15	-2 516	-0 299	-0.444	0.015
v /10 (III III01)	200.15	-2464	0.010	-0.868	0.011		200.15	-2.628	-0.200	-0.800	0.013
	308 15	-2.491	0.978	-1.117	0.019		308 15	-2.599	-0.395	-0.807	0.013
$\Delta n/(mPa\cdot s)$	298 15	0.381	-0.278	0 229	0.006	$\Delta u/(m \cdot s^{-1})$	298 15	73.2	-12.1	3.6	0.537
	303.15	0.334	-0.273	0.208	0.005	$\Delta k_{\rm s}/({\rm TPa}^{-1})$	298.15	-83.4	-34.6	-16.2	0.507
	308.15	0.300	-0.233	0.157	0.004)	200110	0011	0110	1012	01001
				Ethe	nvlhenz	rene (1) + THF (2)					
$V^{E}/10^{-6}$ (m ³ mol ⁻¹)	298 15	-2.373	0 223	-0 781	0.021	$\Lambda R/10^{-6} (m^3 \cdot mol^{-1})$	298 15	-5.008	-1.056	-0 720	0.013
<i>,</i> , 10 (III III01)	303 15	-2.400	0.281	-0.816	0.019		303 15	-5.092	-1.006	-0.986	0.012
	308 15	-2.435	0 270	-0.895	0.017		308 15	-5.135	-0.816	-1.262	0.024
$\Delta n/(mPa \cdot s)$	298.15	0.295	-0.232	0.211	0.004	$\Delta u/(m \cdot s^{-1})$	298.15	26.2	-0.5	3.7	0.322
	303.15	0.283	-0.208	0.185	0.004	$\Delta k_{\rm s}/({\rm TPa}^{-1})$	298.15	-19.7	5.2	6.8	0.395
	308.15	0.260	-0.186	0.133	0.002						
				Ethenvl	benzene	(1) + 1.4-Dioxane (2)					
$V^{E}/10^{-6} \text{ (m}^{3} \cdot \text{mol}^{-1}\text{)}$	298.15	-0.567	0.706	-0.729	0.012	$\Delta R/10^{-6} (\text{m}^3 \cdot \text{mol}^{-1})$	298.15	-3.960	-0.660	-0.928	0.028
	303.15	-0.593	0.732	-0.748	0.015		303.15	-3.911	-0.757	-0.804	0.030
	308.15	-0.584	0.734	-0.821	0.015		308.15	-3.874	-0.746	-0.595	0.023
$\Delta \eta / (mPa \cdot s)$	298.15	0.088	-0.326	0.233	0.012	$\Delta u/(\mathbf{m} \cdot \mathbf{s}^{-1})$	298.15	12.4	25.4	11.6	0.379
	303.15	0.081	-0.329	0.215	0.010	$\Delta k_{\rm S}/({\rm TPa}^{-1})$	298.15	4.4	20.5	-1.5	0.425
	308.15	0.070	-0.273	0.258	0.009						
				Ethenyl	benzene	(1) + Chloroform (2)					
V ^E /10 ^{−6} (m ³ ·mol ^{−1})	298.15	-0.398	0.553	-0.674	0.020	$\Delta R/10^{-6} \text{ (m}^3 \cdot \text{mol}^{-1}\text{)}$	298.15	-5.048	-1.444	-1.368	0.042
	303.15	-0.549	0.209	-0.561	0.062		303.15	-5.076	-1.437	-0.362	0.037
	308.15	-0.426	0.560	-0.828	0.019		308.15	-5.014	-1.368	-0.007	0.041
$\Delta \eta / (mPa \cdot s)$	298.15	0.204	-0.205	0.195	0.003	$\Delta u/(\mathbf{m} \cdot \mathbf{s}^{-1})$	298.15	-114.0	-61.6	-81.8	0.323
	303.15	0.196	-0.185	0.125	0.004	$\Delta k_{\rm S}/({\rm TPa}^{-1})$	298.15	129.4	-69.9	54.1	0.756
	308.15	0.166	-0.192	0.166	0.003						
				Ethenyl	benzene	e(1) + Bromoform(2)					
$V^{E}/10^{-6} (m^{3} \cdot mol^{-1})$	298.15	-0.420	0.532	-0.423	0.006	$\Delta R/10^{-6} \text{ (m}^{3} \cdot \text{mol}^{-1}\text{)}$	298.15	-1.957	-0.334	0.057	0.012
	303.15	-0.400	0.544	-0.436	0.007		303.15	-1.364	-0.562	-1.955	0.156
	308.15	-0.363	0.531	-0.402	0.007		308.15	-1.993	-0.349	-0.061	0.016
$\Delta \eta / (mPa \cdot s)$	298.15	-0.217	-0.104	0.382	0.011	$\Delta u/(\mathbf{m} \cdot \mathbf{s}^{-1})$	298.15	-333.6	107.2	-41.3	2.550
	303.15	0.286	-1.830	0.949	0.343	$\Delta k_{\rm s}/({\rm TPa}^{-1})$	298.15	-32.7	-9.9	-8.6	2.174
	308.15	-0.234	-0.104	0.336 Ether	0.010	$(1) \perp 1 \text{ CND} (9)$					
$V^{E}/10^{-6}$ (m ³ ·mol ⁻¹)	298 15	-0 800	0.440	-0 226	0 005	ene (1) \pm 1-CNP (2)					
	202.13	-0.893	0.440	-0.220	0.003						
	308 15	-0.879	0.034	-0 735	0.020	$\Delta u/(m \cdot s^{-1})$	298 15	-7.0	61 3	29.8	1 477
$\Delta n/(mPa \cdot s)$	298 15	-1.525	-0.848	-0.039	0.008	$\Delta k_{\rm s}/({\rm TPa}^{-1})$	298 15	-394	29 1	-28.6	0.890
	303.15	-1.283	-0.746	0.185	0.012		~~ 5.10	00.1		2010	0.000
	308.15	-1.062	-0.651	0.124	0.009						

(Bellingham and Stanley Ltd., London) with an accuracy of \pm 0.0001. The samples were injected using medicine dropper into the orifice provided in the refractometer prism case. The measurements were made quickly before any possible preferential evaporation losses of liquid components.

The speed of sound values have been measured using a variable-path single-crystal interferometer (Mittal Enterprises, model M-84, New Delhi). Interferometer was calibrated using water and benzene. The speed of sound values are accurate to $\pm 2 \text{ m} \cdot \text{s}^{-1}$ and were measured in a cell having a fixed frequency of 4 kHz. From the results

of speed of sound, the isentropic compressibility, $k_{\rm S},$ values have been calculated as $k_{\rm S}=1/u^2\rho.$

In all the property measurements, an INSREF, model 016 AP thermostat was used at a constant digital temperature display accurate up to ± 0.01 K. The results of ρ , η , $n_{\rm D}$, and u compiled in Table 2 represent the average of at least three independent measurements for each composition of the mixture.

Results and Discussion

Experimental values of ρ , η , n_D , and u are used to calculate the mixing functions using the general type

Figure 1. Excess molar volume vs mole fraction of ethenylbenzene with (\Box) DMAc, (\bigcirc) DMSO, (\triangle) DMF, (\blacktriangle) THF, and (\bigcirc) dioxane at 298.15 K.

Figure 2. Excess molar volume vs mole fraction of ethenylbenzene with (\triangle) bromoform, (\bigcirc) chloroform, (\Box) and 1-CNP at 298.15K.

equation (Aminabhavi and Bindu, 1995; Aminabhavi et al., 1994)

$$V^{E} \text{ (or } \Delta Y) = V_{m} \text{ (or } Y_{m}) - V_{1} \text{ (or } Y_{1})x_{1} - V_{2} \text{ (or } Y_{2})x_{2}$$
(1)

where $V_{\rm m}$ refers to the molar volume of the mixture calculated as

$$V_{\rm m} = (M_1 x_1 + M_2 x_2) / \rho_{\rm m} \tag{2}$$

Here, M_1 and M_2 are molecular weights of the components 1 and 2; V_i (= M_i / ρ_i) represent the molar volumes of pure components. The quantity Y_m refers to the mixture properties, viz., η , R, u, and k_S ; Y_i refers to properties of the pure components (i = 1, 2). The quantity ΔY refers to $\Delta \eta$, ΔR , Δu , and Δk_S . To calculate ΔR , the Lorenz–Lorentz mixing rule was used. For the calculation of ΔR and Δk_S , the volume fraction, ϕ_i was used (Aminabhavi and Bindu, 1995; Aminabhavi et al., 1994) instead of the mole fraction,

Figure 3. Deviation in viscosity vs mole fraction of ethenylbenzene at 298.15 K. Symbols are the same as given in Figure 1.

Figure 4. Deviation in viscosity vs mole fraction of ethenylbenzene at 298.15 K. Symbols are the same as given in Figure 2.

 x_i . The ϕ_i was calculated as

$$\phi_i = \left(\frac{x_i V_i}{\sum_{i=1} x_i V_i}\right) \tag{3}$$

The functions V^{E} , $\Delta \eta$, Δu , ΔR , and Δk_{S} have been fitted to the Redlich–Kister type equation (1948)

$$V^{E} \text{ (or } \Delta Y) = x_{1} x_{2} \sum_{i=1}^{2} A_{i} (x_{2} - x_{1})^{i-1}$$
 (4)

where the coefficients A_i (i = 0 to 2) were obtained by the method of least-squares using the Marquardt algorithm (1963). In solving eq 4 for ΔR and Δk_S , ϕ_i is used in place of x_i . The values of standard error, σ , are computed for each of the functions (V^E , $\Delta \eta$, Δu , ΔR , and Δk_S). The calculated values of A_0 , A_1 , and A_2 along with σ are given in Table 3. While minimizing the function, we found that the best fits were possible by solving eq 4 up to third degree, i.e., $A_i = 0$ to 2.

Figure 5. Deviation in molar refractivity vs volume fraction of ethenylbenzene at 298.15 K. Symbols are the same as given in Figure 1.

Figure 6. Deviation in molar refractivity vs volume fraction of ethenylbenzene at 298.15 K. Symbols are the same as given in Figure 2.

The plots of V^{E} vs x_1 for mixtures of ethenylbenzene with DMAc, DMSO, DMF, THF, and dioxane at 298.15 K are shown in Figure 1. The values of V^{E} are negative for all the mixtures, and these data vary with the second component of the mixture as DMAc < THF < DMF < DMSO < dioxane. Similar plots for mixtures of ethenylbenzene with bromoform, chloroform, and 1-CNP at 298.15 K are presented in Figure 2. The V^{E} results for these mixtures are also negative, but the magnitudes of V^{E} values for these three mixtures are much higher than those presented in Figure 1.

The plots of $\Delta \eta$ on x_1 at 298.15 K are displayed in Figure 3 for mixtures of ethenylbenzene with DMAc, DMSO, DMF, THF, and dioxane. In the case of ethenylbenzene + DMSO mixture, the $\Delta \eta$ values are negative. On the other hand, for all the mixtures except ethenylbenzene + dioxane at lower compositions of ethenylbenzene, the $\Delta \eta$ values are positive. Similar plots for ethenylbenzene + chloroform, + bromoform, or + 1-CNP are presented in Figure 4. These results are negative for mixtures of ethenylbenzene + 1-CNP, while the positive values of $\Delta \eta$ are observed for mixtures of ethenylbenzene + chloroform.

Figure 7. Deviation in speed of sound vs mole fraction of ethenylbenzene at 298.15 K. Symbols are the same as given in Figure 1.

Figure 8. Deviation in speed of sound vs mole fraction of ethenylbenzene at 298.15 K. Symbols are the same as given in Figure 2.

For the latter mixture, a slight sigmoidal variation is observed at higher compositions of ethenylbenzene.

Figure 5 displays the plots of ΔR vs ϕ_1 for mixtures of ethenylbenzene with DMAc, DMSO, DMF, THF, and dioxane at 298.15 K. These data are negative for all the mixtures and vary according to the sequence DMSO < DMF < THF < dioxane < DMAc. Similar plots are displayed in Figure 6 for mixtures of ethenylbenzene with bromoform and chloroform at 298.15 K. The refractive index data for 1-CNP were not measured owing to the limit imposed on the refractometer used. Thus, the ΔR values are not obtained for this mixture. However, wide variations in ΔR values could be seen for bromoform- or chloroform-containing mixtures. For both the mixtures, the ΔR values are negative.

The results of Δu are presented in Figure 7 for mixtures of ethenylbenzene with DMSO, DMF, DMAc, THF, and 1,4dioxane at 298.15 K. These data are positive for mixtures of ethenylbenzene with DMAc or THF, while for mixtures of DMF or DMSO, the Δu values negative. On the other hand, for ethenylbenzene + dioxane mixtures, the Δu results vary from positive to negative. The plots of Δu vs

Figure 9. Deviation in isentropic compressibilities vs mole fraction of ethenylbenzene at 298.15 K. Symbols are the same as given in Figure 1.

Figure 10. Deviation in isentropic compressibilities vs mole fraction of ethenylbenzene at 298.15 K. Symbols are the same as given in Figure 2.

 x_1 at 298.15 K for mixtures of ethenylbenzene with bromoform, chloroform, and 1-CNP are presented in Figure 8. These data are negative for mixtures of ethenylbenzene + bromoform or + chloroform. However, in the case of ethenylbenzene + 1-CNP, the Δu results vary from positive to negative.

The $\Delta k_{\rm S}$ results presented in Figure 9 at 298.15 K are negative for all the mixtures except for ethenylbenzene + dioxane, for which a sigmoidal behavior is seen. The results of $\Delta k_{\rm S}$ vary according to the sequence DMAc < DMSO < DMF < THF < dioxane. Figure 10 displays the variation of $\Delta k_{\rm S}$ with ϕ_1 for mixtures of ethenylbenzene + chloroform, + bromoform, or + 1-CNP at 298.15 K. The negative values are observed for mixtures of ethenylbenzene with bromoform or 1-CNP, whereas positive values of $\Delta k_{\rm S}$ are seen for mixtures of ethenylbenzene + chloroform.

Literature Cited

- Aminabhavi, T. M.; Phyade, H. T. S.; Khinnavar, R. S.; Bindu, G.; Hansen, K. C. Densities, Refractive Indices, Speeds of Sound, and Shear Viscosities of Diethylene Glycol Dimethyl Ether with Ethyl Acetate, Methyl Benzoate, Ethyl Benzoate, and Diethyl Succinate in the Temperature Range from 298.15 to 318.15 K. J. Chem. Eng. Data 1994, 39, 251–260.
- Aminabhavi, T. M.; Bindu, G. Density, Viscosity, Refractive Index, and Speed of Sound in Aqueous Mixtures of N.N-Dimethyl Sulfoxide, N.N-Dimethylacetamide, Acetonitrile, Ethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15 K. J. Chem. Eng. Data 1995, 40, 856–861.
 Aminabhavi, T. M.; Patil, V. B. Density, Refractive Index, Viscosity,
- Aminabhavi, T. M.; Patil, V. B. Density, Refractive Index, Viscosity, and Speed of Sound in Binary Mixtures of Ethenylbenzene with Hexane, Heptane, Octane, Nonane, Decane, and Dodecane. J. Chem. Eng. Data 1997, 42, 641–646.
- Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H.; Joshi, S. S. Thermodynamic Interactions in Mixtures of Bromoform with Hydrocarbons. J. Phys. Chem. 1991, 95, 5299–5308.
- Haijun, W.; Guokang, Z.; Mingzhi, C.; Excess Volumes of Acrylonitrile + an Aromatic Hydrocarbon at the Temperature 298.15 K. J. Chem. Thermodyn. 1994a, 26, 457–460.
 Haijun, W.; Guokang, Z.; Mingzhi, C. Excess Volumes of an Aliphatic Provide the Aromatic Provide th
- Haijun, W.; Guokang, Z.; Mingzhi, C. Excess Volumes of an Aliphatic Dinitrile + an Aromatic Hydrocarbon at the Temperature 298.15 K. *J. Chem. Thermodyn.* **1994b**, *26*, 913–918.
 Haijun, W.; Guokang, Z.; Mingzhi, C. Excess Volumes of Benzonitrile Automatic Hydrocarbon at the Temperature 200 15 K at Chem.
- Haijun, W.; Guokang, Z.; Mingzhi, C. Excess Volumes of Benzonitrile + an Aromatic Hydrocarbon at the Temperature 298.15 K. *J. Chem. Thermodyn.* 1995a, 27, 57–61.
- Haijun, W.; Chao, Z.; Mingzhi, C.; Hulin, L. Excess Volumes of a Polar Liquid + an Aromatic Hydrocarbon at the Temperature 298.15 K (*N*,*N*-Dimethylformamide + an Aromatic Hydrocarbon). *J. Chem. Thermodyn.* 1995b, *27*, 991–996.
 Haijun, W.; Zhongxing, S.; Xiaoxin, Z. Excess Volumes of a Polar Liquid
- Haijun, W.; Zhongxing, S.; Xiaoxin, Z. Excess Volumes of a Polar Liquid + an Aromatic Hydrocarbon at the Temperature 298.15 K (*N*,*N*-Dimethylacetamide + an Aromatic Hydrocarbon) *J. Chem. Thermodyn.* 1995c, *27*, 1349–1353.
- Marquardt, D. W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431-441
- Nonlinear Parameters. J. Soc. Ind. Appl. Math. **1963**, 11, 431–441. Miller, L, P.; Wachter, H. N.; Frieud, V. Densities and Molar Volumes of Binary Solutions of Nitrobenzene in Electron-Donating Solutions. J. Chem. Eng. Data **1975**, 20, 417–419.
- Ramkumar, D. H. S.; Kudchadkar, A. P.; Mixture Properties of the Water + γ-Butyrolactone + Tetrahydrofuran System Part 1. Densities of γ-Butyrolactone + Water at 298.15 K and of Tetrahydrofuran + γ-Butyrolactone at 278.15 K to 298.15 K and Ultrasonic Velocities at 298.15 K for the Three Binary Systems Inclusive of Tetrahydrofuran + Water and the Ternary System of Tetrahydrofuran + Water + γ-Butyrolactone. J. Chem. Eng. Data 1989, 34, 459–463.
- Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. *Ind. Eng. Chem.* 1948, 40, 345–348.
- Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Techniques of Chemistry, Organic Solvents. Physical Properties and Methods of Purifications, John Wiley & Sons: New York, 1986; Vol. II.
- Suri, S. K.; Naorem, H. Excess Molar Volumes, Speeds of Sound, and Isentropic Compressibilities of Binary Mixtures of Furfural with Some Aromatic Hydrocarbons. J. Chem. Eng. Data 1987, 32, 462– 466.
- Wilhelm, E.; Lainez, A.; Roux, A. H.; Grolier, J. P. E. Excess Molar Volumes and Heat Capacities of (1,2,4-Trichlorobenzene + an *n*-Alkane) and (1- Chloronaphthalene + an *n*-Alkane). *Thermochim. Acta* **1986**, *105*, 101–110.

Received for review January 23, 1998. Accepted April 1, 1998. Authors are thankful to the All India Council For Technical Education, New Delhi (F. No. 8017/RDII/BOR/96/ID No. 138.23) for major financial support of this study.

JE980031Y